International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

Size: px
Start display at page:

Download "International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994"

Transcription

1 International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

2 1 PROBLEMS AND SOLUTIONS First day July 29, 1994 Problem points a Let A be a n n, n 2, symmetric, invertible matrix with real positive elements. Show that z n n 2 2n, where z n is the number of zero elements in A 1. b How many zero elements are there in the inverse of the n n matrix A = ? Solution. Denote by a ij and b ij the elements of A and A 1, respectively. Then for k m we have n i= a ki b im = and from the positivity of a ij we conclude that at least one of {b im : i = 1, 2,..., n} is positive and at least one is negative. Hence we have at least two non-zero elements in every column of A 1. This proves part a. For part b all b ij are zero except b 1,1 = 2, b n,n = 1 n, b i,i+1 = b i+1,i = 1 i for i = 1, 2,..., n 1. Problem points Let f C 1 a, b, lim x a+ fx = +, lim x b fx = and f x + f 2 x 1 for x a, b. Prove that b a π and give an example where b a = π. Solution. From the inequality we get d arctg fx + x = f dx x 1 + f 2 x + 1 for x a, b. Thus arctg fx+x is non-decreasing in the interval and using the limits we get π 2 + a π + b. Hence b a π. One has equality for 2 fx = cotg x, a =, b = π. Problem points

3 2 Given a set S of 2n 1, n N, different irrational numbers. Prove that there are n different elements x 1, x 2,..., x n S such that for all nonnegative rational numbers a 1, a 2,..., a n with a 1 + a a n > we have that a 1 x 1 + a 2 x a n x n is an irrational number. Solution. Let I be the set of irrational numbers, Q the set of rational numbers, Q + = Q [,. We work by induction. For n = 1 the statement is trivial. Let it be true for n 1. We start to prove it for n. From the induction argument there are n 1 different elements x 1, x 2,..., x n 1 S such that 1 a 1 x 1 + a 2 x a n 1 x n 1 I for all a 1, a 2,..., a n Q + with a 1 + a a n 1 >. Denote the other elements of S by x n, x n+1,..., x 2n 1. Assume the statement is not true for n. Then for k =, 1,..., n 1 there are r k Q such that 2 Also b ik x i + c k x n+k = r k for some b ik, c k Q +, b ik + c k >. 3 k= d k x n+k = R for some d k Q +, k= d k >, R Q. If in 2 c k = then 2 contradicts 1. Thus c k and without loss of generality one may take c k = 1. In 2 also b ik > in view of x n+k I. Replacing 2 in 3 we get k= d k b ik x i + r k = R or k= d k b ik x i Q, which contradicts 1 because of the conditions on b s and d s. Problem points Let α R \ {} and suppose that F and G are linear maps operators from R n into R n satisfying F G G F = αf. a Show that for all k N one has F k G G F k = αkf k. b Show that there exists k 1 such that F k =.

4 3 Solution. For a using the assumptions we have F k G G F k = = = k F k i+1 G F i 1 F k i G F i = k F k i F G G F F i 1 = k F k i αf F i 1 = αkf k. b Consider the linear operator LF = F G G F acting over all n n matrices F. It may have at most n 2 different eigenvalues. Assuming that F k for every k we get that L has infinitely many different eigenvalues αk in view of a a contradiction. that Problem points a Let f C[, b], g CR and let g be periodic with period b. Prove b Find fxgnxdx has a limit as n and lim fxgnxdx = 1 fxdx gxdx. n b Solution. Set g 1 = π sin x lim n 1 + 3cos 2 nx dx. gx dx and ωf, t = sup { fx fy : x, y [, b], x y t}. In view of the uniform continuity of f we have ωf, t as t. Using the periodicity of g we get k/n fxgnxdx = fxgnxdx bk 1/n k/n k/n = fbk/n gnxdx + {fx fbk/n}gnxdx bk 1/n bk 1/n = 1 fbk/n gxdx + Oωf, b/n g 1 n

5 4 = 1 b + 1 b = 1 b k/n bk 1/n fxdx gxdx b n fbk/n k/n fxdx fxdx gxdx + Oωf, b/n g 1 bk 1/n gxdx + Oωf, b/n g 1. This proves a. For b we set b = π, fx = sin x, gx = 1 + 3cos 2 x 1. From a and π sin xdx = 2, π 1 + 3cos 2 x 1 dx = π 2 we get π sin x lim n 1 + 3cos 2 dx = 1. nx Problem points Let f C 2 [, N] and f x < 1, f x > for every x [, N]. Let m < m 1 < < m k N be integers such that n i = fm i are also integers for i =, 1,..., k. Denote b i = n i n i 1 and a i = m i m i 1 for i = 1, 2,..., k. a Prove that 1 < b 1 a 1 < b 2 a 2 < < b k a k < 1. b Prove that for every choice of A > 1 there are no more than N/A indices j such that a j > A. c Prove that k 3N 2/3 i.e. there are no more than 3N 2/3 integer points on the curve y = fx, x [, N]. Solution. a For i = 1, 2,..., k we have b i = fm i fm i 1 = m i m i 1 f x i for some x i m i 1, m i. Hence b i a i = f x i and so 1 < b i a i < 1. From the convexity of f we have that f is increasing and b i a i = f x i < f x i+1 = b i+1 a i+1 because of x i < m i < x i+1.

6 5 b Set S A = {j {, 1,..., k} : a j > A}. Then k N m k m = a i a j > A S A j S A and hence S A < N/A. c All different fractions in 1, 1 with denominators less or equal A are no more 2A 2. Using b we get k < N/A + 2A 2. Put A = N 1/3 in the above estimate and get k < 3N 2/3. Second day July 3, 1994 Problem points Let f C 1 [a, b], fa = and suppose that λ R, λ >, is such that f x λ fx for all x [a, b]. Is it true that fx = for all x [a, b]? Solution. Assume that there is y a, b] such that fy. Without loss of generality we have fy >. In view of the continuity of f there exists c [a, y such that fc = and fx > for x c, y]. For x c, y] we have f x λfx. This implies that the function gx = ln fx λx is not increasing in c, y] because of g x = f x λ. Thus ln fx λx fx ln fy λy and fx e λx λy fy for x c, y]. Thus = fc = fc + e λc λy fy > a contradiction. Hence one has fx = for all x [a, b]. Problem points Let f : R 2 R be given by fx, y = x 2 y 2 e x2 y 2. a Prove that f attains its minimum and its maximum. b Determine all points x, y such that f f x, y = x, y = and x y determine for which of them f has global or local minimum or maximum. Solution. We have f1, = e 1, f, 1 = e 1 and te t 2e 2 for t 2. Therefore fx, y x 2 + y 2 e x2 y 2 2e 2 < e 1 for x, y / M = {u, v : u 2 + v 2 2} and f cannot attain its minimum and its

7 6 maximum outside M. Part a follows from the compactness of M and the continuity of f. Let x, y be a point from part b. From f x, y = x 2x1 x 2 + y 2 e x2 y 2 we get 1 x1 x 2 + y 2 =. Similarly 2 y1 + x 2 y 2 =. All solutions x, y of the system 1, 2 are,,, 1,, 1, 1, and 1,. One has f1, = f 1, = e 1 and f has global maximum at the points 1, and 1,. One has f, 1 = f, 1 = e 1 and f has global minimum at the points, 1 and, 1. The point, is not an extrema point because of fx, = x 2 e x2 > if x and fy, = y 2 e y2 < if y. Problem points Let f be a real-valued function with n + 1 derivatives at each point of R. Show that for each pair of real numbers a, b, a < b, such that fb + f b + + f n b ln fa + f a + + f n = b a a there is a number c in the open interval a, b for which f n+1 c = fc. Note that ln denotes the natural logarithm. Solution. Set gx = fx + f x + + f n x e x. From the assumption one get ga = gb. Then there exists c a, b such that g c =. Replacing in the last equality g x = f n+1 x fx e x we finish the proof. Problem points Let A be a n n diagonal matrix with characteristic polynomial x c 1 d 1 x c 2 d 2... x c k d k, where c 1, c 2,..., c k are distinct which means that c 1 appears d 1 times on the diagonal, c 2 appears d 2 times on the diagonal, etc. and d 1 +d 2 + +d k = n.

8 7 Let V be the space of all n n matrices B such that AB = BA. Prove that the dimension of V is d d d 2 k. Solution. Set A = a ij n i,j=1, B = b ij n i,j=1, AB = x ij n i,j=1 and BA = y ij n i,j=1. Then x ij = a ii b ij and y ij = a jj b ij. Thus AB = BA is equivalent to a ii a jj b ij = for i, j = 1, 2,..., n. Therefore b ij = if a ii a jj and b ij may be arbitrary if a ii = a jj. The number of indices i, j for which a ii = a jj = c m for some m = 1, 2,..., k is d 2 m. This gives the desired result. Problem points Let x 1, x 2,..., x k be vectors of m-dimensional Euclidian space, such that x 1 +x 2 + +x k =. Show that there exists a permutation π of the integers {1, 2,..., k} such that k 1/2 x πi x i 2 Note that denotes the Euclidian norm. for each n = 1, 2,..., k. Solution. We define π inductively. Set π1 = 1. Assume π is defined for i = 1, 2,..., n and also 1 2 x πi x πi 2. Note 1 is true for n = 1. We choose πn + 1 in a way that 1 is fulfilled with n + 1 instead of n. Set y = n x πi and A = {1, 2,..., k} \ {πi : i = 1, 2,..., n}. Assume that y, x r > for all r A. Then y, x r > r A and in view of y + x r = one gets y, y >, which is impossible. r A Therefore there is r A such that 2 y, x r. Put πn + 1 = r. Then using 2 and 1 we have n+1 2 x πi = y + x r 2 = y 2 + 2y, x r + x r 2 y 2 + x r 2

9 8 n+1 x πi 2 + x r 2 = x πi 2, which verifies 1 for n + 1. Thus we define π for every n = 1, 2,..., k. Finally from 1 we get 2 k x πi x πi 2 x i 2. Problem points ln 2 N 2 N 1 Find lim. Note that ln denotes the natural N N ln k lnn k k=2 logarithm. Solution. Obviously 1 A N = ln2 N N A N = ln2 N N N 2 k=2 1 ln k lnn k ln2 N N N 3 ln 2 N = 1 3 N. 1 Take M, 2 M < N/2. Then using that is decreasing in ln k lnn k [2, N/2] and the symmetry with respect to N/2 one get N 2 Choose M = 2 A N ln2 N N M k=2 N M 1 + k=m+1 + k=n M 1 ln k lnn k { M 1 2 ln 2 lnn 2 + N 2M 1 } ln M lnn M 1 2M ln N 1 N ln M + O. ln N 2 ln 2 M ln N N + [ ] N ln to get N 1 2 N ln 2 N Estimates 1 and 2 give ln N 1 ln N 2 ln ln N +O 1+O ln N ln 2 N 2 N 1 lim N N ln k lnn k = 1. k=2 ln ln N. ln N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- INSTRUCTOR: CEZAR LUPU Problem Let < x < and x n+ = x n ( x n ), n =,, 3, Show that nx n = Putnam B3, 966 Question? Problem E 334 from the American

More information

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim

WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- lim WORKSHEET FOR THE PUTNAM COMPETITION -REAL ANALYSIS- INSTRUCTOR: CEZAR LUPU Problem Let < x < and x n+ = x n ( x n ), n =,, 3, Show that nx n = Putnam B3, 966 Question? Problem E 334 from the American

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Lemma 15.1 (Sign preservation Lemma). Suppose that f : E R is continuous at some a R.

Lemma 15.1 (Sign preservation Lemma). Suppose that f : E R is continuous at some a R. 15. Intermediate Value Theorem and Classification of discontinuities 15.1. Intermediate Value Theorem. Let us begin by recalling the definition of a function continuous at a point of its domain. Definition.

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with Appendix: Matrix Estimates and the Perron-Frobenius Theorem. This Appendix will first present some well known estimates. For any m n matrix A = [a ij ] over the real or complex numbers, it will be convenient

More information

The Heine-Borel and Arzela-Ascoli Theorems

The Heine-Borel and Arzela-Ascoli Theorems The Heine-Borel and Arzela-Ascoli Theorems David Jekel October 29, 2016 This paper explains two important results about compactness, the Heine- Borel theorem and the Arzela-Ascoli theorem. We prove them

More information

TEST CODE: PMB SYLLABUS

TEST CODE: PMB SYLLABUS TEST CODE: PMB SYLLABUS Convergence and divergence of sequence and series; Cauchy sequence and completeness; Bolzano-Weierstrass theorem; continuity, uniform continuity, differentiability; directional

More information

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MATH 131A: REAL ANALYSIS (BIG IDEAS) MATH 131A: REAL ANALYSIS (BIG IDEAS) Theorem 1 (The Triangle Inequality). For all x, y R we have x + y x + y. Proposition 2 (The Archimedean property). For each x R there exists an n N such that n > x.

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION. Sunday, March 14, 2004 Time: hours No aids or calculators permitted.

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION. Sunday, March 14, 2004 Time: hours No aids or calculators permitted. THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION Sunday, March 1, Time: 3 1 hours No aids or calculators permitted. 1. Prove that, for any complex numbers z and w, ( z + w z z + w w z +

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics and Engineering Lecture notes for PDEs Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 The integration theory

More information

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0.

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0. Madhava Mathematics Competition January 6, 2013 Solutions and scheme of marking Part I N.B. Each question in Part I carries 2 marks. p(k + 1) 1. If p(x) is a non-constant polynomial, then lim k p(k) (a)

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS

MATH NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS MATH. 4433. NEW HOMEWORK AND SOLUTIONS TO PREVIOUS HOMEWORKS AND EXAMS TOMASZ PRZEBINDA. Final project, due 0:00 am, /0/208 via e-mail.. State the Fundamental Theorem of Algebra. Recall that a subset K

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

MATH. 4548, Autumn 15, MWF 12:40 p.m. QUIZ 1 September 4, 2015 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 4548, Autumn 15, MWF 12:40 p.m. QUIZ 1 September 4, 2015 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 4548, Autumn 15, MWF 12:40 p.m. QUIZ 1 September 4, 2015 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Let f : (, 0) IR be given by f(x) = 1/x 2. Prove

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions.

MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. MATH 409 Advanced Calculus I Lecture 10: Continuity. Properties of continuous functions. Continuity Definition. Given a set E R, a function f : E R, and a point c E, the function f is continuous at c if

More information

HOMEWORK ASSIGNMENT 5

HOMEWORK ASSIGNMENT 5 HOMEWORK ASSIGNMENT 5 DUE 1 MARCH, 2016 1) Let f(x) = 1 if x is rational and f(x) = 0 if x is irrational. Show that f is not continuous at any real number. Solution Fix any x R. We will show that f is

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22.

6.1 Matrices. Definition: A Matrix A is a rectangular array of the form. A 11 A 12 A 1n A 21. A 2n. A m1 A m2 A mn A 22. 61 Matrices Definition: A Matrix A is a rectangular array of the form A 11 A 12 A 1n A 21 A 22 A 2n A m1 A m2 A mn The size of A is m n, where m is the number of rows and n is the number of columns The

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

Selçuk Demir WS 2017 Functional Analysis Homework Sheet Selçuk Demir WS 2017 Functional Analysis Homework Sheet 1. Let M be a metric space. If A M is non-empty, we say that A is bounded iff diam(a) = sup{d(x, y) : x.y A} exists. Show that A is bounded iff there

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

CHAPTER 1. Metric Spaces. 1. Definition and examples

CHAPTER 1. Metric Spaces. 1. Definition and examples CHAPTER Metric Spaces. Definition and examples Metric spaces generalize and clarify the notion of distance in the real line. The definitions will provide us with a useful tool for more general applications

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhofproblems.tex December 5, 2017 http://thales.doa.fmph.uniba.sk/sleziak/texty/rozne/pozn/books/ van Rooij, Schikhof: A Second Course on Real Functions Some notes made when reading [vrs].

More information

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking

MADHAVA MATHEMATICS COMPETITION, December 2015 Solutions and Scheme of Marking MADHAVA MATHEMATICS COMPETITION, December 05 Solutions and Scheme of Marking NB: Part I carries 0 marks, Part II carries 30 marks and Part III carries 50 marks Part I NB Each question in Part I carries

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Algorithms: Background

Algorithms: Background Algorithms: Background Amotz Bar-Noy CUNY Amotz Bar-Noy (CUNY) Algorithms: Background 1 / 66 What is a Proof? Definition I: The cogency of evidence that compels acceptance by the mind of a truth or a fact.

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

Chapter 3. Differentiable Mappings. 1. Differentiable Mappings

Chapter 3. Differentiable Mappings. 1. Differentiable Mappings Chapter 3 Differentiable Mappings 1 Differentiable Mappings Let V and W be two linear spaces over IR A mapping L from V to W is called a linear mapping if L(u + v) = Lu + Lv for all u, v V and L(λv) =

More information

Real Variables # 10 : Hilbert Spaces II

Real Variables # 10 : Hilbert Spaces II randon ehring Real Variables # 0 : Hilbert Spaces II Exercise 20 For any sequence {f n } in H with f n = for all n, there exists f H and a subsequence {f nk } such that for all g H, one has lim (f n k,

More information

FRESHMAN PRIZE EXAM 2017

FRESHMAN PRIZE EXAM 2017 FRESHMAN PRIZE EXAM 27 Full reasoning is expected. Please write your netid on your paper so we can let you know of your result. You have 9 minutes. Problem. In Extracurricula all of the high school students

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 1. Please write your 1- or 2-digit exam number on

More information

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2 Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, 2009 2. Define f : ( 2, 0) R by f(x) = 2x2 + 3x 2. Prove that f has a limit at 2 and x + 2 find it. Note that when x 2 we have f(x) = 2x2

More information

Solutions to Homework 9

Solutions to Homework 9 Solutions to Homework 9 Read the proof of proposition 1.7 on p. 271 (section 7.1). Write a more detailed proof. In particular, state the defintion of uniformly continuous and explain the comment whose

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

Definitions & Theorems

Definitions & Theorems Definitions & Theorems Math 147, Fall 2009 December 19, 2010 Contents 1 Logic 2 1.1 Sets.................................................. 2 1.2 The Peano axioms..........................................

More information

MT804 Analysis Homework II

MT804 Analysis Homework II MT804 Analysis Homework II Eudoxus October 6, 2008 p. 135 4.5.1, 4.5.2 p. 136 4.5.3 part a only) p. 140 4.6.1 Exercise 4.5.1 Use the Intermediate Value Theorem to prove that every polynomial of with real

More information

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005

MATH 225 Summer 2005 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 2005 MATH 225 Summer 25 Linear Algebra II Solutions to Assignment 1 Due: Wednesday July 13, 25 Department of Mathematical and Statistical Sciences University of Alberta Question 1. [p 224. #2] The set of all

More information

Matrix Theory. A.Holst, V.Ufnarovski

Matrix Theory. A.Holst, V.Ufnarovski Matrix Theory AHolst, VUfnarovski 55 HINTS AND ANSWERS 9 55 Hints and answers There are two different approaches In the first one write A as a block of rows and note that in B = E ij A all rows different

More information

Math 1310 Lab 10. (Sections )

Math 1310 Lab 10. (Sections ) Math 131 Lab 1. (Sections 5.1-5.3) Name/Unid: Lab section: 1. (Properties of the integral) Use the properties of the integral in section 5.2 for answering the following question. (a) Knowing that 2 2f(x)

More information

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 05 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [5pts] Consider our definitions of Z, Q, R, and C. Recall that A B means A is a subset

More information

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1

MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION. Problem 1 MATH 54 - TOPOLOGY SUMMER 2015 FINAL EXAMINATION ELEMENTS OF SOLUTION Problem 1 1. Let X be a Hausdorff space and K 1, K 2 disjoint compact subsets of X. Prove that there exist disjoint open sets U 1 and

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1. Chapter 1 Metric spaces 1.1 Metric and convergence We will begin with some basic concepts. Definition 1.1. (Metric space) Metric space is a set X, with a metric satisfying: 1. d(x, y) 0, d(x, y) = 0 x

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Problem 1A. Use residues to compute. dx x

Problem 1A. Use residues to compute. dx x Problem 1A. A non-empty metric space X is said to be connected if it is not the union of two non-empty disjoint open subsets, and is said to be path-connected if for every two points a, b there is a continuous

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show

FINAL REVIEW FOR MATH The limit. a n. This definition is useful is when evaluating the limits; for instance, to show FINAL REVIEW FOR MATH 500 SHUANGLIN SHAO. The it Define a n = A: For any ε > 0, there exists N N such that for any n N, a n A < ε. This definition is useful is when evaluating the its; for instance, to

More information

COURSE Numerical integration of functions

COURSE Numerical integration of functions COURSE 6 3. Numerical integration of functions The need: for evaluating definite integrals of functions that has no explicit antiderivatives or whose antiderivatives are not easy to obtain. Let f : [a,

More information

Math 220A - Fall Final Exam Solutions

Math 220A - Fall Final Exam Solutions Math 22A - Fall 216 - Final Exam Solutions Problem 1. Let f be an entire function and let n 2. Show that there exists an entire function g with g n = f if and only if the orders of all zeroes of f are

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

n(n + 2)(5n 1)(5n + 1)

n(n + 2)(5n 1)(5n + 1) All Problems on Prize Exam Spring 200 Version Date: Mon Mar 8 8:44:39 EST 200 The source for each problem is listed below when available; but even when the source is given, the formulation of the problem

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

In class midterm Exam - Answer key

In class midterm Exam - Answer key Fall 2013 In class midterm Exam - Answer key ARE211 Problem 1 (20 points). Metrics: Let B be the set of all sequences x = (x 1,x 2,...). Define d(x,y) = sup{ x i y i : i = 1,2,...}. a) Prove that d is

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Real Analysis Comprehensive Exam Fall A(k, ε) is of Lebesgue measure zero.

Real Analysis Comprehensive Exam Fall A(k, ε) is of Lebesgue measure zero. Real Analysis Comprehensive Exam Fall 2002 by XYC Good luck! [1] For ε>0andk>0, denote by A(k, ε) thesetofx Rsuch that x p q 1 for any integers p, q with q 0. k q 2+ε Show that R \ k=1 A(k, ε) is of Lebesgue

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer.

Determine for which real numbers s the series n>1 (log n)s /n converges, giving reasons for your answer. Problem A. Determine for which real numbers s the series n> (log n)s /n converges, giving reasons for your answer. Solution: It converges for s < and diverges otherwise. To see this use the integral test,

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2016 1. Please write your 1- or 2-digit exam number on

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h 1 Sec 4.1 Limits, Informally When we calculated f (x), we first started with the difference quotient f(x + h) f(x) h and made h small. In other words, f (x) is the number f(x+h) f(x) approaches as h gets

More information

Algebra II CP Final Exam Review Packet. Calculator Questions

Algebra II CP Final Exam Review Packet. Calculator Questions Name: Algebra II CP Final Exam Review Packet Calculator Questions 1. Solve the equation. Check for extraneous solutions. (Sec. 1.6) 2 8 37 2. Graph the inequality 31. (Sec. 2.8) 3. If y varies directly

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

MATH 201 Solutions: TEST 3-A (in class)

MATH 201 Solutions: TEST 3-A (in class) MATH 201 Solutions: TEST 3-A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets. - Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define

More information

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems

Chapter 1. Optimality Conditions: Unconstrained Optimization. 1.1 Differentiable Problems Chapter 1 Optimality Conditions: Unconstrained Optimization 1.1 Differentiable Problems Consider the problem of minimizing the function f : R n R where f is twice continuously differentiable on R n : P

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information