Summative Practical: Motion down an Incline Plane

Size: px
Start display at page:

Download "Summative Practical: Motion down an Incline Plane"

Transcription

1 Summative Practical: Motion down an Incline Plane In the next lesson, your task will be to perform an experiment to investigate the motion of a ball rolling down an incline plane. For an incline of 30, the expected relationship between the distance travelled by the ball rolling down the incline (s) and the time (t) taken to travel this distance is: s = 2.45 t 2. (1) This experiment is to be conducted in groups of 2 or 3, however the experimental write-up and discussion of results will be done independently. You will have 2 hours to complete the experiment, with the write-up to be done in the booklet provided. This booklet must be handed up at the end of the lesson. There will also be marks assigned to safe and effective use of equipment, positive and effective teamwork, both of which the teacher will assess during the experimentation stage, and effective communication skills determined from the responses to the questions in the practical booklet. Preparation: First individually read the introduction and answer the questions in part (a). Then with your partner(s) briefly consider how you will undertake the experiment by identifying the independent and the dependent variables in order to verify the relationship above. Your answers to parts (a) will be collected at the beginning of the practical session. Complete your group design on a separate piece of paper as this will assist you in completing the investigation. Introduction For an object falling under the influence of gravity near the Earth s surface, the gravitational force is effectively constant leading to a constant acceleration we call g, the acceleration due to gravity. As we have constant acceleration, if the object starts at rest, then the distance travelled during a time t is given by: s = 1 2 gt2. In this practical we shall consider the situation in which a ball rolls down an incline plane. This is a similar problem to that of the falling object, however in this case the ramp provides an additional force (the normal force which is perpendicular and away from the ramp). To understand the resulting motion, we resolve the force due to gravity into components along the ramp and perpendicular to the ramp. In doing this we find that the normal force completely cancels with the component of gravity perpendicular to the ramp, resulting in no net force in the perpendicular direction. However, the component of gravity along the ramp is unbalanced and so there is a net force in this direction. F N y mg cos θ θ F g = mg mg sin θ x θ Working through the trigonometry, we can show that the magnitude of this force is: F x = mg sin θ. Using Newton s second law we know that: F x = ma x a x = g sin θ. Therefore, if the object starts at rest, the distance travelled down the incline plane during a time t is given by: s = 1 (g sin 2 θ)t2.

2 Part (a): Individual Questions In this practical, we shall verify this relationship by considering the motion of a solid ball bearing rolling down an incline plane. 1) Give a brief explanation as to why you would expect the forces in the direction perpendicular to the ramp to cancel. (Hint: What would happen if the forces did not cancel each other?) (KU1) (1 marks) 2) i) In this practical, the angle of the ramp will be set at θ = 30. Show that the exact equation that we wish to verify is: (A2) s = 2.45 t 2. (1 marks) 3) In deriving the expression for the distance travelled down an incline plane, we neglected the effects of friction. Friction is a resistive force which opposes the motion of a moving object. (KU1) i. On the diagram, draw an arrow indicating the direction of the frictional force, F fr. ii. What effect would including this force have on the resulting acceleration? (2 marks) 4) In this experiment, you will release the ball at a series of different points along an inclined ramp and time how long it takes for the ball to reach the end of the ramp. To ensure that the ramp is set an angle of 30, you will need to calculate the height of the end of the ramp. If the length of the ramp is 1.5m, use trigonometry to calculate the required height of the ramp. (A2) 1.5 m 30 (1 marks) Part (b): Group Planning Before the practical, you will need to get together with your partner(s) to briefly consider how you will do the experiment. On a piece of paper record: which variable you will change (the independent variable) which variable you will measure (the dependent variable) any variables you should hold fixed (constant variables) A brief outline of steps that will later form your method. During the practical session you will have access to a stopwatch, a metre ruler, a solid steel ball bearing, a V-shaped aluminium track of length 1.5m (you should check this!) and a retort stand.

3 Summative Practical: Motion down an Incline Plane / 58 During this lesson, you will have 2 hours to perform the experiment and to write up your findings in this booklet. Be aware that marks have been also been allocated to: Effective and safe use of apparatus (I3) (4 marks) Positive and effective collaborative work (A3) (4 marks) Effective communication (KU3) (3 marks) During the first hour you will be able to work within your groups to perform the experiment, however the write-up should be done independently (i.e. in your own words). At the end of the first hour you should have written your method, made all your measurements and have these recorded in a table in your own booklet. In the following hour, you will work individually to graph your data, analyse your results and write your discussion. At the end of the second hour you must hand up your booklet. Aim and Hypothesis: State the aim for this experiment: (I1) (1 mark) The hypothesis we wish to test for this experiment is: The relationship between the distance travelled by a rolling ball down an incline plane at an angle of 30 and the time taken to traverse this distance is given by, s = 2.45 t 2, or equivalently t 2 = s. In order to verify this hypothesis, you will need to graph your results in such a way that you should observe a linear relationship in the plotted data if the theoretical result holds true. i. By considering one of the above expressions, identify what variables should be plotted on the horizontal and vertical axes in order to obtain a linear graph. (I1) Horizontal axis: Vertical axis: (1 mark) ii. List any constant variables you identified in your planning. (I1) (2 marks) iii. If linear behaviour is observed in the data, what features do you expect to observe for the line-of-best fit given your answer (i)? (AE1) (2 marks)

4 Method: In the space below, provide a step-by-step outline of the method you will use to conduct this experiment. The first step should outline how to assemble the apparatus and should include a suitably labelled diagram. Note that you will need to make measurements for at least five different distances. Be sure to include any steps taken to reduce the effect of random uncertainties, as well as any comments or precautions that should be noted to ensure the experiment is done safely. (I1) Note: To ensure the angle of incline is 30 the height of the end of the rod should be half the length of the rod above the bench. Measure and include the length of the rod in you method. (6 marks)

5 Results: Data: Construct a suitable table in which to record your results. Perform measurements for at least 5 different distances up the track. (I4) (6 marks)

6 Graph: On the grid below, plot the data using the choice of variables you identified in question (1) of the Aim and Hypothesis section. Be sure to provide suitable axis labels, relevant units and a suitable title. Also include the lineof-best-fit for your data. (I4) (6 marks)

7 Analysis: i. Using the graph, determine the slope for the line-of-best-fit. (AE1) (3 marks) ii. measured value theoretical value Calculate the percentage-error ( 100%) for the slope from part (i). theoretical value (AE1) (1 marks) Discussion: Provide a discussion of your results. Be sure to: relate your findings to your expectations (detailed in the Aim and Hypothesis section) identify evidence for and possible sources of error in this practical. In discussing each error, you should distinguish whether the error is random or systematic with some explanation as to why. provide suggestions for how the experiment could be modified to either remove or reduce the impact of any experimental errors you identify. (AE1,AE2)

8 (12 marks) Conclusion: Provide a conclusion that summarises your findings, with particular reference to the aim and hypothesis for the experiment. (AE1) (2 marks)

9 Practical and Collaborative Skills Assessment Sheet: I3: Manipulates apparatus and technological tools carefully and highly effectively to implement well-organised, safe, and ethical investigation procedures. A3: Demonstrates initiative in applying constructive and focused individual and collaborative work skills. Indicator A (4) B (3) C (2) D (1) E (0) I3 Uses equipment safely, Recognises hazards and takes required precautions Ability to problem solve (issues with practical) A3 Cooperates with all group members Shows initiative Uses time effectively Logical and systematic approach to the undertaking of the experiment.

Physics 1050 Experiment 4. Conservation of Energy and Projectile Motion

Physics 1050 Experiment 4. Conservation of Energy and Projectile Motion Conservation of Energy and Projectile Motion Contents! These questions need to be completed before entering the lab. Show all workings. Prelab 1: A 500 kg car is at rest at the top of a 50.0 m high hill.

More information

Projectile Motion B D B D A E A E

Projectile Motion B D B D A E A E Projectile Motion Projectile motion is motion under a constant unbalanced force. A projectile is a body that has been thrown or projected. No consideration is given to the force projecting the body, nor

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Physics Skills (a.k.a. math review)

Physics Skills (a.k.a. math review) Physics Skills (a.k.a. math review) PART I. SOLVING EQUATIONS Solve the following equations for the quantity indicated. 1. y = 1 at Solve for t. x = vot + 1 at Solve for v o 3. v = ax Solve for x v 4.

More information

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum Core practical 9 Teacher sheet Core practical 9: Objective To determine the momentum change of a trolley when a force acts on it, as a function of time Safety There are trolleys and masses in motion so

More information

AP Physics Free Response Practice Kinematics

AP Physics Free Response Practice Kinematics AP Physics Free Response Practice Kinematics 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

Cambridge International AS and A Level Physics. Paper 5 Planning, Analysis and Evaluation

Cambridge International AS and A Level Physics. Paper 5 Planning, Analysis and Evaluation Cambridge International AS and A Level Physics 9702 Paper 5 Planning, Analysis and Evaluation In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Acceleration down a Slope Student Worksheet

Acceleration down a Slope Student Worksheet Student Worksheet In this experiment you will make measurements of a ball rolling down a slope in order to calculate its acceleration. Theory If an object rolls from rest down a slope, then it is possible

More information

Physics 1050 Experiment 3. Force and Acceleration

Physics 1050 Experiment 3. Force and Acceleration Force and Acceleration Prelab uestions! These questions need to be completed before entering the lab. Please show all workings. Prelab 1: Draw the free body diagram for the cart on an inclined plane. Break

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

LABORATORY V PREDICTING NON-REPETITIVE MOTION

LABORATORY V PREDICTING NON-REPETITIVE MOTION LABORATORY V PREDICTING NON-REPETITIVE MOTION In this section, you will continue working on problems in dynamics, the relationship of force and acceleration especially in complex situations that occur

More information

Physics 11: Friction is Fun! Lab Activity

Physics 11: Friction is Fun! Lab Activity Partner s name: Physics 11: Friction is Fun! Lab Activity SELF ASSESSMENT Hypothesis Graph Discussion Conclusion Key Concept Beginning Developing Accomplished Exemplary o Outline a hypothesis o Identify

More information

CONDITIONS OF EQUILIBRIUM

CONDITIONS OF EQUILIBRIUM CONDITIONS OF EQUILIBRIUM Introduction Aim: To investigate the conditions required for an object to be in equilibrium This exercise looks at a rigid object which is in both translational and rotational

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

Data and Error Analysis

Data and Error Analysis Data and Error Analysis Introduction In this lab you will learn a bit about taking data and error analysis. The physics of the experiment itself is not the essential point. (Indeed, we have not completed

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

Physics 11: Friction is Fun! Lab Activity SELF ASSESSMENT Beginning Developing Accomplished Exemplary

Physics 11: Friction is Fun! Lab Activity SELF ASSESSMENT Beginning Developing Accomplished Exemplary Partner s name: Physics 11: Friction is Fun! Lab Activity SELF ASSESSMENT Beginning Developing Accomplished Exemplary Hypothesis o Outline a hypothesis o Identify some variables o Formulate a testable

More information

LABORATORY III FORCES

LABORATORY III FORCES LABORATORY III FORCES The problems in this laboratory will help you investigate the effect of forces on the motion of objects. In the first problem, you will investigate the effects of forces on a sliding

More information

Lab 8. Work and Energy

Lab 8. Work and Energy Lab 8. Work and Energy Goals To apply the concept of work to each of the forces acting on an object pulled up an incline at constant speed. To compare the total work on an object to the change in its kinetic

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Student Sheet: Self-Assessment

Student Sheet: Self-Assessment Student s Name Date Class Student Sheet: Self-Assessment Directions: Use the space provided to prepare a KWL chart. In the first column, write things you already know about energy, forces, and motion.

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Newton s Second Law Physics Lab V

Newton s Second Law Physics Lab V Newton s Second Law Physics Lab V Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart

More information

A velocity of 5 m s 1 can be resolved along perpendicular directions XY and XZ.

A velocity of 5 m s 1 can be resolved along perpendicular directions XY and XZ. T1 [154 marks] 1. A velocity of 5 m s 1 can be resolved along perpendicular directions XY and XZ. The component of the velocity in the direction XY is of magnitude 4 m s 1. What is the magnitude of the

More information

Merrily We Roll Along!

Merrily We Roll Along! Chapter 4: Linear Motion Accelerated Motion Merrily We Roll Along! Purpose To investigate the relationship between distance and time for a ball rolling down an incline Required Equipment/Supplies Experiment

More information

Motion with Constant Acceleration

Motion with Constant Acceleration Motion with Constant Acceleration INTRODUCTION Newton s second law describes the acceleration of an object due to an applied net force. In this experiment you will use the ultrasonic motion detector to

More information

SPECIMEN. All items required by teachers and candidates for this task are included in this pack.

SPECIMEN. All items required by teachers and candidates for this task are included in this pack. Advanced GCE PHYSICS A Unit G486: Practical Skills in Physics 2: Quantitative Task Specimen Task For use from September 2008 to June 2009. G486 All items required by teachers and candidates for this task

More information

Knowledge Organiser Year 12 Semester 1: Measurements and Movement

Knowledge Organiser Year 12 Semester 1: Measurements and Movement Knowledge Organiser Year 12 Semester 1: Measurements and Movement 1.1 Practical Skills (assessed in the written exam) Show understanding of experimental design, including to solve problems set in a practical

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15)

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15) Atwood s Machine: Applying Newton s Second Law (approximately hr.) (0/7/5) Introduction A physical law is a statement of one of the fundamental theoretical principles that underlie our understanding of

More information

HSC Physics Module 8.4. Moving About

HSC Physics Module 8.4. Moving About HSC Physics Module 8.4 Moving About 8.4 Moving About (30 indicative hours) Contextual outline Increased access to transport is a feature of today s society. Most people access some form of transport for

More information

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand

More information

PHYSICS 211 LAB #3: Frictional Forces

PHYSICS 211 LAB #3: Frictional Forces PHYSICS 211 LAB #3: Frictional Forces A Lab Consisting of 4 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

PC 1141 : AY 2012 /13

PC 1141 : AY 2012 /13 NUS Physics Society Past Year Paper Solutions PC 1141 : AY 2012 /13 Compiled by: NUS Physics Society Past Year Solution Team Yeo Zhen Yuan Ryan Goh Published on: November 17, 2015 1. An egg of mass 0.050

More information

Nonconservative Forces (RCTC) *

Nonconservative Forces (RCTC) * OpenStax-CNX module: m50831 1 Nonconservative Forces (RCTC) * Rod Milbrandt Based on Nonconservative Forces by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Types of Force. Example. F gravity F friction F applied F air resistance F normal F spring F magnetism F tension. Contact/ Non-Contact

Types of Force. Example. F gravity F friction F applied F air resistance F normal F spring F magnetism F tension. Contact/ Non-Contact Types of Force Example Contact/ Non-Contact F gravity F friction F applied F air resistance F normal F spring F magnetism F tension Force Diagrams A force diagram, is a sketch in which all the forces acting

More information

K/U /39 T/I /50 C /102 A

K/U /39 T/I /50 C /102 A Name: Partner: K/U /39 T/I /50 C /102 A Purpose: What is the relationship between the magnitude of the force causing the acceleration and the frequency of revolution of an object in uniform circular motion?

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Physics Assessment Unit AS 3

Physics Assessment Unit AS 3 New Specification Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Physics Assessment Unit AS 3 assessing Practical Techniques (Internal Assessment) Session

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NAME SCHOOL INDEX NUMBER DATE NEWTON S LAWS OF MOTION 1. 1995 Q21 P1 State Newton s first law of motion (1 mark) 2. 1998 Q22 P1 A body of mass M is allowed to slide down an inclined plane. State two factors

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No Circular Motion A car is traveling around a curve at a steady 45 mph. Which vector shows the

More information

Simple Harmonic Oscillator Challenge Problems

Simple Harmonic Oscillator Challenge Problems Simple Harmonic Oscillator Challenge Problems Problem 1: Dimensional Analysis, Estimation and Concepts Imagine that one drilled a hole with smooth sides straight through the center of the earth, of radius

More information

Chapter 4. The Laws of Motion

Chapter 4. The Laws of Motion Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

UNIT I: MECHANICS Chapter 5: Projectile Motion

UNIT I: MECHANICS Chapter 5: Projectile Motion IMPORTANT TERMS: Component Projectile Resolution Resultant Satellite Scalar quantity Vector Vector quantity UNIT I: MECHANICS Chapter 5: Projectile Motion I. Vector and Scalar Quantities (5-1) A. Vector

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

Physics Practical Assessment Task - Preliminary Course

Physics Practical Assessment Task - Preliminary Course Physics Practical Assessment Task - Preliminary Course Date Where Length Friday l"t April In class 50 minutes The Assessment task will consist of three tasks. The content from the following three dot points

More information

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Equipment shallow glass pan pitcher for water masking tape graph paper (8.5 x14 ) colored pencils metal shapes sand paper paper towels DC power supply

More information

EXPERIMENT 2 Acceleration of Gravity

EXPERIMENT 2 Acceleration of Gravity Name Date: Course number: Laboratory Section: Partners Names: Last Revised on Februrary 3, 08 Grade: EXPERIENT Acceleration of Gravity. Pre-Laboratory Work [0 pts]. You have just completed the first part

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Physics Assessment Unit A2 3B

Physics Assessment Unit A2 3B Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2010 Physics Assessment Unit A2 3B assessing Module 6: Experimental and Investigative Skills A2Y32 [A2Y32] FRIDAY 8 JANUARY,

More information

Statement on practical resources

Statement on practical resources Statement on practical resources Statement on practical resources These practical resources are still in the process of being reviewed by CLEAPSS. We will post notification once the CLEAPSS review process

More information

Description of the motion using vectorial quantities

Description of the motion using vectorial quantities Description of the motion using vectorial quantities RECTILINEAR MOTION ARBITRARY MOTION (3D) INERTIAL SYSTEM OF REFERENCE Circular motion Free fall Description of the motion using scalar quantities Let's

More information

Preparation for Physics. Mathematical Graphs Equations of a Line

Preparation for Physics. Mathematical Graphs Equations of a Line III-1 Mathematical Graphs and Scientific Graphs Mathematical Graphs Equations of a Line In mathematics, graphs are made while studying functions to give a feel for the shape of the graph of a function.

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage of

More information

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms):

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms): December Assessment Review AP Physics C Mechanics Nuts and Bolts: Students will be provided an equation sheet and table of given values. Students should bring their own graphing calculator and a pencil.

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM EXAM October 18, 018 Time: 90 minutes NAME: Solutions STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

Student Sheet: Self-Assessment

Student Sheet: Self-Assessment Student s Name Date Class Student Sheet: Self-Assessment Directions: Use the space provided to prepare a KWL chart. In the first column, write things you already know about energy, forces, and motion.

More information

PHYS 154 Practice Test 3 Spring 2018

PHYS 154 Practice Test 3 Spring 2018 The actual test contains 1 multiple choice questions and 2 problems. However, for extra exercise, this practice test includes 4 problems. Questions: N.B. Make sure that you justify your answers explicitly

More information

Hot Wheels of Glory (An Acceleration Lab)

Hot Wheels of Glory (An Acceleration Lab) Hot Wheels of Glory (An Acceleration Lab) Background: In this lab you are going to investigate the relationship between time and how far an accelerating object travels? For example, will an accelerating

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Name: Total Points: Physics 201. Midterm 1

Name: Total Points: Physics 201. Midterm 1 Physics 201 Midterm 1 QUESTION 1 [25 points] An object moves in 1 dimension It starts at rest and uniformly accelerates at 5m/s 2 for 2s It then moves with constant velocity for 4s It then uniformly accelerates

More information

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

Projectile Motion. Figure 1. The system of coordinates for the projectile motion. Projectile Motion (1) Introduction and Theory: Consider a projectile motion of a ball as shown in Fig. 1. At t = 0 the ball is released at the position (0, y0) with horizontal velocity vx. Figure 1. The

More information

Working Scientifically Physics Equations and DfE Maths skills BOOKLET 1

Working Scientifically Physics Equations and DfE Maths skills BOOKLET 1 Working Scientifically Physics Equations and DfE Maths skills BOOKLET 1 Published date: Summer 2016 version 1 3 Working scientifically Science is a set of ideas about the material world. We have included

More information

Cart on an Incline (Easy)

Cart on an Incline (Easy) Cart on an Incline (Easy) Theory: As a laboratory cart goes up or down an inclined plane, it will be under the influence of two primary forces gravity and friction. While it is comforting to consider only

More information

GRADE 6: Physical processes 3. UNIT 6P.3 6 hours. The effects of forces. Resources. About this unit. Previous learning.

GRADE 6: Physical processes 3. UNIT 6P.3 6 hours. The effects of forces. Resources. About this unit. Previous learning. GRADE 6: Physical processes 3 The effects of forces UNIT 6P.3 6 hours About this unit This unit is the third of three units on physical processes for Grade 3 and the second of two on forces. It builds

More information

Merrily we roll along

Merrily we roll along Merrily we roll along Name Period Date Lab partners Overview Measuring motion of freely falling objects is difficult because they acclerate so fast. The speed increases by 9.8 m/s every second, so Galileo

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity.

M1 January An easy question to start the paper. Applying conservation of momentum where u is the initial velocity and v the final velocity. Page 1 M1 January 003 1. A railway truck P of mass 000 kg is moving along a straight horizontal track with speed 10 ms -1. The truck P collides with a truck Q of mass 3000 kg, which is at rest on the same

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

PHY 111L Activity 9 Moments of Inertia

PHY 111L Activity 9 Moments of Inertia PHY 111L Activity 9 Moments of Inertia Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce moment of inertia for different objects 2. Understand the moment of inertia apparatus

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

Acceleration due to Gravity

Acceleration due to Gravity 1. Object Acceleration due to Gravity To determine the acceleration due to gravity by different methods. 2. Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Senior 2. Appendix 3: In Motion

Senior 2. Appendix 3: In Motion Senior 2 Appendix 3: In Motion Senior 2 Science Appendix 3.1 TSM Teacher Support Material A Visual Representation of Motion Teacher Background There are several ways to produce a visual representation

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Lecture 7: More on Newton s Laws

Lecture 7: More on Newton s Laws Lecture 7: More on Newton s Laws Other Important Aspects of the Second Law: Note that = ma is a vector equation, i.e., it is equivalent to saying: = ma x y z = ma = ma An object accelerates in the same

More information

Rolling Along Linear Motion Lab

Rolling Along Linear Motion Lab Rolling Along Linear Motion Lab Purpose Required Equipment/Supplies Optional Equipment/Supplies To investigate the relationship between distance and time for a ball rolling down an incline. 2-meter ramp

More information

PHYSICS 20 KINEMATICS PRACTICE EXAM

PHYSICS 20 KINEMATICS PRACTICE EXAM Choose the best response and place your answers, using HB pencil, on the LXR 20020 sheet provided. You must include your student number and the version number of the test. 1. A student wants to set up

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper I Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

FORCE & MOTION Instructional Module 6

FORCE & MOTION Instructional Module 6 FORCE & MOTION Instructional Module 6 Dr. Alok K. Verma Lean Institute - ODU 1 Description of Module Study of different types of forces like Friction force, Weight force, Tension force and Gravity. This

More information