HSC Physics Module 8.4. Moving About

Size: px
Start display at page:

Download "HSC Physics Module 8.4. Moving About"

Transcription

1 HSC Physics Module 8.4 Moving About

2 8.4 Moving About (30 indicative hours) Contextual outline Increased access to transport is a feature of today s society. Most people access some form of transport for travel to and from school or work and for leisure outings at weekends or on holidays. When describing journeys that they may have taken in buses or trains, they usually do so in terms of time or their starting point and their destination. When describing trips they may have taken in planes or cars, they normally use the time it takes, distance covered or the speed of the vehicle as their reference points. While distance, time and speed are fundamental to the understanding of kinematics and dynamics, very few people consider a trip in terms of energy, force or the momentum associated with the vehicle, even at low or moderate speeds. The faster a vehicle is travelling, the further it will go before it is able to stop. Major damage can be done to other vehicles and to the human body in collisions, even at low speeds. This is because during a collision some or all of the vehicle s kinetic energy is dissipated through the vehicle and the object with which it collides. Further, the materials from which vehicles are constructed do not deform or bend as easily as the human body. Technological advances and systematic study of vehicle crashes have increased understanding of the interactions involved, the potential resultant damage and possible ways of reducing the effects of collisions. There are many safety devices now installed in or on vehicles, including seat belts and air bags. Modern road design takes into account ways in which vehicles can be forced to reduce their speed. This module increases students understanding of the nature and practice of physics and the implications of physics for society and the environment. Assumed Knowledge Domain: knowledge and understanding: Refer to the Science Stages 4 5 Syllabus for the following: 5.6.2a describe qualitatively the relationship between force, mass and acceleration 5.6.2b explain qualitatively the relationship between distance, speed and time 5.6.2c relate qualitatively acceleration to change in speed and/or direction as a result of a net force 5.6.2d analyse qualitatively common situations involving motion in terms of Newton s Laws. 2

3 Concept Map Speedometer Scalars Speed Velocity Acceleration Distance Time Air Resistance Friction Vectors Inertia Force Mass Seat Belts Kinetic Energy Momentum Weight Speed Humps CrumpleZones Collisions Impulse Bull Bars 3

4 Moving About Module Plan Module Length: 7 weeks Focus Area Time Concept Resources Practical 1. Vehicles do not typically travel at a constant speed 1. identify that a typical journey involves speed changes Contexts I: pp An analysis of the external forces on vehicles helps to understand the effects of acceleration and deceleration 2. recall average speed in terms of the qualitative relationship between distance and time 3. distinguish between the instantaneous and average speed of vehicles and other bodies 4. distinguish between scalar and vector quantities in equations 5. compare instantaneous and average speed with instantaneous and average velocity 6. define average velocity as v av r t 1. Describe the motion of one body relative to another. 2. explain the need for a net external force to act in order to change the velocity of an object 3. describe the actions that must be taken for a vehicle to change direction, speed up and slow down 4. describe the typical effects of external forces on bodies including: friction between surfaces air resistance Contexts I: pp (Exp 1) plan, choose equipment or resources for, and perform a first-hand investigation to measure the average speed of an object or a vehicle 2. (Act 2) solve problems and analyse information using the formula v av r t where r = displacement 3. (Act 3) present information graphically of: displacement vs time velocity vs time for objects with uniform and nonuniform linear velocity 1. (Exp 4) plan, choose equipment or resources for and perform a first hand investigation to demonstrate vector addition and subtraction 2. (Exp 4)solve problems using vector diagrams to determine resultant velocity, acceleration and force. 3. (Act 5) analyse and effects of external forces operating on a vehicle 4. (Exp 6) gather first-hand information about different situations where acceleration is positive or negative and use vector diagrams to represent acceleration 5. outline the forces involved in causing a change in the velocity of coasting with no pressure on the accelerator pressing on the accelerator pressing on the brakes passing over an icy patch on the road climbing and descending hills following a curve in the road 6. define average acceleration as V a av t v u a av t therefore 7. define the terms mass and weight with reference to the effects of gravity 8. interpret Newton s Second Law of Motion and relate it to the equation F ma 9. identify the net force in a wide variety of situations involving modes of transport to explain the consequences of the application of that net force in terms of Newton s Second Law of Motion Contexts I: pp , Contexts I: pp (Exp 7) plan, choose equipment or resources for, and perform first-hand investigations to gather data and use available evidence to show the relationship between force, mass and acceleration using suitable apparatus 6. (Act 8) solve problems and analyse F ma information using for a range of situations 7. (Act 8) solve problems and analyse information involving F = mv 2 /r for vehicles traveling around curves. 4

5 Focus Area Time Concept Resources Practical 3. Moving vehicles have 1. identify that a moving object possesses kinetic energy and that work Contexts I: pp , kinetic energy done on that object can increase that and energy energy. 2. describe the energy transformations transformations that occur in collisions. are an important 3. define the law of conservation of aspect in energy understanding motion 4. Change of momentum relates to the forces acting on the vehicle or the driver 5. Safety devices are utilised to reduce the effects of changing momentum 1. define momentum as p mv 2. define impulse as the product of force and time 3. explain why momentum is conserved in collisions in terms of Newton s Third Law of Motion 1. define the inertia of a vehicle as its tendency to remain in uniform motion or at rest 2. discuss reasons why Newton s First Law of Motion is not apparent in many real world situations 3. evaluate the effectiveness of some safety feature of motor vehicles. Contexts I: pp Contexts I: pp , (Act 9) solve problems and analyse information to determine the kinetic energy of a vehicle and the work done using the formula: E k 1 2 mv 2 and w=fs 2. (Act 10) analyse information to trace the energy transfers and transformation in collisions leading to irreversible distortions 1. (Act 11) solve problems and analyse secondary data using p mv and Impulse F t 2. (Exp 12) perform first-hand investigations to gather data and analyse the change in momentum during collisions 3. (Act 13) solve problems that apply the principle of conservation of momentum to qualitatively and quantitatively describe the collision of a moving vehicle with: a stationary vehicle an immoveable object. another vehicle moving in the opposite direction another vehicle moving in the same direction 1. (Exp 14) identify data sources, plan, choose equipment or resources for, and gather and process first-hand data and/or secondary information and analyse information about the potential danger presented by loose objects in a vehicle 4. assess the reasons for the introduction of low speed zones and in built up areas and the addition of air bags and crumple zones to vehicles with respect to the concepts of impulse and momentum. 2. (Act 15) identify data sources, gather, process, analyse, present secondary information and use the available evidence to assess benefits of technologies for avoiding or reducing the effect of a collision 5

6 HSC Physics P3: Moving About Experiment 1: Average Speed Aim: To plan, choose equipment or resources for, and perform a first-hand investigation to measure the average speed of an object or a vehicle. o demonstrate the use of the terms dependent and independent to describe variables involved in the investigation (11.2a) o identify variables that needed to be kept constant, develop strategies to ensure that these variables are kept constant, and demonstrate the use of a control (11.2b) o design investigations that allow valid and reliable data and information to be collected (11.2c) o describe and trial procedures to undertake investigations and explain why a procedure, a sequence of procedures or the repetition of procedures is appropriate (11.2d) o predict possible issues that may arise during the course of an investigation and identify strategies to address these issues if necessary (11.2e) o identifying and/or setting up the most appropriate equipment or combination of equipment needed to undertake the investigation (11.3a) o carrying out a risk assessment of intended experimental procedures and identifying and addressing potential hazards (11.3b) o identifying technology that would be used during investigation determining its suitability and effectiveness for its potential role in the procedure or investigation (11.3c) o carrying out the planned procedure, recognising where and when modifications are needed and analysing the effect of these adjustments (12.1a) o identifying and using safe work practices during investigations (12.1d) You must devise a method using equipment listed below and/or any other equipment you bring in. Equipment Available Stop watches Inclined planes Dynamic trolleys Metre rulers You should consider the following points: Does the experiment satisfy the aim above? The safety of the experiment. Any safety notes need to be explicit. Design your own result table. Have you repeated the experiment several times to validate the results and to calculate a mean? Did you show your working? What are some possible sources of error? How could these errors be minimised or eliminated? Swap experiments with another group and collect their results at the end of the period and analyse them. Does your set of results agree with the other group who repeated your experiment? Why / why not? Do you have a conclusion? 6

7 HSC Physics P3: Moving About Activity 2: Average Speed Aim: To solve problems and analyse information using the formula v av r t where r = displacement o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f) o design and produce creative solutions to problems (14.3a) o propose ideas that demonstrate coherence and logical progression and include correct use of scientific principles and ideas (14.3b) o apply critical thinking in the consideration of predictions, hypotheses and the results of investigations (14.3c) o Formulate cause and effect relationships (14.3d) 1. Do Humphrey s Set 6 HSC Physics P3: Moving About Activity 3: Displacement/Time and Speed/Time Graphs Aim: To present information graphically of: displacement vs time speed vs time for objects with uniform and non-uniform linear velocity o using symbols and formulae to express relationships and using appropriate units for physical quantities (13.1d) o using a variety of pictorial representations to show relationships and present information clearly and succinctly (13.1e) o selecting and drawing appropriate graphs to convey information and relationships clearly and accurately (13.1f) 1. Do Humphrey s Set 7 2. Do Dyett problems

8 HSC Physics P3: Moving About Experiment 4: Vector Addition and Subtraction Aim: 1. To plan, choose equipment or resources for and perform a first hand investigation to demonstrate vector addition and subtraction 2. To solve problems using vector diagrams to determine resultant velocity, acceleration and force. o demonstrate the use of the terms dependent and independent to describe variables involved in the investigation (11.2a) o identify variables that needed to be kept constant, develop strategies to ensure that these variables are kept constant, and demonstrate the use of a control (11.2b) o design investigations that allow valid and reliable data and information to be collected (11.2c) o describe and trial procedures to undertake investigations and explain why a procedure, a sequence of procedures or the repetition of procedures is appropriate (11.2d) o predict possible issues that may arise during the course of an investigation and identify strategies to address these issues if necessary (11.2e) o identifying and/or setting up the most appropriate equipment or combination of equipment needed to undertake the investigation (11.3a) o carrying out a risk assessment of intended experimental procedures and identifying and addressing potential hazards (11.3b) o identifying technology that would be used during investigation determining its suitability and effectiveness for its potential role in the procedure or investigation (11.3c) o carrying out the planned procedure, recognising where and when modifications are needed and analysing the effect of these adjustments (12.1a) o identifying and using safe work practices during investigations (12.1d) You must devise a method using equipment listed below and/or any other equipment you bring in. Equipment Available Force meters Retort stands Metre rulers You should consider the following points: Does the experiment satisfy the aim above? The safety of the experiment. Any safety notes need to be explicit. Design your own result table. Have you repeated the experiment several times to validate the results and to calculate a mean? Did you show your working? What are some possible sources of error? How could these errors be minimised or eliminated? Swap experiments with another group and collect their results at the end of the period and analyse them. Does your set of results agree with the other group who repeated your experiment? Why / why not? Do you have a conclusion? In your discussion, you must gather information to identify how vectors are represented in equations and discuss the usefulness of using vector diagrams to assist solving problems. Each source must be referenced. 8

9 HSC Physics P3: Moving About Activity 5: Forces on Vehicles Aim: To analyse and effects of external forces operating on a vehicle o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f). Write a 400 word report with relevant equations on this issue. Record all references in a bibliography. HSC Physics P3: Moving About Experiment 6: Representing Acceleration. Aim: To gather first-hand information about different situations where acceleration is positive or negative and use vector diagrams to represent acceleration o using appropriate data collection techniques, employing appropriate technologies, including data loggers and sensors (12.2a)\ o measuring, observing and recording results in accessible and recognisable forms, carrying out repeat trials as appropriate (12.2b) 9

10 HSC Physics P3: Moving About Experiment 7: Force, Mass and Acceleration Aim: To plan, choose equipment or resources for, and perform first-hand investigations to gather data and use available evidence to show the relationship between force, mass and acceleration using suitable apparatus o demonstrate the use of the terms dependent and independent to describe variables involved in the investigation (11.2a) o identify variables that needed to be kept constant, develop strategies to ensure that these variables are kept constant, and demonstrate the use of a control (11.2b) o design investigations that allow valid and reliable data and information to be collected (11.2c) o describe and trial procedures to undertake investigations and explain why a procedure, a sequence of procedures or the repetition of procedures is appropriate (11.2d) o predict possible issues that may arise during the course of an investigation and identify strategies to address these issues if necessary (11.2e) o identifying and/or setting up the most appropriate equipment or combination of equipment needed to undertake the investigation (11.3a) o carrying out a risk assessment of intended experimental procedures and identifying and addressing potential hazards (11.3b) o carrying out the planned procedure, recognising where and when modifications are needed and analysing the effect of these adjustments (12.1a) o identifying and using safe work practices during investigations (12.1d) You must devise a method using equipment listed below and/or any other equipment you bring in. Equipment Available Stop watches Inclined planes Dynamic trolleys Ticker tape timers Metre rulers You should consider the following points: Does the experiment satisfy the aim above? The safety of the experiment. Any safety notes need to be explicit. Design your own result table. Have you repeated the experiment several times to validate the results and to calculate a mean? Did you show your working? What are some possible sources of error? How could these errors be minimised or eliminated? Swap experiments with another group and collect their results at the end of the period and analyse them. Does your set of results agree with the other group who repeated your experiment? Why / why not? Do you have a conclusion? 10

11 HSC Physics P3: Moving About Activity 8: Force Problems Aim: 1. solve problems and analyse information using F ma for a range of situations 2. solve problems and analyse information involving F = mv2/r for vehicles travelling around curves. o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f) o design and produce creative solutions to problems (14.3a) o propose ideas that demonstrate coherence and logical progression and include correct use of scientific principles and ideas (14.3b) o apply critical thinking in the consideration of predictions, hypotheses and the results of investigations (14.3c) o Formulate cause and effect relationships (14.3d) Do Humphrey s Set 15 Do Dyett problems HSC Physics P3: Moving About Activity 9: Kinetic Energy and Work. Aim: solve problems and analyse information using appropriate models to determine the kinetic energy of the vehicles using the formula: E k 1 2 mv 2 and w=fs o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f) o design and produce creative solutions to problems (14.3a) o propose ideas that demonstrate coherence and logical progression and include correct use of scientific principles and ideas (14.3b) o apply critical thinking in the consideration of predictions, hypotheses and the results of investigations (14.3c) o Formulate cause and effect relationships (14.3d) Do Humphrey s Set 24 Do Humphrey s Set 25. Do Dyett problems

12 HSC Physics P3: Moving About Activity 10: Collisions Aim: To analyse information to trace the energy transfers and transformation in collisions leading to irreversible distortions o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f Do Dyett problems HSC Physics P3: Moving About Activity 11: Momentum and Impulse Aim: solve problems and analyse secondary data using p mv and Impulse F t o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f) o design and produce creative solutions to problems (14.3a) o propose ideas that demonstrate coherence and logical progression and include correct use of scientific principles and ideas (14.3b) o apply critical thinking in the consideration of predictions, hypotheses and the results of investigations (14.3c) o Formulate cause and effect relationships (14.3d) Do Humphrey s Sets

13 HSC Physics P3: Moving About Experiment 12: Momentum in Collisions Aim: To perform first-hand investigations to gather data and analyse the change in momentum during collisions o carrying out the planned procedure, recognising where and when modifications are needed and analysing the effect of these adjustments (12.1a) o identifying and using safe work practices during investigations (12.1d) o using symbols and formulae to express relationships and using appropriate units for physical quantities (13.1d) o using a variety of pictorial representations to show relationships and present information clearly and succinctly (13.1e) o selecting and drawing appropriate graphs to convey information and relationships clearly and accurately (13.1f) o justify inferences and conclusions (14.1b) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o predict outcomes and generate plausible explanations related to the observations (14.1d) o make and justify generalisations (14.1e) Method Part A: "Explosion" Collision 1. use a balance to determine the mass of each trolley. 2. Set up the equipment as shown below: 3. Use two carbon discs back to back in the timer. Make sure one tape goes under both and the other over both. 4. Turn on the timer and release the trolleys. 5. When the trolleys are separated by about a metre, stop the experiment. 6. Label the tapes "cart 1" and "cart 2" 7. Remove the 1 kg mass from the trolley and repeat the experiment. Results 1. Determine the average velocity for 5-dot spacings on each tape. Choose 5 dots that are fairly uniformly placed. 2. Record your results in a table format: Part B: Simple Inelastic Collision 1. Measure the masses of two trolleys. 2. Fix a piece of plasticene to the trolleys so that they will stick together when they collide. 3. Connect ticker tapes to both trolleys and start the timer. 4. Push one trolley towards the other. Label this tape "cart 1" 5. Repeat the procedure with firstly the 1 kg mass on the moving trolley and then the 1 kg mass on the stationary trolley. Results 1. Calculate the velocity before and after the collisions. 2. Calculate the momenta before and after the collisions in a table like above. Discussion (1) Is the total momentum of the system zero in each case in Part B? (2) If the total momentum was not zero in each case was the difference due to experimental error or some basic assumption error? Explain giving possible sources of error and how they could be reduced. (3) Explain why there is only a short part of the tape where there is uniform spacing between the dots. (4) Describe an experiment in which momentum changes could be studied in which both objects were moving before collision took place. Special consideration must be given to the technique for measuring velocity in such collisions. 13

14 HSC Physics P3: Moving About Activity 13: Conservation of Momentum Aim: To solve problems that apply the principle of conservation of momentum to qualitatively and quantitatively describe the collision of a moving vehicle with: a stationary vehicle a cliff face another vehicle moving in the opposite direction another vehicle moving in the same direction o identify trends, patterns and relationships as well as contradictions in data and information (14.1a) o identify and explain how data supports or refutes an hypothesis, a prediction or a proposed solution to a problem (14.1c) o use models, including mathematical ones, to explain phenomena and/or make predictions (14.1f) o design and produce creative solutions to problems (14.3a) o propose ideas that demonstrate coherence and logical progression and include correct use of scientific principles and ideas (14.3b) o apply critical thinking in the consideration of predictions, hypotheses and the results of investigations (14.3c) o Formulate cause and effect relationships (14.3d) Do Humphrey s Set 20 Do Dyett problems

15 HSC Physics P3: Moving About Experiment 14: Loose Objects in Vehicles Aim: To identify data sources, plan, choose equipment or resources for, and gather and process first-hand data and/or secondary information and analyse information about the potential danger presented by loose objects in a vehicle o demonstrate the use of the terms dependent and independent to describe variables involved in the investigation (11.2a) o identify variables that needed to be kept constant, develop strategies to ensure that these variables are kept constant, and demonstrate the use of a control (11.2b) o design investigations that allow valid and reliable data and information to be collected (11.2c) o describe and trial procedures to undertake investigations and explain why a procedure, a sequence of procedures or the repetition of procedures is appropriate (11.2d) o predict possible issues that may arise during the course of an investigation and identify strategies to address these issues if necessary (11.2e) o identifying and/or setting up the most appropriate equipment or combination of equipment needed to undertake the investigation (11.3a) o carrying out a risk assessment of intended experimental procedures and identifying and addressing potential hazards (11.3b) o identifying technology that would be used during investigation determining its suitability and effectiveness for its potential role in the procedure or investigation (11.3c) o carrying out the planned procedure, recognising where and when modifications are needed and analysing the effect of these adjustments (12.1a) o identifying and using safe work practices during investigations (12.1d) You must devise a method using equipment listed below and/or any other equipment you bring in. Equipment Available Stop watches Dynamic trolleys Ticker tape timers Metre rulers You should consider the following points: Does the experiment satisfy the aim above? The safety of the experiment. Any safety notes need to be explicit. Design your own result table. Have you repeated the experiment several times to validate the results and to calculate a mean? Did you show your working? What are some possible sources of error? How could these errors be minimised or eliminated? Swap experiments with another group and collect their results at the end of the period and analyse them. Does your set of results agree with the other group who repeated your experiment? Why / why not? Do you have a conclusion? 15

16 HSC Physics P3: Moving About Activity 15: Less Collisions Aim: To identify data sources, gather, process, analyse, present secondary information and use the available evidence to assess benefits of technologies for avoiding or reducing the effect of a collision o accessing information from a range of resources, including popular scientific journals, digital technologies and the Internet (12.3a) o extracting information from numerical data in graphs and tables as well as written and spoken material in all its forms (12.3c) o summarising and collating information from a range of resources (12.3d) o identifying practising male and female Australian scientists, and the areas in which they are currently working and in formation about their research (12.3e) o identify and apply appropriate mathematical formulae and concepts (12.4b) o evaluate the validity of first-hand and secondary information and data in relation to the area of investigation (12.4d) o assess the reliability of first-hand and secondary information and data by considering information from various sources (12.4e) o assess the accuracy of scientific information presented in mass media by comparison with similar information presented in scientific journals (12.4f) o selecting and using appropriate methods to acknowledge sources of information (13.1c) Write a 400 word report on this issue. Record all references in a bibliography. 16

Session 12 Lab Based Questions

Session 12 Lab Based Questions Session 12 Lab Based Questions Free Response: 1. You are conducting an experiment to measure the acceleration due to gravity g u at an unknown location. In the measurement apparatus, a simple pendulum

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Motion and Forces a Resultant forces Step Learning outcome Had a look Nearly there Nailed it Explain the difference between scalar and vector quantities. Use arrows to represent the direction and magnitude

More information

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions 4.5.3 Forces and elasticity 4.5.2 Work done and energy transfer 4.5.1 Forces and their interactions Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G 1. Identify

More information

Personalised Learning Checklists AQA Physics Paper 2

Personalised Learning Checklists AQA Physics Paper 2 6.5.1 Forces and their interactions 6.5.2 Work done and energy transfer AQA TRILOGY Physics (8464) from 2016 Topics T6.5. Forces Topic Student Checklist R A G Identify and describe scalar quantities and

More information

14300 Dynamics Carts w/o Hoops Teachers Instructions

14300 Dynamics Carts w/o Hoops Teachers Instructions 14300 Dynamics Carts w/o Hoops Teachers Instructions Required Accessories o (2) Table stops (wooden bars) o (4) C-Clamps o (2) Recording Timers (#15210 or #15215) o (5) Bricks or Books (or other identical

More information

Physics GCSE (9-1) Energy

Physics GCSE (9-1) Energy Topic Student Checklist R A G Define a system as an object or group of objects and State examples of changes in the way energy is stored in a system Describe how all the energy changes involved in an energy

More information

UNIT 2: motion, force and energy.

UNIT 2: motion, force and energy. UNIT 2: motion, force and energy Recommended Prior Knowledge Students should be able to describe the action of a force on a body. They should be able to describe the motion of a body and recognise acceleration

More information

UNIT 2: motion, force and energy.

UNIT 2: motion, force and energy. UNIT 2: motion, force and energy Recommended Prior Knowledge Students should be able to describe the action of a force on a body. They should able to describe the motion of a body and recognise acceleration

More information

Choosing a Safe Vehicle Challenge: Analysis: Measuring Speed Challenge: Analysis: Reflection:

Choosing a Safe Vehicle Challenge: Analysis: Measuring Speed Challenge: Analysis: Reflection: Activity 73: Choosing a Safe Vehicle Challenge: Which vehicle do you think is safer? 1. Compare the features you listed in the data evidence section to the features listed on the worksheet. a. How are

More information

IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion

IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion IGCSE Co-ordinated Sciences 0654 Unit 18: Forces and motion Recommended Prior Knowledge Students should have a basic knowledge of the effects of balanced and unbalanced forces. They should have good graphing

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

AQA Physics P2 Topic 1. Motion

AQA Physics P2 Topic 1. Motion AQA Physics P2 Topic 1 Motion Distance / Time graphs Horizontal lines mean the object is stationary. Straight sloping lines mean the object is travelling at a constant speed. The steeper the slope, the

More information

Transport. Pupil Booklet

Transport. Pupil Booklet Duncanrig Secondary School East Kilbride S3 Physics Elective Transport Pupil Booklet Name: Class: Aspects of the following outcomes in bold are covered by this topic of work. SCN 4-07a I can use appropriate

More information

Senior 2. Appendix 3: In Motion

Senior 2. Appendix 3: In Motion Senior 2 Appendix 3: In Motion Senior 2 Science Appendix 3.1 TSM Teacher Support Material A Visual Representation of Motion Teacher Background There are several ways to produce a visual representation

More information

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M P A R T 2 M O M E N T U M I S C O N S E R V E D What

More information

Topic Student Checklist R A G

Topic Student Checklist R A G Personalised Learning Checklist AQA TRILOGY Physics (8464) from 2016 Topics T6.1. Energy Topic Student Checklist R A G 6.1.1 Energy changes in a system, and the ways energy is stored before and after such

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Objectives Conservation of Energy and Momentum You will test the extent to which conservation of momentum and conservation of energy apply to real-world elastic and inelastic collisions. Equipment air

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

QA A Q+ NSW PHYSICS. Brian Shadwick. Questions and Answers. Module 1 Kinematics Module 2 Dynamics

QA A Q+ NSW PHYSICS. Brian Shadwick. Questions and Answers. Module 1 Kinematics Module 2 Dynamics A Q+ Questions and Answers NSW PHYSICS Brian Shadwick 2018 First published 2018 Private Bag 7023 Marrickville NSW 1475 Australia Tel: +61 2 9516 1122 Fax: +61 2 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au

More information

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion

SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion SUBJECT: PHYSICAL SCIENCES GRADE: 10 CHAPTER / MODULE: MECHANICS UNIT / LESSON TOPIC: - Equations of Motion - Graphs of Motion By the end of this unit, you should be able to: describe motion along a straight

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

Momentum and Impulse Practice Multiple Choice

Momentum and Impulse Practice Multiple Choice Choose the alternative that best answers the question and record your answer on the Scantron sheet provided 1. A ball of putty is thrown at a wall and sticks to its surface. Which of the following quantities

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Momentum and Impulse

Momentum and Impulse analyse impulse, and momentum transfer, in collisions between objects moving along a straight line; Momentum The momentum (p) of a body is the product of its mass and velocity. P = mv. The unit is kilogram

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P and J review Name 10-FEB-03 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released. Cart A has a mass

More information

Summative Practical: Motion down an Incline Plane

Summative Practical: Motion down an Incline Plane Summative Practical: Motion down an Incline Plane In the next lesson, your task will be to perform an experiment to investigate the motion of a ball rolling down an incline plane. For an incline of 30,

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you?

Unit 8. Unit 8 - MTM. Outcomes. Momentum. Solve this problem. What does the word momentum mean to you? Outcomes Unit 8 THE MOMENTUM TRANSFER MODEL (MTM) I M P U L S E A N D M O M E N T U M What does the word momentum mean to you? Unit 8 - MTM P A R T 1 F O R C E S C H A N G E M O M E N T U M The home team

More information

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction.

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction. DISPLACEMENT (s) / metre (m) 1 Candidates should be able to : Define displacement, instantaneous speed, average speed, velocity and acceleration. Select and use the relationships : average speed = distance

More information

Motion, Force, and Energy. Energy Car. Real Investigations in Science and Engineering

Motion, Force, and Energy. Energy Car. Real Investigations in Science and Engineering Motion, Force, and Energy Energy Car Real in Science and Engineering A1 A2 A3 A4 A5 Overview Chart for Energy Car Measuring Time Pages 1-6 Experiments and Variables Pages 7-12 Speed Pages 13-20 Acceleration

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

4.2 Forces: identifying, measuring and representing motion, turning effects, pressure

4.2 Forces: identifying, measuring and representing motion, turning effects, pressure 1 of 7 The National Strategies Secondary 4.2 Forces: identifying, measuring and representing motion, turning effects, 7 recognise the forces acting on an object in different situations distinguish between

More information

Episode 220: Momentum and its conservation

Episode 220: Momentum and its conservation Episode 220: Momentum and its conservation This episode introduces the concept of momentum and its conservation. Summary Demonstration and discussion: An introduction making plausible the idea of conservation

More information

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum Core practical 9 Teacher sheet Core practical 9: Objective To determine the momentum change of a trolley when a force acts on it, as a function of time Safety There are trolleys and masses in motion so

More information

CHAPTER 2: FORCES AND MOTION

CHAPTER 2: FORCES AND MOTION CHAPTER 2: FORCES AND MOTION 2.1 Linear Motion Linear Motion is motion in a straight line with constant acceleration. Classification Scalar Vector Physical quantity with Magnitude only Magnitude and direction

More information

m/s m/s m/s m/s

m/s m/s m/s m/s P And J Review TEACHER ANSWER KEY February 10, 2003 2 1. The diagram shows two carts on a horizontal, frictionless surface being pushed apart when a compressed spring attached to one of the carts is released.

More information

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time ExamLearn.ie Acceleration Acceleration Acceleration is the rate of change of velocity with respect to time*. The unit of acceleration is the metre per second squared (m/s 2 ) Acceleration =change in velocity

More information

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph Unit 4 Review Vocabulary Review Each term may be used once. acceleration constant acceleration constant velocity displacement force force of gravity friction force inertia interaction pair net force Newton

More information

Force and Motion Easy to read Version. Junior Science

Force and Motion Easy to read Version. Junior Science Force and Motion Easy to read Version Junior Science 1 1a The different types of motion Objects that move from one point of space to another over time are said to have motion. Examples include a tortoise

More information

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9

Test 3 solution. Problem 1: Short Answer Questions / Multiple Choice a. => 1 b. => 4 c. => 9 d. => 8 e. => 9 Test 3 solution Problem 1: Short Answer Questions / Multiple Choice a. > 1 b. > 4 c. > 9 d. > 8 e. > 9 Problem : Estimation Problem (a GOAL Approach student solution) While this is a good GOAL approach

More information

Conservation of Linear Momentum

Conservation of Linear Momentum Conservation of Linear Momentum Objective In this series of experiments, the conservation of linear momentum and kinetic energy will be tested for different types of collisions. Equipment List Air track,

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Rotational Motion Test

Rotational Motion Test Rotational Motion Test Multiple Choice: Write the letter that best answers the question. Each question is worth 2pts. 1. Angular momentum is: A.) The sum of moment of inertia and angular velocity B.) The

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

Personalised Learning Checklists AQA Physics Paper 2

Personalised Learning Checklists AQA Physics Paper 2 4.5.1 Forces and their interactions 4.5.2 Work done and energy AQA Physics (8463) from 2016 Topics P4.5. Forces Topic Student Checklist R A G Identify and describe scalar quantities and vector quantities

More information

P5 Momentum Collision Calculations

P5 Momentum Collision Calculations P5 Momentum Collision Calculations Question Practice Name: Class: Date: Time: 88 minutes Marks: 88 marks Comments: PHYSICS ONLY Page of 24 (a) How can the momentum of an object be calculated? (2) (b) In

More information

HASTINGS HIGH SCHOOL

HASTINGS HIGH SCHOOL Subject HASTINGS HIGH SCHOOL YEAR 11 EXAMINATION GUIDE 20167-19 COMBINED SCIENCE TRILOGY Physics Course code AQA GCSE COMBINED SCIENCE TRILOGY 8464 Website address Provisional examination dates http://www.aqa.org.uk/subjects/science/gcse/combined-science-trilogy-

More information

Unit D Energy-Analysis Questions

Unit D Energy-Analysis Questions Unit D Energy-Analysis Questions Activity 53-Home Energy Use 1. How do Climates of the two home locations influence the energy used in the homes? 2. In the context of this activity, what does the term

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Impulse and Conservation of Momentum

Impulse and Conservation of Momentum SEP0 LABORATORY MANUAL EXPERIMENT 6 EXPERIMENT 6 Impulse and Conservation of Momentum PREPARED BY PASCO SCIENTIFIC AND JOHN LONG FOR THE UNIT TEAM Deakin University 03 EXPERIMENT 6 SEP0 LABORATORY MANUAL

More information

OCR Physics Specification A - H156/H556

OCR Physics Specification A - H156/H556 OCR Physics Specification A - H156/H556 Module 3: Forces and Motion You should be able to demonstrate and show your understanding of: 3.1 Motion Displacement, instantaneous speed, average speed, velocity

More information

Review Chapter 1 and 2 [184 marks]

Review Chapter 1 and 2 [184 marks] Review Chapter 1 and 2 [184 marks] This question is in two parts. Part 1 is about momentum. Part 2 is about electric point charges. Part 1 Momentum 1a. State the law of conservation of linear momentum.

More information

FORCE AND MOTION SEPUP UNIT OVERVIEW

FORCE AND MOTION SEPUP UNIT OVERVIEW FORCE AND MOTION SEPUP UNIT OVERVIEW Listed below is a summary of the activities in this unit. Note that the total teaching time is listed as 26-32 periods of approximately 50 minutes (approximately 5-6

More information

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms):

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms): December Assessment Review AP Physics C Mechanics Nuts and Bolts: Students will be provided an equation sheet and table of given values. Students should bring their own graphing calculator and a pencil.

More information

Egg Crash! Designing a Collision Safety Device

Egg Crash! Designing a Collision Safety Device TEACHER LESSON Key question(s) How do people survive major collisions? How does physics explain the effectiveness of seat belts and airbags? Crash Course Definitions impulse: product of force and time

More information

Course: Physics 1 Course Code:

Course: Physics 1 Course Code: Course: Physics 1 Course Code: 2003380 SEMESTER I QUARTER 1 UNIT 1 Topic of Study: Scientific Thought and Process Standards: N1 Scientific Practices N2 Scientific Knowledge Key Learning: ~Scientists construct

More information

PRELIMINARY PHYSICS. Brian Shadwick

PRELIMINARY PHYSICS. Brian Shadwick PRELIMINARY PHYSICS Brian Shadwick 2007 First published 2007 Reprinted 2007, 2008, 2011 Private Bag 7023 Marrickville NSW 1475 Australia Tel: (02) 9516 1122 Fax: (02) 9550 1915 sales@sciencepress.com.au

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

2.1. Linear motion is a study of moving object in a line. We need a to describe and of objects.

2.1. Linear motion is a study of moving object in a line. We need a to describe and of objects. 2.1 Linear motion is a study of moving object in a line. We need a to describe and of objects. 34 Example of reference frames Note: Reference frame is presented by the coordinate system. We frequently

More information

MrN Physics Private Tuition in GCSE and A level Physics AQA GCSE Combined Science: Trilogy Physics (2016 onwards)

MrN Physics Private Tuition in GCSE and A level Physics AQA GCSE Combined Science: Trilogy Physics (2016 onwards) Working Scientifically 2 Experimental skills and strategies WS 2.1 Use scientific theories and explanations to develop hypotheses. Suggest a hypothesis to explain given observations or data. WS 2.2 Plan

More information

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m/s. (i) Use the equation

More information

CONSERVATION of MOMENTUM

CONSERVATION of MOMENTUM 1 CONSERVATION of MOMENTUM Purpose: Understand conservation of momentum and energy in elastic and inelastic collisions. Examine the concept of impulse in a real-life situation. Apparatus: Pasco track,

More information

1 Forces. 2 Energy & Work. GS 104, Exam II Review

1 Forces. 2 Energy & Work. GS 104, Exam II Review 1 Forces 1. What is a force? 2. Is weight a force? 3. Define weight and mass. 4. In European countries, they measure their weight in kg and in the United States we measure our weight in pounds (lbs). Who

More information

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta. Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

Course #: SC-81 Grade Level: Prerequisites: Algebra with Geometry recommended # of Credits: 1

Course #: SC-81 Grade Level: Prerequisites: Algebra with Geometry recommended # of Credits: 1 Course #: SC-81 Grade Level: 10-12 Course Name: Physics Level of Difficulty: Medium Prerequisites: Algebra with Geometry recommended # of Credits: 1 Strand 1: Inquiry Process s 1: 2: 3: 4: Science as inquiry

More information

AS Unit G481: Mechanics

AS Unit G481: Mechanics Definitions: define scalar and vector quantities and give Scalar: Magnitude without direction examples; Examples: Length, area, volume, distance, speed, mass, density, pressure, temperature, energy, work,

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Analyzing Motion: Enrichment

Analyzing Motion: Enrichment Chapter 2 Analyzing Motion: Enrichment Note to Teachers: The concepts involved in motion position, velocity, acceleration, and time should be developed using the four modes of representation: visual, numeric,

More information

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 WORK, POWER AND ENERGY TRANSFER IN DYNAMIC ENGINEERING SYSTEMS TUTORIAL 1 - LINEAR MOTION Be able to determine

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. VELOCITY Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Module 1 Kinematics Module 2 Dynamics. Brian Shadwick

Module 1 Kinematics Module 2 Dynamics. Brian Shadwick CHEMISTRY12 PHYSICS12 NSW & Brian Shadwick 2018 First published 2018 Bag 7023 Marrickville NSW 1475 Australia Tel: (02) 9516 1122 Fax: (02) 9550 1915 sales@sciencepress.com.au www.sciencepress.com.au All

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem

Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem Chapter 3: Safety Overall: Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem Sections 1-2: These two sections introduce

More information

Solution Figure 2(a) shows the situation. Since there is no net force acting on the system, momentum is conserved. Thus,

Solution Figure 2(a) shows the situation. Since there is no net force acting on the system, momentum is conserved. Thus, large rock Mars 5.4 small fragments to Earth Figure 1 The two-dimensional nature of the collision between a rock and the surface of Mars Conservation of Momentum in Two Dimensions How could a chunk of

More information

SCIENCE ON TRACK SCIENCE ON TRACK 2017

SCIENCE ON TRACK SCIENCE ON TRACK 2017 60621314641097 SCIENCE ON TRACK 2017 SECTION ONE: 1.0 FORCES 1.0.1 FORCES ON A STATIONARY CAR Observe a stationary (i.e. not moving) car. Name two forces that act on a car when it is stationary. Represent

More information

Physics/PreAP Physics Midterm Review 2013/2014

Physics/PreAP Physics Midterm Review 2013/2014 Physics/PreAP Physics Midterm Review 2013/2014 The midterm exam includes 50 multiple-choice questions. You will have access to a standard formula chart (copies available in the classroom) as well as a

More information

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Momentum_P2 1 NA 2NA 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Draw the free-body diagram for the sledge at the position shown on the snow slope. 3b. [3 marks] 1

More information

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed.

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed. 5.1 Newton s First Law Sir Isaac Newton, an English physicist and mathematician, was one of the most brilliant scientists in history. Before the age of thirty he had made many important discoveries in

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Year-9- Vectors and Scalars Velocity and Acceleration

Year-9- Vectors and Scalars Velocity and Acceleration Scalar Quantity Quantities that have only magnitude (size) but no direction are scalar quantities. Examples: mass, distance, time, energy and speed. Vector Quantity Quantities that have both magnitude

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Dynamics Notes Name 1 Equations of Motion Vectors and Scalars (Revision of National 5) It is possible to split up quantities in physics into two distinct

More information

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations. Assignment 8 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

SCIENCE 1206 Unit 3. Physical Science Motion

SCIENCE 1206 Unit 3. Physical Science Motion SCIENCE 1206 Unit 3 Physical Science Motion Section 1: Units, Measurements and Error What is Physics? Physics is the study of motion, matter, energy, and force. Qualitative and Quantitative Descriptions

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

AP Physics 1 Syllabus

AP Physics 1 Syllabus AP Physics 1 Syllabus Course Overview AP Physics 1 will meet for 90 minutes on A-B scheduling and for 45 minutes on regular scheduling. Class activities will include lecture, demonstration, problem solving

More information

Personalised Learning Checklists AQA Physics Paper 2

Personalised Learning Checklists AQA Physics Paper 2 4.5.1 Forces and their interactions 4.5.2 Work done and energy transfer AQA Physics (8463) from 2016 Topics P4.5. Forces Topic Student Checklist R A G Identify and describe scalar quantities and vector

More information

LABORATORY V CONSERVATION OF MOMENTUM

LABORATORY V CONSERVATION OF MOMENTUM LABORATORY V CONSERVATION OF MOMENTUM In this lab you will use conservation of momentum to predict the motion of objects resulting from collisions. It is often difficult or impossible to obtain enough

More information