Time of Flight Technique

Size: px
Start display at page:

Download "Time of Flight Technique"

Transcription

1 Time of Flight Technique R. Stroynowski California Institute of Technology, Pasadena, CA Abstract At first glance, the traditional Time of Flight (TOF) technique for identification of pions, kaons and protons seems to be ideally suited for the momentum range of particles produced at the Tau-Charm Factory. In the decays of r leptons and charmed mesons most of the secondaries have momentum smaller then 1 GeV/c. The exception are the two- and three-body decays of $J and $ where the region of interest extends to about 1.5 GeV/c. In the upper end of this momentum range the geometry of the detector will impose strict requirements on the necessary timing resolution. 1. Geometrical Considerations A typical TOF counter in a ese- storage ring experiment consists of a bar of _ plastic scint.illator placed at the outer radius of the tracking chamber and parallel to the beam axis. Light generated by the passage of charged particles is transmitted through the light guides to the photomultipliers placed in the region of low magnetic field - usually outside the return yoke of the magnet[l]. 956

2 In the axial magnetic field the minimum transverse momentum of particles reach- ing the counter is given in Table 1 as the function of the field strength and the radius of the tracking chamber. Table 1 Minimum pi of tracks reaching the outer radius of the tracking chamber in MeV/c. Field,Tesla Radius,cm o 315 ~ 360 As can be seen,the requirement of Time of Flight particle identification at low momentum (e.g. for p < 150 MeV/ c or pi < 100 MeV/c) necessitates modest magnetic field. The length of the counter depends on the radius of the tracking chamber and desired angular coverage. length = 2 1 radius/tan0 For example, the requirement of angular coverage down to costi < 0.9 at the radius of 100 cm implies counter length of 415 cm. Such length approaches the practical limit of the size of the counters constructed to date. The collection time of the light traversing full length of such counter is about 12 to 15 ns. This time convoluted together with the transit time of the signal through the standard photomultipliers (about 25 ns) is still comfortably smaller then the design machine bunch spacing of 52 ns. 957

3 2. Particle Identification Requirements A particle with mass m and momentum p has velocity For a path length L the time of flight is inversely proportional to its velocity,b: L T=- 4 Thus, two particles with the same momentum but different masses have different time of flight The momentum range over which particle separation is possible depends crucially on the timing resolution. In Fig.1 are shown the limits of the momentum range over which 3 sigma n-i< separation is possible as function of the radius of the TOF system. The worst case i.e. shortest path length of the produced particles is assumed. As can be seen the timing resolution required for eg. 100 cm radius is of the order of 100 ps. However, the resolution of about 130 ps would be sufficient to cover full momentum range needed for the study of tau and charm mesons decays. 3. Contributions to the Timing Resolution Contribution from the Scintillator The probability distribution of photon emission after the passage of charged parti- cle through the plastic scintillator depends on the chemical composition of the scintil- lator. In general the dominant process can be described by an exponential function[2]: p(t) 21 ett where T is a decay constant of the scintillator. The TOF resolution can be approximated by the uncertainty in the arrival time at the end of the counter of the first out 958

4 of n photons[3]: Not all of the produced photons can be observed and there are several contributions to the photon collection inefficiency. These are dominated by the geometry and the attenuation length of the scintillator. 1. Geometry - only photons either emitted directly towards the photodetector or those that survive multiple internal reflections inside the counter arrive at the photodetector. I&t collection efficiency is obtained for the photodetectors for which the active area of the phtocathode S is equal to the transverse cross section of the counter A. For all other cases the ratio of these two quantities S/A gives a good approximation of the photon collection efficiency. High segmentation of the TOF system allowes, therefore, not only to resolve particles travelling close by in space but also to minimize the light losses. The width of the optimal counter is thus equal to about 4.5 cm when using common 2 phototubes and the TOF system placed at the radius of 100 cm would consist of about 140 counters. 2. Attenuation - The process of the absorption of photons along their path in the scintillator is a major contributor to the attenuation of the signal. An additional component contributing to the effective attenuation length is the loss of photons due to the imperfections of the surface of the counter which change the path of the reflected photons and in particular allow them to escape by increasing their incident angle past the critical angle. A typical effective attenuation length of the TOF counters is of the order of 2 meters. The length of the count ers is usually defined by the length of the tracking chamber and the attenuation effects limit the practical length to about 4 meters. Contribution of the Photodetectors Standard 2 photomultipliers used in TOF counters also contribute to the timing resolution through their transit time jitter i.e. the uncertainty in the time delay of 959

5 the photomultiplication cascade inside the phototube. For an individual photon such uncertainty can be of the order or psec. In practice the timing jitter depends on the number of photons detected and the details of the trigger. This contribution is reduced in practical counters to the range of 60 to 100 psec and is small in comparison to overall resolution in counters used so far. The phototube timing jitter will become significant for the counters aiming at the resolution of better then 100 ps. This may require either modifications of existing photomultipliers or application of multichannel plates which have the transit time jitter about one order of magnitude smaller then the photomultipliers. Contribution from the Beam The TOF measurement technique requires precise knowledge of the time origin of the event. In the storage ring experiment the longitudinal size of the colliding beams provides additional contribution to the timing resolution. For the machine design parameters presented by J. Jowett[4] CT, of the beam is 6.2 mm. This will contribute 21 ps to the overal uncertainty of the TOF and can be neglected. However, the storage ring designs which require longer bunch length (e.g. gz= 25 mm for the G.Voss design[5]) may b e incompatible with the TOF technology. 4. Depth Segmentation The additional limitation of the timing resolution comes from the time of passage of particle through the counter. For the typical 5 cm thick counter this time of passage for the particle traversing at 45 is 236 ps. This contributes 6s ps to the overall timing resolution (assuming box-like uniform distribution of emitted photons along the particle trajectory). Although further increase of thickness of the counters would increase the number of observed photons, the time of passage would also increase. Depth segmentation with independent readout has been proposed [3] as solution to _ this problem and preliminary results of the measurements with the depth-segmented system indicate that long counters (eg. 300 cm long) with timing resolution smaller then 100 ps are possible. 960

6 5. Conclusions The Time of Flight technique is well suited to the requirements of the physics of the T lepton and charmed mesons. For the reference design of the detector the particle identification needs at $ and $ will require timing resolution of about 70 ps which is possible with depth segmented system. References 1. W.B. Atwood, Lectures at the 1980 SLAC Summer Institute on Particle Physics: The Weak Interactions. SLAC Report 239(1981) p J.B. Birks, Theory and practice of scintillation counting, Pergamon Press (1964). 3. B. M&ken, R. Stroynowski, E. Wicklund Timing measurements in particle physics experiments. CALT Proceedings of the Workshop on the Scintillating Fiber Detector Development, Fermilab J. Jowett, Contribution to this workshop. Also CERN/LEP-TH/ G. Voss, Contribution to this workshop. 961

7 radius 962

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Concepts of Event Reconstruction

Concepts of Event Reconstruction August 3, 2007 Directly Detectable Particles electrons, positrons: e ±, lightest charged lepton photons: γ, gauge boson for electromagnetic force pions: π ±, lightest mesons kaons: K ±, K L, lightest strange

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 4 Particle Detectors Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Oct 01 Page 1 Outline 1. Introduction. Bubble Chambers

More information

Hadronic vs e + e - colliders

Hadronic vs e + e - colliders Hadronic vs e + e - colliders Hadronic machines: enormous production of b-hadrons (σ bb ~ 50 µb) all b-hadrons can be produced trigger is challenging complicated many-particles events incoherent production

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Validation of the Time of Flight Detector of CLEO II

Validation of the Time of Flight Detector of CLEO II Validation of the Time of Flight Detector of CLEO II Tiana Fluker Department of Mathematics Wayne State University, Detroit, Michigan 48202 Abstract This note describes the details of the time of flight

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light

Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light Picosecond Time-of-Flight Measurement for Colliders Using Cherenkov Light Timothy Credo, Henry Frisch, Harold Sanders, Robert Schroll, and Fukun Tang Abstract--We propose to measure the velocity of particles

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT 9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT Students: Riccardo Falcione, Elisa Paris Liceo Scientifico Statale Farnesina Tutor:

More information

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Do no harm! ( The Hippocratic oath of detector designers, especially for those outside you ). Keep a minimum thickness

More information

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720 Brief Report from the Lawrence Berkeley National Laboratory Berkeley, California 9472 1 Introduction It might appear surprising to include a report from the Fermilab, a proton-antiproton collider, in a

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

Measurement of the D 0 meson mean life with the LHCb detector

Measurement of the D 0 meson mean life with the LHCb detector Author:. Supervisor: Hugo Ruiz Pérez Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: a measurement of the mean life of the D 0 meson is performed using real

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created 9 April 2010)

Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created 9 April 2010) Physics Notebook - 2010 Steve Sekula's Analysis Notebook Physics Notebook - 2010 Steve Sekula's Analysis Notebook Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created

More information

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2010 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2010 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event Valuable particles at hadron colliders are the electron e ± for W ±! e ± & Z

More information

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Matthew Wetstein - Enrico Fermi Institute, University of Chicago HEP Division, Argonne

More information

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR K. Suzuki 1, D. Steinschaden 1, S. Zimmermann 1 2, N. Kratochwil 1, L. Gruber 3, C. Schwarz 4, H. Orth 4, L. Schmitt 5, K. Gtzen 4,

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl

Neutron Transport Calculations Using Monte-Carlo Methods. Sean Lourette Fairport High School Advisor: Christian Stoeckl Neutron Transport Calculations Using Monte-Carlo Methods Sean Lourette Fairport High School Advisor: Christian Stoeckl Laboratory for Laser Energetics University of Rochester Summer High School Research

More information

MEASURING THE LIFETIME OF THE MUON

MEASURING THE LIFETIME OF THE MUON B6-1 MEASURING THE LIFETIME OF THE MUON Last Revised September 19, 2006 QUESTION TO BE INVESTIGATED What is the lifetime τ of a muon? INTRODUCTION AND THEORY Muons are a member of a group of particles

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

arxiv: v1 [hep-ex] 6 Jul 2007

arxiv: v1 [hep-ex] 6 Jul 2007 Muon Identification at ALAS and Oliver Kortner Max-Planck-Institut für Physik, Föhringer Ring, D-005 München, Germany arxiv:0707.0905v1 [hep-ex] Jul 007 Abstract. Muonic final states will provide clean

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles

Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Particle Detectors Tools of High Energy and Nuclear Physics Detection of Individual Elementary Particles Howard Fenker Jefferson Lab May 31, 2006 Outline of Talk Interactions of Particles with Matter Atomic

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

The Mu2e Transport Solenoid

The Mu2e Transport Solenoid The Mu2e Transport Solenoid J. Miller Boston University for the Mu2e Collaboration 23 January 2009 1 Mu2e Muon Beamline Requirements Pulsed beam Deliver high flux µ beam to stopping target At FNAL, high

More information

Status of PEP-II and BaBar. 1 Introduction. 2 PEP-II Machine

Status of PEP-II and BaBar. 1 Introduction. 2 PEP-II Machine Jonathan Dorfan Stanford Linear Accelerator Center Stanford University Stanford, California 94309 1 Introduction The SLAC B Factory was approved by President Clinton in October 1993. The inaugural meeting

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

Particle Detectors. Summer Student Lectures 2007 Werner Riegler, CERN, History of Instrumentation History of Particle Physics

Particle Detectors. Summer Student Lectures 2007 Werner Riegler, CERN, History of Instrumentation History of Particle Physics Particle Detectors Summer Student Lectures 2007 Werner Riegler, CERN, werner.riegler@cern.ch History of Instrumentation History of Particle Physics The Real World of Particles Interaction of Particles

More information

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva LHC Detectors and their Physics Potential Nick Ellis PH Department, CERN, Geneva 1 Part 1 Introduction to the LHC Detector Requirements & Design Concepts 2 What is the Large Hadron Collider? Circular proton-proton

More information

Particle Production Measurements at Fermilab

Particle Production Measurements at Fermilab Particle Production Measurements at Fermilab Dr. Nickolas Solomey, IIT and Fermilab co Spokesman of E907 TEV II Astroparticle Physics Conference Univ. of Wisconsin, Madison 28 31 Aug., 2006 Particle Production

More information

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) 1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) N. Terentiev* (Carnegie Mellon U./Fermilab) V. Di Benedetto, C. Gatto (INFN) A. Mazzacane, N. Mokhov, S. Striganov

More information

(Total for Question = 5 marks) PhysicsAndMathsTutor.com

(Total for Question = 5 marks) PhysicsAndMathsTutor.com 1 Rutherford designed an experiment to see what happened when alpha particles were directed at a piece of gold foil. Summarise the observations and state the conclusions Rutherford reached about the structure

More information

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV Trần Minh Tâm minh-tam.tran@epfl.ch on behalf of the LHCb Collaboration LHCb-CONF-2014-001 EPFL, Laboratoire de Physique

More information

The Discovery of the Tau lepton. Max Godsland and Samuel Sheldon

The Discovery of the Tau lepton. Max Godsland and Samuel Sheldon The Discovery of the Tau lepton Max Godsland and Samuel Sheldon Some context Why were the electron and muon different? Perl believed an answer to the e-μ problem might be found by looking for a new heavy

More information

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons R. Pestotnik a, H. Chagani a, R. Dolenec a, S. Korpar a,b, P. Križan a,c, A. Stanovnik a,c a J. Stefan Institute, b University

More information

Detectors & Beams. Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung

Detectors & Beams. Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Detectors & Beams Giuliano Franchetti and Alberica Toia Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Pro-seminar Winter Semester 2015-16 DPG Spring Meeting Giuliano Franchetti

More information

Partonic Structure of Light Nuclei

Partonic Structure of Light Nuclei Partonic Structure of Light Nuclei M. Hattawy - Physics motivations - Recent results from CLAS - Proposed measurements with CLAS12 INT 17-3, Thursday, August 31st 2017 EMC Effect EMC effect: the modification

More information

Results from BABAR/PEP-II - One Year of Operations

Results from BABAR/PEP-II - One Year of Operations SLAC-PUB-9158 March 22 Results from /PEP-II - One Year of Operations Paul C. Bloom Representing the Collaboration Presented at the 4th International Conference on Hyperons, Charm and Beauty Hadrons, 6/27/2

More information

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters:

Lecture 2 & 3. Particles going through matter. Collider Detectors. PDG chapter 27 Kleinknecht chapters: PDG chapter 28 Kleinknecht chapters: Lecture 2 & 3 Particles going through matter PDG chapter 27 Kleinknecht chapters: 1.2.1 for charged particles 1.2.2 for photons 1.2.3 bremsstrahlung for electrons Collider Detectors PDG chapter 28 Kleinknecht

More information

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview

Experimental Particle Physics Informal Lecture & Seminar Series Lecture 1 Detectors Overview Experimental Particle Physics Informal Lecture & Seminar Series 2013 Lecture 1 Detectors Overview Detectors in Particle Physics Let s talk about detectors for a bit. Let s do this with Atlas and CMS in

More information

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Lectures and Exercise Summer Semester 2016 1 Organization Language:

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan

PoS(PD07)020. Timing Properties of MCP-PMT. Kenji Inami. Nagoya university, Nagoya, Japan Nagoya university, Nagoya, Japan E-mail: kenji@hepl.phys.nagoya-u.ac.jp We have studied timing properties of 4 different types of micro-channel-plate photo-multiplier tubes (MCP-PMT) by irradiating with

More information

Search for heavy neutrinos in kaon decays

Search for heavy neutrinos in kaon decays Search for heavy neutrinos in kaon decays L. Littenberg (work mainly done by A.T.Shaikhiev INR RAS) HQL-2016 Outline Motivation Previous heavy neutrino searches Experiment BNL-E949 Selection criteria Efficiency

More information

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico Aerogel counter with a Fresnel lens Guy Paic Instituto de Ciencias Nucleares UNAM Mexico outline The physics case The constraint on the detector The principle of propagation and focalisation Results of

More information

Lavinia-Elena Giubega

Lavinia-Elena Giubega Lavinia-Elena Giubega *on behalf of LHCb collaboration Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania Beach 2018 - XIII International Conference on Beauty,

More information

OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM. HISHAM SAYED 1 X. Ding 2, H. Kirk 1, K.

OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM. HISHAM SAYED 1 X. Ding 2, H. Kirk 1, K. OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM HISHAM SAYED 1 X. Ding 2, H. Kirk 1, K. McDonald 3 1 BROOKHAVEN NATIONAL LABORATORY 2 University of California LA 3 Princeton

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

LHCb Calorimetry Impact

LHCb Calorimetry Impact LHCb Calorimetry Impact Preema Pais! On behalf of the LHCb Collaboration! Workshop on the physics of HL-LHC, and perspectives at HE-LHC! November 1, 2017! THE LHCb DETECTOR Calorimetry! Located ~12.5 m

More information

THE PEP-II B-FACTORY AND THE BABAR DETECTOR

THE PEP-II B-FACTORY AND THE BABAR DETECTOR SLAC-PUB-9775 THE PEP-II B-FACTORY AND THE BABAR DETECTOR Gérard Bonneaud Ecole Polytechnique, LPNHE F-91128 Palaiseau, France (on behalf of the BABAR Collaboration) October 10-12, 1998 Abstract. I summarize

More information

Simulation and validation of the ATLAS Tile Calorimeter response

Simulation and validation of the ATLAS Tile Calorimeter response Home Search Collections Journals About Contact us My IOPscience Simulation and validation of the ATLAS Tile Calorimeter response This content has been downloaded from IOPscience. Please scroll down to

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

17/01/17 F. Ould-Saada

17/01/17 F. Ould-Saada Chapter 3 3.1 Why Do We Need Accelerators? 3.1.1 The Center-of-Mass (c.m.) System 3.1.2 The Laboratory System 3.1.3 Fixed Target Accelerator and Collider 3.2 Linear and Circular Accelerators 3.2.1 Linear

More information

The Alice Experiment Felix Freiherr von Lüdinghausen

The Alice Experiment Felix Freiherr von Lüdinghausen The Alice Experiment Felix Freiherr von Lüdinghausen Alice, who is Alice? Alice is A Large Ion Collider Experiment. Worldwide hit in 1977 for the band Smokie Alice is the dedicated heavy ion experiment

More information

Study of ν τ production by measuring D s τ events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions

Study of ν τ production by measuring D s τ events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions Letter of intent Study of ν τ production by measuring D s τ events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions S. Aoki 1, A. Ariga 2, T. Ariga 2,

More information

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS, For the Belle II PID group KMI, Nagoya University E-mail: matsuoka@hepl.phys.nagoya-u.ac.jp The TOP (Time-Of-Propagation) counter

More information

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV Pion, Kaon, and (Anti-) Proton Production in AuAu Collisions at s = 6.4 GeV NN Ming Shao 1, for the STAR Collaboration 1 University of Science & Technology of China, Anhui 3007, China Brookhaven National

More information

What detectors measure

What detectors measure What detectors measure As a particle goes through matter, it releases energy Detectors collect the released energy and convert it to electric signals recorded by DAQ Raw event record is a collection of

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

GlueX Capabilities for Nuclear Photoproduction

GlueX Capabilities for Nuclear Photoproduction GlueX Capabilities for Nuclear Photoproduction A. Somov, Jefferson Lab Nuclear Photoproduction with GlueX April 28 29, 2016 Physics Topics with Nuclear Targets Considered for GlueX Photoproduction of vector

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

Reconstruction in Collider Experiments (Part IX)

Reconstruction in Collider Experiments (Part IX) Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments (Part IX) Peter Loch University of Arizona Tucson,

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation Arthur Mkrtchyan CUA Outline Physics case and motivation Experimental setup Simulation results

More information

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP student from Georgia Institute of Technology, Atlanta,

More information

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering DESY Summer Students Program 8: Exclusive π + Production in Deep Inelastic Scattering Falk Töppel date: September 6, 8 Supervisors: Rebecca Lamb, Andreas Mussgiller II CONTENTS Contents Abstract Introduction.

More information

Time of Flight measurements with MCP-PMT

Time of Flight measurements with MCP-PMT International Symposium on the Development of Detectors, 2006/4 at SLAC Time of Flight measurements with MCP-PMT - Very high resolution TOF counter - Lifetime of MCP-PMTs T.Ohshima, K.Inami, N.Kishimoto,

More information

Y2 Neutrino Physics (spring term 2017)

Y2 Neutrino Physics (spring term 2017) Y2 Neutrino Physics (spring term 2017) Lecture 5 Discoveries of the leptons Dr E Goudzovski eg@hep.ph.bham.ac.uk http://epweb2.ph.bham.ac.uk/user/goudzovski/y2neutrino Previous lecture In 1940s, nuclear

More information

Lecture 3. lecture slides are at:

Lecture 3. lecture slides are at: Lecture 3 lecture slides are at: http://www.physics.smu.edu/ryszard/5380fa16/ Proton mass m p = 938.28 MeV/c 2 Electron mass m e = 0.511 MeV/c 2 Neutron mass m n = 939.56 MeV/c 2 Helium nucleus α: 2 protons+2

More information

Emittance Measurement in the Muon Ionization Cooling Experiment

Emittance Measurement in the Muon Ionization Cooling Experiment Emittance Measurement in the Muon Ionization Cooling Experiment Department of Physics, Imperial College London E-mail: v.blackmore@imperial.ac.uk The Muon Ionization Cooling Experiment (MICE) collaboration

More information

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A.

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. 2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. Abstract We report our simulation results for K L -beam and

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

PoS(ICHEP2016)293. The LArIAT experiment and the charged pion total interaction cross section results on liquid argon. Animesh Chatterjee

PoS(ICHEP2016)293. The LArIAT experiment and the charged pion total interaction cross section results on liquid argon. Animesh Chatterjee The LArIAT experiment and the charged pion total interaction cross section results on liquid argon University of Texas at Arlington, Arlington, TX 76019, USA E-mail: animesh.chatterjee@uta.edu We present

More information

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d

1 Introduction The SLAC B Factory asymmetric B-factories was approved by President Clinton in October B-factories The inaugural meeting of the d SLAC-PUB-8459 hep-ex/0006012 May 2000 Status of PEP-II and BaBar J. Dorfan Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 Invited talk presented at 19th International

More information

Particle Identification of the LHCb detector

Particle Identification of the LHCb detector HCP 2005 Particle Identification of the LHCb detector Ann.Van.Lysebetten@cern.ch on behalf of the LHCb collaboration CERN 5th July 2005 The LHCb experiment : introduction precision measurements of CP violation

More information

The ALICE Experiment Introduction to relativistic heavy ion collisions

The ALICE Experiment Introduction to relativistic heavy ion collisions The ALICE Experiment Introduction to relativistic heavy ion collisions 13.06.2012 Introduction to relativistic heay ion collisions Anna Eichhorn 1 Facts about ALICE ALICE A Large Ion Collider Experiment

More information

Results from R&D of Cherenkov detectors at Novosibirsk

Results from R&D of Cherenkov detectors at Novosibirsk Nuclear Instruments and Methods in Physics Research A 8 (7) 4 44 www.elsevier.com/locate/nima Results from R&D of Cherenkov detectors at Novosibirsk A.Yu. Barnyakov a, M.Yu. Barnyakov a, K.I. Beloborodov

More information

Time-like Compton Scattering with transversely polarized target

Time-like Compton Scattering with transversely polarized target Time-like Compton Scattering with transversely polarized target Vardan Tadevosyan AANSL (YerPhI) Foundation JLab 1/19/2017 Outline Physics case and motivation Experimental setup Simulation results Latest

More information

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN)

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN) The TORCH project a proposed detector for precision time-of-flight over large areas Roger Forty (CERN) DIRC 2013, Giessen, 4 6 September 2013 Introduction TORCH (Time Of internally Reflected CHerenkov

More information

A gas-filled calorimeter for high intensity beam environments

A gas-filled calorimeter for high intensity beam environments Available online at www.sciencedirect.com Physics Procedia 37 (212 ) 364 371 TIPP 211 - Technology and Instrumentation in Particle Physics 211 A gas-filled calorimeter for high intensity beam environments

More information

An Overview of RICH Detectors From PID to Velocity Spectrometers

An Overview of RICH Detectors From PID to Velocity Spectrometers An RICH Detectors From PID to Velocity Spectrometers, January 29, 2008 Goal - a broad overview for this afternoon s session I. Introduction II. Recent RICH history. A review of some experiments and their

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Written Test A. [Solve three out of the following five problems.] ψ = B(x + y + 2z)e x 2 +y 2 +z 2

Written Test A. [Solve three out of the following five problems.] ψ = B(x + y + 2z)e x 2 +y 2 +z 2 Written Test A Solve three out of the following five problems.] Problem 1. A spinless particle is described by the wave function where B is a constant. ψ = B(x + y + z)e x +y +z 1. Determine the total

More information

ATLAS Tile Calorimeter Calibration and Monitoring Systems

ATLAS Tile Calorimeter Calibration and Monitoring Systems ATLAS Calibration and Monitoring Systems June 19 th -23 rd, 217 Arely Cortes-Gonzalez (CERN) On behalf of the ATLAS Collaboration ATLAS Detector Trigger Hardware based L1 ~1kHz Software based HLT ~1kHz

More information

etectors for High Energy Physics

etectors for High Energy Physics 3rd WORKSHOP ON PARTICLE PHYSICS NATIONAL CENTRE FOR PHYSICS (QUAID-I-AZAM UNIVERSITY) etectors for High Energy Physics Lecture II General Detector Concepts Gigi Rolandi Cern Geneva - Switzerland http://rolandi.home.cern.ch/rolandi/

More information

Discovery of muon neutrino

Discovery of muon neutrino Discovery of muon neutrino Maria Lorenzon July 22, 2010 The article I will mainly refer to is Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, written by G. Danby,

More information

arxiv:nucl-ex/ v1 21 Dec 2004

arxiv:nucl-ex/ v1 21 Dec 2004 φ meson production in d + Au collisions at s NN = 00 GeV arxiv:nucl-ex/041048v1 1 Dec 004 1. Introduction Dipali Pal for the PHENIX collaboration Department of Physics & Astronomy, Vanderbilt University,

More information

A Tau-Charm Factory in the United States*

A Tau-Charm Factory in the United States* A Tau-Charm Factory in the United States* D. H. Coward Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 As the conclusions of the many presentations made at the Tau- Charm

More information

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

Spectroscopy and Decay results from CDF

Spectroscopy and Decay results from CDF Quarkonium Spectroscopy and Decay results from CDF KIT Quarkonium Workshop December 3, 2008 Outline Tevatron and CDF Bc Mass Lifetime bc X(3872) Mass splitting and mass X page 2 Tevatron p s = 1.96 TeV

More information