Week 4 solutions. March 21, From the left hand side formula we obtain ϕ ψ = ϕ ψ = We transform the left hand side formula as follows.

Size: px
Start display at page:

Download "Week 4 solutions. March 21, From the left hand side formula we obtain ϕ ψ = ϕ ψ = We transform the left hand side formula as follows."

Transcription

1 Week 4 solutions March 21, a. ϕ ψ ϕ (ψ ϕ). From the left hand side formula we obtain ϕ ψ = ϕ ψ = ϕ ψ = (ψ ϕ) = True (ψ ϕ). Here, True = (ψ ϕ) ( ψ ϕ) (ψ ϕ) ( ψ ϕ). In True (ψ ϕ), only ( ψ ϕ) can hold before (ψ ϕ). In the right hand side formula, only ( ψ ϕ) can hold before (ψ ϕ) as well. Hence, we conclude that the equivalence holds. b. ϕ ψ (ϕ (ψ ϕ)). We transform the left hand side formula as follows. ϕ ψ = ϕ ψ = ϕ ψ. We already proved, that ϕ ψ ϕ (ψ ϕ), hence we can transform the right hand side formula as follows. (ϕ (ψ ϕ)) = ( ϕ ψ) = ( ϕ ψ). Now, let a = ϕ and b = ψ. We know, that (a b) a b, hence ϕ ψ ( ϕ ψ). c. (ϕ ψ) ( ϕ ψ). Left hand side formula is transformed as follows. (ϕ ψ) = (ϕ ψ). Right hand side formula is transformed as follows. ( ϕ ψ) = ( ϕ ψ) = (ϕ ψ). Hence, we conclude that the equivalence holds. d. (ϕ ψ) = ϕ ψ. The counter example is as follows. We consider a path, such that s 0 = (ϕ ψ), s 1 = (ϕ ψ), s 2 = ( ϕ ψ). For this path, the left hand side formula does not hold, since both ϕ and ψ must eventually become True simultaneously, whereas the right hand side formula holds for this path. Hence, the equivalence holds. e. ϕ ϕ ϕ. We transform the left hand side formula as follows. ϕ ϕ = ϕ (True ϕ) = ϕ (True ϕ) = ϕ. Hence, we conclude that the equivalence holds. 1

2 f. ϕ ϕ ϕ. The counter example is as follows. We consider a path, such that s 0 = ϕ, s 1 = ϕ. The right hand side formula holds for the path, since after ϕ eventually becomes True, there are no further obligations, whereas the left hand side formula does not hold, since, after ϕ eventually becomes True, from the next state, ϕ must hold. g. ϕ ψ (ϕ ψ). The counter example is as follows. Let there be a path s 0 (s 1 ) ω, such that s 0 = ϕ ψ, s 1 = ϕ ψ. For this path, the left hand side formula holds, since neither of ϕ and ψ hold, but the right hand side formula does not hold. h. ϕ ϕ. We transform the left hand side formula as follows. ϕ = (True ϕ) = True ϕ = True ϕ. The right hand side formula is transformed as follows. ϕ = True ϕ. From here, we can conclude that the equivalence holds. i. (ϕ ψ) ψ ϕ ψ. By applying the idempotency law to the left hand side formula, we can immediately conclude that the equivalence holds. 2 (a) (( ϕ (ϕ ψ)) ϕ). (b) (ϕ ψ) ϕ. (c) ϕ( ψ) ϕ. 3 First, the TA is defined as follows: TA = {Loc, Loc 0, Act, C,, Inv, AP, L} Loc = {s 0, s 1 } Loc 0 = {s 0 } Act = {switch on, switch off} C = {x, y} AP = Inv(s 0 ) = True Inv(s 1 ) = True L(s 0 ) = L(s 1 ) = The transitions are: x 1,switch on,{x,y} s 0 s 1 x 2,switch on,{x} s 1 s 1 2

3 s 1 y=3,switch off,{x} s 0 Now, TS = {S, Act,, I, AP, L } S = {(s 0, x, y) x, y R + } {(s 0, x, y) x, y R + } Act = {switch on, switch off} R + I = {(s 0, 0, 0)} AP = True L = The transitions are: switch on (s 0, x, y) (s 1, 0, 0), x, y, such that x 1, y 0 (s 0, x, y) d (s 0, x + d, y + d), x, y, d, such that x 0, y 0, d 0 switch on (s 1, x, y) (s 1, 0, y), x, y, such that x 2, y 0 (s 1, x, y) d (s 1, x + d, y + d), x, y, d, such that x 0, y 0, d 0 switch off (s 1, x, y) (s 0, 0, y), x, y, such that x 0, y = 3 The transition system is non-zeno, since there are no transitions without time constraints, which makes it impossible to conduct infinitely many actions in finite time. The transition system does not contain timelocks. In s 0 there are no invariants and the transition guard x 1 eventually becomes fulfilled. In s 1 there are no state invariants as well, and the switch on self-loop transition always becomes enabled after two time units. It is worth to note that when y becomes greater than 3, the switch off transition becomes unfeasible forever, but it does not create timelocks, since the switch on self-loop transition is always possible. 4 The automata are depicted on figures 3, 1 and 2. a i. Compl ii. (Inserted GotCoffee (Published1 Published2 Published3)) iii. (Inserted ServedCoffee) b There are no zeno paths in the model. An argument for this is that in the Person and Machine automata, each path from a state to the same state contains at least one transition with guards satisfying the following condition: for any clock x and any constant c, (x < c) holds. This guarantees that only finite amount of actions is possible within finite time. And the Observer automaton cannot proceed independently, without syncronizing with the Person and Machine. There are no timelocks paths in the model and informally it can be explained as follows. If we observe it, we can see that only two states of the Person automaton contain states with invariants. Otherwise, the model 3

4 can proceed. Let s consider both of the states with invariants. In the Person s Wait state, there is no possibility to end up in a deadlock, since whenever the following state is active, the only possible transition is out of this state, the Person s clock inevitably reaches the value which satisfies the transitions guard. Further, let s consider the Person s GotCoffee state. The state s invariant inevitably holds and there are no other circumstances which can prevent the transition. c Compl does not hold and the counter example is as follows. (Start,Idle,Idle2,x=0,y=0,z=0) (Wait,Inserted,Idle2,x=0,y=0,z=1) (Ready,Inserted,Idle2,x=0,y=3,z=4) (Ready,Inserted,Idle2,x=0,y=7,z=8) (GotCoffee,ServedCoffee,Idle2,x=0,y=2,z=10) (Start,Idle,Published3,x=2,y=4,z=12) (Start,Idle,Compl,x=2,y=4,z=12) As we can see, the Compl state of the observer is reached eventually (clock z tracks time elapsed from the previous publishing, and it is observable that 12 time units have passed). The two other properties hold and the argument is trivial. After (Inserted GotCoffee), it is impossible to avoid publising. Similarly, after the Inserted state, the ServedCoffee state is inevitable. In order for the first property to hold, it is enough to change the Person automaton. The changed automaton is provided in figure 4. The initial state is made urgent, in the Ready state, an invariant introduced, and the Go state is made committed. All of the changes prevent the automaton from unlimited waiting and limit the whole cycle in time, which makes the Compl state of the Observer automaton unreachable. 4

5 Figure 1: Machine automaton Figure 2: Observer automaton 5

6 Figure 3: Original person automaton Figure 4: Updated person automaton 6

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints

Timed Automata. Chapter Clocks and clock constraints Clock variables and clock constraints Chapter 10 Timed Automata In the previous chapter, we have discussed a temporal logic where time was a discrete entities. A time unit was one application of the transition relation of an LTS. We could

More information

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University

Modelling Real-Time Systems. Henrik Ejersbo Jensen Aalborg University Modelling Real-Time Systems Henrik Ejersbo Jensen Aalborg University Hybrid & Real Time Systems Control Theory Plant Continuous sensors actuators Task TaskTask Controller Program Discrete Computer Science

More information

An introduction to Uppaal and Timed Automata MVP5 1

An introduction to Uppaal and Timed Automata MVP5 1 An introduction to Uppaal and Timed Automata MVP5 1 What is Uppaal? (http://www.uppaal.com/) A simple graphical interface for drawing extended finite state machines (automatons + shared variables A graphical

More information

Safety and Liveness Properties

Safety and Liveness Properties Safety and Liveness Properties Lecture #6 of Model Checking Joost-Pieter Katoen Lehrstuhl 2: Software Modeling and Verification E-mail: katoen@cs.rwth-aachen.de November 5, 2008 c JPK Overview Lecture

More information

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main

Real-Time Systems. Lecture 10: Timed Automata Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany main Real-Time Systems Lecture 10: Timed Automata 2013-06-04 10 2013-06-04 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: PLC, PLC automata This Lecture:

More information

Lecture 11: Timed Automata

Lecture 11: Timed Automata Real-Time Systems Lecture 11: Timed Automata 2014-07-01 11 2014-07-01 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: DC (un)decidability This Lecture:

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

An Algebra of Hybrid Systems

An Algebra of Hybrid Systems Peter Höfner University of Augsburg August 22, 2008 The University of Queensland, August 2008 1 c Peter Höfner Hybrid Systems Definition hybrid systems are heterogeneous systems characterised by the interaction

More information

Lecture 6: Reachability Analysis of Timed and Hybrid Automata

Lecture 6: Reachability Analysis of Timed and Hybrid Automata University of Illinois at Urbana-Champaign Lecture 6: Reachability Analysis of Timed and Hybrid Automata Sayan Mitra Special Classes of Hybrid Automata Timed Automata ß Rectangular Initialized HA Rectangular

More information

Topics in Verification AZADEH FARZAN FALL 2017

Topics in Verification AZADEH FARZAN FALL 2017 Topics in Verification AZADEH FARZAN FALL 2017 Last time LTL Syntax ϕ ::= true a ϕ 1 ϕ 2 ϕ ϕ ϕ 1 U ϕ 2 a AP. ϕ def = trueu ϕ ϕ def = ϕ g intuitive meaning of and is obt Limitations of LTL pay pay τ τ soda

More information

Models for representing sequential circuits

Models for representing sequential circuits Sequential Circuits Models for representing sequential circuits Finite-state machines (Moore and Mealy) Representation of memory (states) Changes in state (transitions) Design procedure State diagrams

More information

CDS 270 (Fall 09) - Lecture Notes for Assignment 8.

CDS 270 (Fall 09) - Lecture Notes for Assignment 8. CDS 270 (Fall 09) - Lecture Notes for Assignment 8. ecause this part of the course has no slides or textbook, we will provide lecture supplements that include, hopefully, enough discussion to complete

More information

Timed Automata VINO 2011

Timed Automata VINO 2011 Timed Automata VINO 2011 VeriDis Group - LORIA July 18, 2011 Content 1 Introduction 2 Timed Automata 3 Networks of timed automata Motivation Formalism for modeling and verification of real-time systems.

More information

Analysis of a Boost Converter Circuit Using Linear Hybrid Automata

Analysis of a Boost Converter Circuit Using Linear Hybrid Automata Analysis of a Boost Converter Circuit Using Linear Hybrid Automata Ulrich Kühne LSV ENS de Cachan, 94235 Cachan Cedex, France, kuehne@lsv.ens-cachan.fr 1 Introduction Boost converter circuits are an important

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Stavros Tripakis Abstract We introduce problems of decentralized control with communication, where we explicitly

More information

Linear Temporal Logic and Büchi Automata

Linear Temporal Logic and Büchi Automata Linear Temporal Logic and Büchi Automata Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 Yih-Kuen Tsay (SVVRL @ IM.NTU) Linear Temporal Logic and Büchi Automata

More information

Formally Correct Monitors for Hybrid Automata. Verimag Research Report n o TR

Formally Correct Monitors for Hybrid Automata. Verimag Research Report n o TR Formally Correct Monitors for Hybrid Automata Goran Frehse, Nikolaos Kekatos, Dejan Nickovic Verimag Research Report n o TR-2017-5 September 20, 2017 Verimag, University of Grenoble Alpes, Grenoble, France.

More information

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2

Embedded Systems 5. Synchronous Composition. Lee/Seshia Section 6.2 Embedded Systems 5-1 - Synchronous Composition Lee/Seshia Section 6.2 Important semantic model for concurrent composition Here: composition of actors Foundation of Statecharts, Simulink, synchronous programming

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Stavros Tripakis 2 VERIMAG Technical Report TR-2004-26 November 2004 Abstract We introduce problems of decentralized

More information

Linear-Time Logic. Hao Zheng

Linear-Time Logic. Hao Zheng Linear-Time Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE, USF)

More information

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications

Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Failure Diagnosis of Discrete Event Systems With Linear-Time Temporal Logic Specifications Shengbing Jiang and Ratnesh Kumar Abstract The paper studies failure diagnosis of discrete event systems with

More information

Overview. overview / 357

Overview. overview / 357 Overview overview6.1 Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation Tree Logic syntax and semantics of CTL expressiveness of CTL

More information

Discrete Event Systems Exam

Discrete Event Systems Exam Computer Engineering and Networks Laboratory TEC, NSG, DISCO HS 2016 Prof. L. Thiele, Prof. L. Vanbever, Prof. R. Wattenhofer Discrete Event Systems Exam Friday, 3 rd February 2017, 14:00 16:00. Do not

More information

The efficiency of identifying timed automata and the power of clocks

The efficiency of identifying timed automata and the power of clocks The efficiency of identifying timed automata and the power of clocks Sicco Verwer a,b,1,, Mathijs de Weerdt b, Cees Witteveen b a Eindhoven University of Technology, Department of Mathematics and Computer

More information

Lecture 2 Automata Theory

Lecture 2 Automata Theory Lecture 2 Automata Theory Ufuk Topcu Nok Wongpiromsarn Richard M. Murray Outline: Transition systems Linear-time properties Regular propereties EECI, 14 May 2012 This short-course is on this picture applied

More information

Lecture 2 Automata Theory

Lecture 2 Automata Theory Lecture 2 Automata Theory Ufuk Topcu Nok Wongpiromsarn Richard M. Murray EECI, 18 March 2013 Outline Modeling (discrete) concurrent systems: transition systems, concurrency and interleaving Linear-time

More information

From Liveness to Promptness

From Liveness to Promptness From Liveness to Promptness Orna Kupferman Hebrew University Nir Piterman EPFL Moshe Y. Vardi Rice University Abstract Liveness temporal properties state that something good eventually happens, e.g., every

More information

Abstractions and Decision Procedures for Effective Software Model Checking

Abstractions and Decision Procedures for Effective Software Model Checking Abstractions and Decision Procedures for Effective Software Model Checking Prof. Natasha Sharygina The University of Lugano, Carnegie Mellon University Microsoft Summer School, Moscow, July 2011 Lecture

More information

Alan Bundy. Automated Reasoning LTL Model Checking

Alan Bundy. Automated Reasoning LTL Model Checking Automated Reasoning LTL Model Checking Alan Bundy Lecture 9, page 1 Introduction So far we have looked at theorem proving Powerful, especially where good sets of rewrite rules or decision procedures have

More information

EE291E Lecture Notes 3 Autonomous Hybrid Automata

EE291E Lecture Notes 3 Autonomous Hybrid Automata EE9E Lecture Notes 3 Autonomous Hybrid Automata Claire J. Tomlin January, 8 The lecture notes for this course are based on the first draft of a research monograph: Hybrid Systems. The monograph is copyright

More information

TIMED automata, introduced by Alur and Dill in [3], have

TIMED automata, introduced by Alur and Dill in [3], have 1 Language Inclusion Checking of Timed Automata with Non-Zenoness Xinyu Wang, Jun Sun, Ting Wang, and Shengchao Qin Abstract Given a timed automaton P modeling an implementation and a timed automaton S

More information

Hybrid systems and computer science a short tutorial

Hybrid systems and computer science a short tutorial Hybrid systems and computer science a short tutorial Eugene Asarin Université Paris 7 - LIAFA SFM 04 - RT, Bertinoro p. 1/4 Introductory equations Hybrid Systems = Discrete+Continuous SFM 04 - RT, Bertinoro

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Settling Time Reducibility Orderings

Settling Time Reducibility Orderings Settling Time Reducibility Orderings by Clinton Loo A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Pure Mathematics

More information

Section 6 Fault-Tolerant Consensus

Section 6 Fault-Tolerant Consensus Section 6 Fault-Tolerant Consensus CS586 - Panagiota Fatourou 1 Description of the Problem Consensus Each process starts with an individual input from a particular value set V. Processes may fail by crashing.

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI

Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI Stavros Tripakis Aalto University and University of California, Berkeley Abstract FMI (Functional Mockup Interface) is a standard

More information

Saarland University Faculty of Natural Sciences and Technology I Department of Computer Science. Bachelor Thesis. From Uppaal To Slab.

Saarland University Faculty of Natural Sciences and Technology I Department of Computer Science. Bachelor Thesis. From Uppaal To Slab. Saarland University Faculty of Natural Sciences and Technology I Department of Computer Science Bachelor Thesis From Uppaal To Slab submitted by Andreas Abel submitted August 26, 2009 Supervisor Prof.

More information

Labeled Transition Systems

Labeled Transition Systems Labeled Transition Systems Lecture #1 of Probabilistic Models for Concurrency Joost-Pieter Katoen Lehrstuhl II: Programmiersprachen u. Softwarevalidierung E-mail: katoen@cs.rwth-aachen.de March 12, 2005

More information

Symbolic Verification of Hybrid Systems: An Algebraic Approach

Symbolic Verification of Hybrid Systems: An Algebraic Approach European Journal of Control (2001)71±16 # 2001 EUCA Symbolic Verification of Hybrid Systems An Algebraic Approach Martin v. Mohrenschildt Department of Computing and Software, Faculty of Engineering, McMaster

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

IC3 and Beyond: Incremental, Inductive Verification

IC3 and Beyond: Incremental, Inductive Verification IC3 and Beyond: Incremental, Inductive Verification Aaron R. Bradley ECEE, CU Boulder & Summit Middle School IC3 and Beyond: Incremental, Inductive Verification 1/62 Induction Foundation of verification

More information

2. Syntactic Congruences and Monoids

2. Syntactic Congruences and Monoids IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 3: Algebra and Languages David Mix Barrington and Alexis Maciel July 19, 2000 1.

More information

Automata on Infinite words and LTL Model Checking

Automata on Infinite words and LTL Model Checking Automata on Infinite words and LTL Model Checking Rodica Condurache Lecture 4 Lecture 4 Automata on Infinite words and LTL Model Checking 1 / 35 Labeled Transition Systems Let AP be the (finite) set of

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Formal Methods in Software Engineering Modeling Prof. Dr. Joel Greenyer October 21, 2014 Organizational Issues Tutorial dates: I will offer two tutorial dates Tuesdays 15:00-16:00 in A310 (before the lecture,

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Laboratoire Spécification & Vérification. Language Preservation Problems in Parametric Timed Automata. Étienne André and Nicolas Markey

Laboratoire Spécification & Vérification. Language Preservation Problems in Parametric Timed Automata. Étienne André and Nicolas Markey Language Preservation Problems in Parametric Timed Automata Étienne André and Nicolas Markey June 2015 Research report LSV-15-05 (Version 1) Laboratoire Spécification & Vérification École Normale Supérieure

More information

Part I: Definitions and Properties

Part I: Definitions and Properties Turing Machines Part I: Definitions and Properties Finite State Automata Deterministic Automata (DFSA) M = {Q, Σ, δ, q 0, F} -- Σ = Symbols -- Q = States -- q 0 = Initial State -- F = Accepting States

More information

Limitations of Non-deterministic Finite Automata Imposed by One Letter Input Alphabet

Limitations of Non-deterministic Finite Automata Imposed by One Letter Input Alphabet Limitations of Non-deterministic Finite Automata Imposed by One Letter Input Alphabet Laura Mančinska, Māris Ozols, Renāte Praude and Agnese Zalcmane violeta@navigator.lv, marozols@yahoo.com, renka@inbox.lv,

More information

Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata

Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata Beyond Lassos: Complete SMT-Based ed Model Checking for d Automata Roland Kindermann, Tommi Junttila, and Ilkka Niemelä Aalto University Department of Information and Computer Science P.O.Box 15400, FI-00076

More information

Non-emptiness Testing for TMs

Non-emptiness Testing for TMs 180 5. Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to

More information

On the weakest failure detector ever

On the weakest failure detector ever On the weakest failure detector ever The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Guerraoui, Rachid

More information

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Borzoo Bonakdarpour and Sandeep S. Kulkarni Software Engineering and Network Systems Laboratory, Department of Computer Science

More information

Büchi Automata and Linear Temporal Logic

Büchi Automata and Linear Temporal Logic Büchi Automata and Linear Temporal Logic Joshua D. Guttman Worcester Polytechnic Institute 18 February 2010 Guttman ( WPI ) Büchi & LTL 18 Feb 10 1 / 10 Büchi Automata Definition A Büchi automaton is a

More information

Formal Verification of Systems-on-Chip

Formal Verification of Systems-on-Chip Formal Verification of Systems-on-Chip Wolfgang Kunz Department of Electrical & Computer Engineering University of Kaiserslautern, Germany Slide 1 Industrial Experiences Formal verification of Systems-on-Chip

More information

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1

Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Complexity Issues in Automated Addition of Time-Bounded Liveness Properties 1 Borzoo Bonakdarpour and Sandeep S. Kulkarni Software Engineering and Network Systems Laboratory, Department of Computer Science

More information

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata Control Synthesis of Discrete Manufacturing Systems using Timed Finite utomata JROSLV FOGEL Institute of Informatics Slovak cademy of Sciences ratislav Dúbravská 9, SLOVK REPULIC bstract: - n application

More information

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas

What is Temporal Logic? The Basic Paradigm. The Idea of Temporal Logic. Formulas What is Temporal Logic? A logical formalism to describe sequences of any kind. We use it to describe state sequences. An automaton describes the actions of a system, a temporal logic formula describes

More information

Approximation of δ-timeliness

Approximation of δ-timeliness Approximation of δ-timeliness Carole Delporte-Gallet 1, Stéphane Devismes 2, and Hugues Fauconnier 1 1 Université Paris Diderot, LIAFA {Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr 2 Université

More information

Computation Histories

Computation Histories 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation

More information

Modeling & Control of Hybrid Systems. Chapter 7 Model Checking and Timed Automata

Modeling & Control of Hybrid Systems. Chapter 7 Model Checking and Timed Automata Modeling & Control of Hybrid Systems Chapter 7 Model Checking and Timed Automata Overview 1. Introduction 2. Transition systems 3. Bisimulation 4. Timed automata hs check.1 1. Introduction Model checking

More information

Sequential programs. Uri Abraham. March 9, 2014

Sequential programs. Uri Abraham. March 9, 2014 Sequential programs Uri Abraham March 9, 2014 Abstract In this lecture we deal with executions by a single processor, and explain some basic notions which are important for concurrent systems as well.

More information

Lecture 11 Safety, Liveness, and Regular Expression Logics

Lecture 11 Safety, Liveness, and Regular Expression Logics Lecture 11 Safety, Liveness, and Regular Expression Logics Safety and Liveness Regular Expressions w-regular Expressions Programs, Computations, and Properties Guarantee, Response, and Persistance Properties.

More information

for System Modeling, Analysis, and Optimization

for System Modeling, Analysis, and Optimization Fundamental Algorithms for System Modeling, Analysis, and Optimization Stavros Tripakis UC Berkeley EECS 144/244 Fall 2013 Copyright 2013, E. A. Lee, J. Roydhowdhury, S. A. Seshia, S. Tripakis All rights

More information

Part I. Principles and Techniques

Part I. Principles and Techniques Introduction to Formal Methods Part I. Principles and Techniques Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr Introduction Text System and Software Verification : Model-Checking Techniques and Tools In this

More information

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France As Soon As Probable O. Maler, J.-F. Kempf, M. Bozga VERIMAG Grenoble, France March 15, 2013 O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France) As Soon As Probable March 15, 2013 1 / 42 Executive

More information

Spiking Neural Networks as Timed Automata

Spiking Neural Networks as Timed Automata Spiking Neural Networks as Timed Automata Giovanni Ciatto 1,2, Elisabetta De Maria 2, and Cinzia Di Giusto 2 1 Università di Bologna, Italy 2 Université Côté d Azur, CNRS, I3S, France Abstract In this

More information

Chapter 3: Linear temporal logic

Chapter 3: Linear temporal logic INFOF412 Formal verification of computer systems Chapter 3: Linear temporal logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 LTL: a specification

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

Clojure Concurrency Constructs, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014

Clojure Concurrency Constructs, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014 Clojure Concurrency Constructs, Part Two CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014 1 Goals Cover the material presented in Chapter 4, of our concurrency textbook In particular,

More information

Hybrid Control and Switched Systems. Lecture #1 Hybrid systems are everywhere: Examples

Hybrid Control and Switched Systems. Lecture #1 Hybrid systems are everywhere: Examples Hybrid Control and Switched Systems Lecture #1 Hybrid systems are everywhere: Examples João P. Hespanha University of California at Santa Barbara Summary Examples of hybrid systems 1. Bouncing ball 2.

More information

EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016

EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016 Discrete Event Simulation Stavros Tripakis University of California, Berkeley Stavros Tripakis (UC Berkeley)

More information

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Sanjit A. Seshia and Randal E. Bryant Computer Science Department Carnegie Mellon University Verifying Timed Embedded Systems

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page. 6.045J/18.400J: Automata, Computability and Complexity March 30, 2005 Quiz 2 Prof. Nancy Lynch Please write your name in the upper corner of each page. Problem Score 1 2 3 4 5 6 Total Q2-1 Problem 1: True

More information

Chapter 5: Linear Temporal Logic

Chapter 5: Linear Temporal Logic Chapter 5: Linear Temporal Logic Prof. Ali Movaghar Verification of Reactive Systems Spring 94 Outline We introduce linear temporal logic (LTL), a logical formalism that is suited for specifying LT properties.

More information

Structure Preserving Bisimilarity,

Structure Preserving Bisimilarity, Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP Rob van Glabbeek NICTA, Sydney, Australia University of New South Wales, Sydney, Australia September 2015 Milner:

More information

Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI

Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI Stavros Tripakis David Broman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report

More information

Automatic Synthesis of Distributed Protocols

Automatic Synthesis of Distributed Protocols Automatic Synthesis of Distributed Protocols Rajeev Alur Stavros Tripakis 1 Introduction Protocols for coordination among concurrent processes are an essential component of modern multiprocessor and distributed

More information

Johns Hopkins Math Tournament Proof Round: Automata

Johns Hopkins Math Tournament Proof Round: Automata Johns Hopkins Math Tournament 2018 Proof Round: Automata February 9, 2019 Problem Points Score 1 10 2 5 3 10 4 20 5 20 6 15 7 20 Total 100 Instructions The exam is worth 100 points; each part s point value

More information

2.5.2 Basic CNF/DNF Transformation

2.5.2 Basic CNF/DNF Transformation 2.5. NORMAL FORMS 39 On the other hand, checking the unsatisfiability of CNF formulas or the validity of DNF formulas is conp-complete. For any propositional formula φ there is an equivalent formula in

More information

University of California. Berkeley, CA fzhangjun johans lygeros Abstract

University of California. Berkeley, CA fzhangjun johans lygeros Abstract Dynamical Systems Revisited: Hybrid Systems with Zeno Executions Jun Zhang, Karl Henrik Johansson y, John Lygeros, and Shankar Sastry Department of Electrical Engineering and Computer Sciences University

More information

Decidability Results for Probabilistic Hybrid Automata

Decidability Results for Probabilistic Hybrid Automata Decidability Results for Probabilistic Hybrid Automata Prof. Dr. Erika Ábrahám Informatik 2 - Theory of Hybrid Systems RWTH Aachen SS09 - Probabilistic hybrid automata 1 / 17 Literatur Jeremy Sproston:

More information

Notes on Pumping Lemma

Notes on Pumping Lemma Notes on Pumping Lemma Finite Automata Theory and Formal Languages TMV027/DIT321 Ana Bove, March 5th 2018 In the course we see two different versions of the Pumping lemmas, one for regular languages and

More information

ECS 120 Lesson 15 Turing Machines, Pt. 1

ECS 120 Lesson 15 Turing Machines, Pt. 1 ECS 120 Lesson 15 Turing Machines, Pt. 1 Oliver Kreylos Wednesday, May 2nd, 2001 Before we can start investigating the really interesting problems in theoretical computer science, we have to introduce

More information

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at

MAD. Models & Algorithms for Distributed systems -- 2/5 -- download slides at MAD Models & Algorithms for Distributed systems -- /5 -- download slides at http://people.rennes.inria.fr/eric.fabre/ 1 Today Runs/executions of a distributed system are partial orders of events We introduce

More information

PSL Model Checking and Run-time Verification via Testers

PSL Model Checking and Run-time Verification via Testers PSL Model Checking and Run-time Verification via Testers Formal Methods 2006 Aleksandr Zaks and Amir Pnueli New York University Introduction Motivation (Why PSL?) A new property specification language,

More information

Theory of Computation. Theory of Computation

Theory of Computation. Theory of Computation Theory of Computation Theory of Computation What is possible to compute? We can prove that there are some problems computers cannot solve There are some problems computers can theoretically solve, but

More information

Prove proposition 68. It states: Let R be a ring. We have the following

Prove proposition 68. It states: Let R be a ring. We have the following Theorem HW7.1. properties: Prove proposition 68. It states: Let R be a ring. We have the following 1. The ring R only has one additive identity. That is, if 0 R with 0 +b = b+0 = b for every b R, then

More information

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms

Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Property Checking of Safety- Critical Systems Mathematical Foundations and Concrete Algorithms Wen-ling Huang and Jan Peleska University of Bremen {huang,jp}@cs.uni-bremen.de MBT-Paradigm Model Is a partial

More information

Lecture Notes on Loop Variants and Convergence

Lecture Notes on Loop Variants and Convergence 15-414: Bug Catching: Automated Program Verification Lecture Notes on Loop Variants and Convergence Matt Fredrikson Ruben Martins Carnegie Mellon University Lecture 9 1 Introduction The move to total correctness

More information

FPGA Based Tester Tool for Hybrid Real-Time Systems

FPGA Based Tester Tool for Hybrid Real-Time Systems FPGA Based Tester Tool for Hybrid Real-Time Systems Jan Krákora and Zdeněk Hanzálek {krakorj, hanzalek}@fel.cvut.cz Czech Technical University in Prague, Faculty of Electrical Engineering, Department of

More information

An Efficient Translation of Timed-Arc Petri Nets to Networks of Timed Automata

An Efficient Translation of Timed-Arc Petri Nets to Networks of Timed Automata An Efficient Translation of TimedArc Petri Nets to Networks of Timed Automata Joakim Byg, Kenneth Yrke Jørgensen, and Jiří Srba Department of Computer Science Aalborg University Selma Lagerlöfs Vej 300

More information

Decision Problems for Parametric Timed Automata

Decision Problems for Parametric Timed Automata Decision Problems for Parametric Timed Automata Étienne André 1,2, Didier Lime 1, and Olivier H. Roux 1 1 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, France 2 Université Paris 13, Sorbonne Paris

More information

Decentralized Failure Diagnosis of Discrete Event Systems

Decentralized Failure Diagnosis of Discrete Event Systems IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL., NO., 2005 1 Decentralized Failure Diagnosis of Discrete Event Systems Wenbin Qiu, Student Member, IEEE, and Ratnesh Kumar,

More information

Cellular Automata. Jason Frank Mathematical Institute

Cellular Automata. Jason Frank Mathematical Institute Cellular Automata Jason Frank Mathematical Institute WISM484 Introduction to Complex Systems, Utrecht University, 2015 Cellular Automata Game of Life: Simulator: http://www.bitstorm.org/gameoflife/ Hawking:

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Lower-Bound Constrained Runs in Weighted Timed Automata

Lower-Bound Constrained Runs in Weighted Timed Automata Lower-Bound Constrained Runs in Weighted Timed Automata Patricia Bouyer LSV ENS Cachan & CNRS Email: bouyer@lsv.ens-cachan.fr Kim G. Larsen Dept. Computer Science Aalborg. Email:kgl@cs.aau.dk Nicolas Markey

More information

Computation Tree Logic

Computation Tree Logic Computation Tree Logic Hao Zheng Department of Computer Science and Engineering University of South Florida Tampa, FL 33620 Email: zheng@cse.usf.edu Phone: (813)974-4757 Fax: (813)974-5456 Hao Zheng (CSE,

More information