Trki pritlikavih galaksij z Rimsko cesto

Size: px
Start display at page:

Download "Trki pritlikavih galaksij z Rimsko cesto"

Transcription

1 Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za fiziko SEMINAR II Trki pritlikavih galaksij z Rimsko cesto Rok Zaplotnik Mentor: dr. Tomaž Zwitter Februar, 2007 Povzetek Kozmologija hierarhičnih združitev pravi, da galaksije podobne naši nastanejo z združitvijo 5-20 manjših objektov s primerljivimi masami. Trki in združitve pa se pripetijo tudi po končani formaciji galaksije. Pritlikave galaksije, ki se razpršijo, pustijo sled zvezd in plina vzdolž svojih orbit. Te sledi imenujemo galaktični tokovi in so vidni predvsem v zvezdnem haloju. Metoda za odkrivanje teh tokov se zanaša na ohranitev zvezdine, na galaktični disk pravokotne, komponente vrtilne količine. S to metodo je bilo detektiranih nekaj satelitskih galaksij, ki so nam razkrile delček zgodovine naše Galaksije.

2 Kazalo 1 Uvod 2 2 Trki galaksij 2 3 Rimska cesta Zgradba Izbira koordinatnega sistema Galaktični tokovi Metode iskanja galaktičnih tokov Rezultati te metode Plimski tok v Strelcu Simulacija gravitacijskih tokov Galaktični gravitacijski potencial Enačbe gibanja Zaključek 13 1

3 1 Uvod Galaksije so velikanska nebesna telesa sestavljena iz plinov, medzvezdne snovi, temne snovi in od 10 7 do zvezd. Galaksije ločimo po obliki na eliptične, spiralne, spiralne s prečko ter nepravilne. [1] Nekatere nepravilne galaksije so posledica trka dveh galaksij, naprimer galaksiji Ptičja glava in Miši prikazani na Slikah 2,3. Trkov pa ne doživljajo le nepravilne galaksije. Kljub temu, da je Rimska cesta spiralna galaksija s prečko, je v preteklosti doživela kar nekaj manjših trkov. Magellanov rep se vije 180kpc za Magellanovima oblakoma in je posledica trka oblakov z Rimsko cesto oziroma njihovega plimskega srečanja. Odkril ga je Mathewson leta 1974 z opazovanjem oblakov vodika H I. Dolge filamente vodika H I, ki se raztezajo od Malega Magellanovega oblaka do Južnega galaktičnega pola in še dlje, je poimenoval Magellanov tok (Slika 1). Nekateri procesi združevanja pa se dogajajo tudi v sedanjosti. Npr. Pritlikava galaksija Strelec se združuje z našo Galaksijo. Slika 1: Levo: Slika prikazuje Magellanov tok oz. dolge filamente vodika H I, ki se raztezajo od Malega Magellanovega oblaka do Južnega galaktičnega pola in še dlje, v galaktičnih koordinatah [2]. Desno: Umetniška skica Magellanovega repa, ki se vije za Magellanovima oblakoma. [3] 2 Trki galaksij Kot sem omenil v uvodu, so nekatere nepravilne galaksije posledica trkov dveh galaksij. Slika 2 prikazuje galaksijo imenovano Ptičja glava, kjer je manjša galaksija, na sliki komaj še vidna desno spodaj, trčila v večjo spiralno galaksijo, katere jedro je še nedotaknjeno. Modri kljun in belo-modro perje 2

4 prikazuje pot manjše galaksije skozi večjo. Slika 3 pa prikazuje trk dveh spiralnih galaksij oz. galaksijo NGC4676 imenovano Miši, kjer sta dobro vidna repa zvezd in plinov. Podoben trk se lahko zgodi med Rimsko cesto ter našo najbližjo galaksijo Andromedo (M31), ki je od nas oddaljena 2.5 miljonov svetlobnih let in se nam približuje z relativno hitrostjo 120 km/s. Trčili bosta verjetno čez približno šest miljard let. Da se bosta zagotovo trčili pa ne moremo reči, saj prečnih komponent (tangencialne) hitrosti Andromede glede na našo Galaksijo ne poznamo, poznamo le radialno hitrost. Slika 2: Trk manjše galaksije (desno spodaj) z večjo spiralno galksijo NGC6745 imenovano Ptičja glava. [4] Slika 3: Galaksija NGC4676 imenovana Miši oz. trk dveh skoraj enakih spiralnih galaksij, približno 160 miljonov let po njunem najbližjem srečanju. Čez približno 300 miljonov let se bosta združili v eno večjo galaksijo. [4] 3

5 3 Rimska cesta 3.1 Zgradba Naša Galaksija imenovana Rimska cesta je spiralna galaksija s prečko. Sestavljena je iz tankega diska z premerom približno 30 kpc, iz osrednje zgostitve z radijem okoli 3 kpc ter iz haloja (Slika 4). Galaktični halo je sestavljen iz zvezdnega haloja z radijem okoli 50 kpc ter iz haloja temne snovi z radijem kpc. 1 kpc = m. Slika 4: Skica zgradbe Rimske ceste.[5] Rimska cesta je sestavljena iz okoli 1000 planetarnih meglic, okoli 500 kroglastih kopic, okoli 350 pulzarjev, okoli razsutih kopic ter okoli 200 miljard zvezd. Iz opazovanj drugih galaksij smo spoznali, da so nekatere zvezde, ki so v sedanjosti del te galaksije, nekoč pripadale drugi galaksiji. Npr. Manjša galaksija je trčila v večjo in se z njo združila. Sedaj se nam poraja vprašanje, ali je naša galaksija že doživela kak trk in katere zvezde so iz drugih galaksij? 3.2 Izbira koordinatnega sistema Če želimo ugotoviti od kod določena zvezda izvira, moramo poznati njeno dinamiko. Ko govorimo o dinamiki te zvezde, pa moramo poznati njen položaj (3 komponente) ter njeno hitrost (3 komponente). Poznati moramo torej 6 komponent za vsako zvezdo. Ker so vsa opazovanja narejena na Zemlji ali v njeni bližini, so dobljeni podatki o zvezdi relativni glede na Zemljo. 4

6 Poznamo torej zvezdino oddaljenost od Zemlje, pozicijo na nebu ter njeno relativno hitrost glede na Zemljo. Podatki so odvisni od gibanja Zemlje, ki se giblje okrog Sonca, ta pa kroži okrog središča Galaksije. Glede na to je smiselno vpeljati drug koordinatni sistem. Najbolj primeren je cilindrični koordinatni sistem z izhodiščem v centru galaksije, ker je Rimska cesta spiralna galaksija. Radialna koordinata je r, kotna koordinata θ kaže v smeri rotacije Slika 5: Cilindrični koordinatni sistem s središčem v centru Galaksije [1]. galaksije, vertikalna koordinata z pa kaže v smeri galaktičnega severa, Slika 5. Hitrosti zvezde v teh koordinatah so v r = dr dt, v θ = r dθ dt, v z = dz dt. (1) Pridobljene podatke moramo torej preračunati najprej v galaktične koordinate s središčem v Soncu in potem v cilindrične koordinatne s središčem v galaktičnem centru. Za izračun te transformacije moramo poznati oddaljenost Sonca od središča Galaksije ter njegovo krožilno hitrost. Solarna galaktocentrična oddaljenost je R = (8.0±0.5)kpc, krožilna hitrost pa v θ = 220km/s. Ko pretransformiramo vse podatke neke zvezde v (r, θ, z, v r, v θ, v z ), se lahko lotimo raziskovanja, ali je ta zvezda del naše Galaksije, ali del toka delcev, ki je posledica galaktičnega trka z drugo galaksijo. 4 Galaktični tokovi Hierarhična teorija formacij struktur v Vesolju predlaga, da so galaksije rezultat združitev in akrecij manjših gradbenih blokov. Ti dogodki naj bi pustili nek fosilni zapis v današnjih delih Rimske ceste, še posebaj v njenem zvezdnem haloju. Ko je satelitska galaksija zmotena, gravitacijska sila zvezd večje galaksije deluje na zvezde satelitske galaksije, zato se nekaterim zvezdam 5

7 hitrost poveča, druge pa začnejo zaostajati (hitrost se jim zmanjša zaradi dinamičnega trenja). Oblaki plina manjše galaksije trčijo ob oblake plina večje, in se zaradi tega po nekem času ustavijo, kar pa ne velja za zvezde. Zvezde ujete galaksije ne trčijo z zvezdami večje, saj je velikost zvezd zelo majhna v primerjavi s povprečno medsebojno oddaljenostjo zvezd. Tako pritlikava galaksija pusti sled zvezd in plina vzdolž svoje orbite [6]. Te sledi imenujemo galaktični tokovi. 4.1 Metode iskanja galaktičnih tokov Obstaja nekaj metod za detektiranje gibajočih se grup. The Great Circle Counts method ali G3C metoda (Johnston et al. 1995) uporablja le pozicijo zvezde na nebu in dejstvo, da sateliti, ki se gibljejo po orbitah v zunanjem haloju (del haloja z galaktocentrično oddaljenostjo R > 15 kpc), ohranijo orientacijo ravnine gibanja. Tako se njihove ruševine razpršijo po glavnih krogih na nebu, če jih opazujemo iz Galaktičnega centra. Metodo iskanja galaktičnih tokov v Sončevi soseščini pa sta predlagala Hogerwert in Aguilar leta 1998 [7]. Ta metoda uporablja le paralakso in lastno gibanje, ne potrebuje pa radialne hitrosti. Metoda predvideva, da imajo vse zvezde, ki pripadajo istemu sistemu, enak vektor hitrosti. Po Lynden-Bellovi metodi (1995) pa galaktične tokove detektiramo s pomočjo pozicij zvezd na nebu ter njihovih radialnih hitrosti. Ta metoda je povezala nekatere kroglaste kopice z razpršenimi pritlikavimi galaksijami [6]. Vse te metode pa so vprašljive ali celo neuporabne v notranjem delu haloja, saj je tam Galaktični potencial močno osno simetričen in ruševine ne ostanejo v isti ravnini. Slika 6: Galaktocentrična nebna projekcija simuliranega satelita. Ruševine so razpršene skoraj po celem nebu, zato galaktičnega toka ne moremo detektirati samo po položaju zvezde. [6] 6

8 Na Sliki 6 je prikazana projekcija satelita po 8-ih miljardah let. Videti ni nobene močne kotne korelacije, ruševine so razpršene po skoraj celem nebu. Satelit si lahko predstavljamo kot skupek delcev z zelo podobnimi konstantami gibanja (energijo, vrtilno količino), Slika 7. Ker se te količine skoraj ohranjajo, so ti skupki vidni tudi po več obhodih. Slika 7: Začetna porazdelitev delcev za 10 simuliranih satelitov, v prostoru (E, L, L z ). Vsak skupek predstavlja en satelit. Levi graf (L z -z komponenta vrtilne količine,e-energija), srednji (L-vrtilna količina, E-energija), desni graf (L z -z komponenta vrtilne količine, L celotna vrtilna količina) [6] Če zapišemo Lagranževo funkcijo za delec v Galaktičnem potencialu, ki je osno simetričen L = T V L = 1 2 m(ṙ2 + r 2 θ2 + ż 2 ) V (r, z), (2) vidimo, da je θ ciklična koordinata in je zato z komponenta vrtilne količine konstanta gibanja. Metoda je učinkovita, kljub temu, da se velikost vrtilne količine v osno simetričnem potencialu ne ohranja popolnoma, saj obstajajo določene motnje, npr. dinamično trenje. Slika 8 prikazuje začetno porazdelitev zvezd za 10 satelitov v faznem prostoru vrtilne količine ter porazdelitev istih satelitov 13.5 G let po ujetju. 7

9 Slika 8: Začetna porazdelitev zvezd za 10 simuliranih satelitov v faznem prostoru vrtilne količine ter porazdelitev istih satelitov 13.5 G let po ujetju. Desni graf vključuje tudi predvidene napake opazovanj projekta GAIA (Tabela 1). [6] Tabela 1: Predvidena natančnost paralakse (σ π, v µas) in lastnega gibanja (σ µ, v µas yr 1 ) kot funkcija V magnitude za projekt GAIA. Natančnost radialne hitrosti je 3 km/s [6] σ π σ µ Če poznamo položaje zvezd ter vektorje hitrosti zvezd v cilindričnem koordinatnem sistemu s središčem v galaktičnem centru (r, θ, z, v r, v θ, v z ), potem je ta metoda zelo učinkovita pri iskanju galaktičnih tokov. Število na ta način zaznanih skupkov nam bo povedalo celotno število akrecij/združitev, saj metoda ni uporabna le lokalno kot druge metode [6]. 8

10 4.2 Rezultati te metode S to metodo zaznamo predvsem objekte, ki so padli v dokaj statičen Galaktični potencial, od nekaj miljard let po formaciji galaksije naprej [6]. Nekaj takih objektov je bilo že odkritih, saj je metoda učinkovita kljub temu, da Galaktični potencial ni strogo osno simetričen. Na Sliki 9 vidimo skupek zvezd v prostoru (L z, L ) označen s kvadratom. Skupek prikazuje zvezde, ki so del istega toka. Slika 9: Porazdelitev zvezd z oddaljenostjo D < 2.5 kpc od Sonca v prostoru vrtilne količine (L z, L = (L 2 x + L 2 y) 1/2 ). Zgornji graf prikazuje zvezde z [F e/h] 1.6, spodnji pa zvezde z 1.6 < [F e/h] 1. Kvadrat označuje skupek oz. tok. Pravokotnik pa označuje le verjetno sled, ki naj bi bila povezana s skupkom. [8] S pomočjo te metode so Navarro, Helmi in Freeman leta 2004 pokazali, da je 9

11 zvezda Arktur (Arcturus - α Volarja) - tretja najsvetlejša zvezda na nočnem nebu, nekoč pripadala drugi galaksiji in je danes le del razpršenega satelita. [9] 4.3 Plimski tok v Strelcu Zvezdni tokovi v haloju Rimske ceste, ustvarjeni z akrecijo manjših pritlikavih galaksij, so napoved kozmologije hierarhičnih združitev. Najbolj znan in najbolje raziskan galaktični tok je plimski tok v Strelcu (Sagittarius stream). Plimski se imenuje zato, ker se je pritlikava galaksija Strelec deformirala zaradi plimskih sil. Razpršeno pritlikavo galaksijo so odkrili Ibata, Gilmore in Irwin leta Sestavljena je predvsem iz srednje starih zvezd (med 6 in 9 Glet, Bellazzini et al. 2006) [10]. Najboljši posnetek celotnega toka je bil dobljen s podatki M velikank Two Micron All-Sky Survey-a(2MASS), Majewski et al Na Sliki 10 je dobro viden tok v Strelcu, ki je pravokoten na disk Rimske ceste. Slika 10: Panoramski pogled galaktičnega toka v Strelcu. Združeni sta sliki M velikank 2MASS in zvezd slikanih z SDSS (Sloan Digital Sky Survey). Na Sliki se vidita tudi dve veji tega toka, označeni z A in B. (x os - rektascenzija, y os - deklinacija) [10] 5 Simulacija gravitacijskih tokov Ko je galaktični tok odkrit, se začne raziskovanje njegove dinamike. S podatki zvezd tega toka lahko izračunamo tudi obliko haloja temne snovi v naši Galaksiji, ki naj bi bil skoraj sferičen [11]. Izračunamo lahko tudi, kje in kdaj je pritlikava galaksija vstopila v Rimsko cesto. Za tak izračun, oz. za simulacijo nazaj v preteklost pa moramo poznati galaktični potencial. 10

12 5.1 Galaktični gravitacijski potencial Kot smo že omenili je naša galaksija sestavljena iz diska, osrednje zgostitve (bulge) ter haloja, prikazano na Sliki 4. Galaktični potencial je torej enak vsoti potencialov teh delov. Za potencial diska se največkrat uporablja potencial, imenovan po njunih odkriteljih Masanori Miyamotu ter Ryuzaburu Nagaiju (1975). Miyamoto - Nagai potencial je [12] GM disk Φ disk = r 2 + (a +, (3) z 2 + b 2 ) 2 kjer je G gravitacijska konstanta, masa diska je ter razdalji M diska = M, a = 6.5 kpc, b = 0.26 kpc. Potencial osrednje zgostitve, angleško bulge, najbolje opisuje tako imenovan Hernquistov potencial (Hernquist 1990): kjer je masa osrednje zgostitve [12] Φ bulge = GM bulge r + c, (4) M bulge = M, c = 0.7 kpc. Zadnji del pa predstavlja logaritemski potencial haloja iz temne snovi [11] kjer je Φ halo = v 2 halo ln (r 2 + z 2 /q 2 + d 2 ), (5) v halo = km/s, d = 12 kpc, q pa je parameter, ki lahko variira med 0.8 in 1.25 in nam pove obliko haloja (q < 1 - sploščen sferoid). 11

13 5.2 Enačbe gibanja Enačbe gibanja za neko zvezdo so dr dt = Φ g, (6) kjer je φ g galaktični potencial, ki je seštevek potenciala diska, osrednje zgostitve in haloja Φ g = Φ disk + Φ bulge + Φ halo, pa je gradient v cilindričnih koordinatah. S pomočjo numerične simulacije lahko dobimo radij orbite v apocentru in pericentru, maksimalno višino nad ravnino diska in orbitalno periodo galaktičnega toka [13]. Rezultati ene izmed tipičnih simulacij izvedenih za plimski tok v Strelcu so prikazani na Sliki 11. Slika 11: Levo: Slika simulacije plimskega toka v Strelcu v x, z ravnini. z = 0 je ravnina diska naše Galaksije. Desno: Primerjava simuliranega toka v Strelcu in pravega. Veji A in B v simuliranem toku (srednja slika) se dobro skladata z vejama, ki sta vidni na posnetku SDSS. [Za simulacijo je bil uporabljen Miyamoto-Nagai potencial, Hernquistov potencial in logaritemski halo s q = 1.05 ter masa galaksije Strelec M Sgr = 10 8 M.] [14] Na sliki različne barve delcev pomenijo različen čas zapustitve glavnega 12

14 toka (zlata: pred <4 G leti, rdeča: med 4 in 5.7 G leti, zelena: med 5.7 in 7.4 G leti, modra: pred >7.4 G leti). Rumena krivulja kaže preteklo obnašanje orbite Strelca, oranžna pa orbito toka v prihodnosti. Na levi sliki so vidne tudi štiri veje plimskega toka v Strelcu (A,B,C,D). Desne slike pa prikazujejo isti del neba v rektascenziji in deklinaciji. Prva je slika toka v Strelcu dobljena s podatki SDSS, drugi dve pa sta rezultat simulacije. Srednja predstavlja zvezde, ki so od Sonca oddaljene manj kot 20 kpc, spodnja pa zvezde, ki so od nas oddaljene več kot 20 kpc [14]. 6 Zaključek Metoda za detektiranje galaktičnih tokov s pomočjo vrtilne količine se je izkazala za učinkovito, saj je bilo z njo odkritih kar nekaj teh tokov. Najbolj znan in tudi najbolj raziskan je plimski tok v Strelcu. S podatki zvezd tega toka lahko izračunamo obliko haloja temne snovi. Numerične simulacije toka pa nam povedo njegov izvor in nam s tem pomagajo razumeti nastanek naše Galaksije. S pomočjo bolj natančnih meritev in predvsem z večjim številom meritev (GAIA, RAVE) pa bodo v prihodnosti te simulacije boljše in zgodovina Rimske ceste s tem bolje razkrita. Literatura [1] Carrol, B. W., Ostlie, D. A.: An Introduction to Modern Astrophysics, Addison-Wesley Publishing Company, Inc [2] Mathewson, D. S., et al.: The Magellanic stream, The Astrophysical Journal, Vol. 190, 1974 [3] Astronomy Picture of the Day, [4] Hubble Site - News Center, [5] Astrophysics and Image Processing, e.html [6] Helmi, A., Zhao, H., de Zeeuw, T.: Detecting Halo Streams with GAIA, The Third Stromolo Symposium: The Galactic Halo, APS Conference Series, Vol. 165,

15 [7] Hoogerwerf, R., Aguilar, L. A. : A New Method for Identification of Moving Groups in the HIPPARCOS Database, Bulletin of the American Astronomical Society, Vol. 30, 1998 [8] Chiba, M., Beers, T. C.: Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars, The Astronomical Journal, Vol. 119, 2000 [9] Navarro, J. F., Helmi, A., Freeman, K. C.: The Extragalactic Origin of the Arcturus Group, The Astrophysical Journal, Vol. 601, 2004 [10] Belkurov, V., et al.: The Field of Streams: Sagittarius and Its Siblings, The Astrophysical Journal, Vol. 642, 2006 [11] Helmi, A.: Velocity trends in the debris of Sagittarius and the shape of the dark-matter halo of the Galaxy, The Astrophysical Jurnal, Vol. 610, 2004 [12] Helmi, A., White, S. D. M.: Simple dynamical models of the Sagittarius dwarf galaxy, Monthly Notices of the Royal Astronomical Society, Vol. 323, 2001 [13] Helmi, A., et al.: Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way, astro-ph/ [14] Fellhauer, M., Belkurov, V., et al.: The Origin of the Bifurcation in the Sagittarius Stream, The Astrophysical Journal, Vol. 651, 2006 [15] Belkurov, V., et al.: An Orphan in the Field of Streams, astroph/ [16] Majewski, S. R., et al.: A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms, The Astrophysical Journal, Vol. 599, 2003 [17] Helmi, A., et al.: Pieces of the puzzle: ancient substructure in the Galactic disc, Monthly Notices of the Royal Astronomical Society, Vol. 365,

Galactic dynamics reveals Galactic history

Galactic dynamics reveals Galactic history Galactic dynamics reveals Galactic history Author: Ana Hočevar Advisor: dr. Tomaž Zwitter Department of Physics, University of Ljubljana March 18, 2006 Abstract Galaxy formation theory which predicts canibalism

More information

Evolucija dinamike Zemljine precesije

Evolucija dinamike Zemljine precesije Univerza v Ljubljani Fakulteta za matematiko in fiziko oddelek za fiziko Evolucija dinamike Zemljine precesije Avtor: Ivo Krajnik Ljubljana, 15. marec 2011 Povzetek Bistvo tega seminarja je v sklopu klasične

More information

Stellar Streams and Their Importance to Galaxy Formation and Evolution

Stellar Streams and Their Importance to Galaxy Formation and Evolution Department of Physics, Engineering Physics and Astronomy, Queen s University Stellar Streams and Their Importance to Galaxy Formation and Evolution Nicholas Fantin December 9th, 2014 ABSTRACT The Sloan

More information

UMa II and the Orphan Stream

UMa II and the Orphan Stream UMa II and the Orphan Stream M. Fellhauer The Cambridge Mafia Field of Streams Belokurov et al. 2006 A short The Bifurcation of the Sagittarius stream: (a typical Sagittarius like simulation) Fellhauer

More information

Relics of the hierarchical assembly of the Milky Way

Relics of the hierarchical assembly of the Milky Way Mem. S.A.It. Suppl. Vol. 5, 83 c SAIt 2004 Memorie della Supplementi Relics of the hierarchical assembly of the Milky Way M. Bellazzini INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127

More information

The Accretion History of the Milky Way

The Accretion History of the Milky Way The Accretion History of the Milky Way Julio F. Navarro The Milky Way as seen by COBE Collaborators Mario Abadi Amina Helmi Matthias Steinmetz Ken Ken Freeman Andres Meza The Hierarchical Formation of

More information

ČRNA LUKNJA V SREDIŠČU NAŠE GALAKSIJE

ČRNA LUKNJA V SREDIŠČU NAŠE GALAKSIJE SEMINAR 1 ČRNA LUKNJA V SREDIŠČU NAŠE GALAKSIJE Avtor: Nick Štorgel 28112014 Mentor: Dr.Andreja Gomboc Povzetek Seminar predstavi odkritje nadvse edinstvenega objekta v središču naše galaksije - supermasivne

More information

New insights into the Sagittarius stream

New insights into the Sagittarius stream New insights into the Sagittarius stream EWASS, Turku July 8th, 213 Martin C. Smith Shanghai Astronomical Observatory http://hubble.shao.ac.cn/~msmith/ Sagittarius dwarf spheroidal(ish) Since its discovery

More information

TOPLJENEC ASOCIIRA LE V VODNI FAZI

TOPLJENEC ASOCIIRA LE V VODNI FAZI TOPLJENEC ASOCIIRA LE V VODNI FAZI V primeru asociacij molekul topljenca v vodni ali organski fazi eksperimentalno določeni navidezni porazdelitveni koeficient (P n ) v odvisnosti od koncentracije ni konstanten.

More information

ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA

ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA UDK621.3:(53+54+621 +66), ISSN0352-9045 Informaclje MIDEM 3~(~UU8)4, Ljubljana ENERGY AND MASS SPECTROSCOPY OF IONS AND NEUTRALS IN COLD PLASMA Marijan Macek 1,2* Miha Cekada 2 1 University of Ljubljana,

More information

ENAČBA STANJA VODE IN VODNE PARE

ENAČBA STANJA VODE IN VODNE PARE ENAČBA STANJA VODE IN VODNE PARE SEMINARSKA NALOGA PRI PREDMETU JEDRSKA TEHNIKA IN ENERGETIKA TAMARA STOJANOV MENTOR: IZRED. PROF. DR. IZTOK TISELJ NOVEMBER 2011 Enačba stanja idealni plin: pv = RT p tlak,

More information

Phys/Astro 689: Lecture 11. Tidal Debris

Phys/Astro 689: Lecture 11. Tidal Debris Phys/Astro 689: Lecture 11 Tidal Debris Goals (1) We ll explore whether we can trace the accretion events that should have formed the Milky Way. (2) We ll discuss the impact of tidal debris on direct detection

More information

Mapping the Galactic halo with main-sequence and RR Lyrae stars

Mapping the Galactic halo with main-sequence and RR Lyrae stars EPJ Web of Conferences 19, 02002 (2012) DOI: 10.1051/epjconf/20121902002 C Owned by the authors, published by EDP Sciences, 2012 Mapping the Galactic halo with main-sequence and RR Lyrae stars B. Sesar

More information

Chasing Ghosts in the Galactic Halo

Chasing Ghosts in the Galactic Halo Chasing Ghosts in the Galactic Halo L. Aguilar, A. Brown & H. Velázquez Inst. de Astronomía, UNAM (México) & Leiden Observatory (Netherlands) The punch line... When looking for something, sometimes what

More information

Chasing Ghosts in the Galactic Halo

Chasing Ghosts in the Galactic Halo Chasing Ghosts in the Galactic Halo L. Aguilar, A. Brown & H. Velázquez Inst. de Astronomía, UNAM (México) & Leiden Observatory (Netherlands) When looking for something, sometimes what you get, is not

More information

arxiv:astro-ph/ v1 5 Nov 2001

arxiv:astro-ph/ v1 5 Nov 2001 The Dynamics, Structure & History of Galaxies ASP Conference Series, Vol. nnn, 2002 G. S. Da Costa & E. M. Sadler, eds Star Streams in the Milky Way Halo arxiv:astro-ph/0111097v1 5 Nov 2001 Heather Morrison

More information

Jupiter. Ime in priimek: Doman Blagojević Šola: O.Š.Antona Martina Slomška Vrhnika Razred: 8.a/8 Predmet: Fizika Mentor: prof.

Jupiter. Ime in priimek: Doman Blagojević Šola: O.Š.Antona Martina Slomška Vrhnika Razred: 8.a/8 Predmet: Fizika Mentor: prof. Jupiter Seminarska naloga Ime in priimek: Doman Blagojević Šola: O.Š.Antona Martina Slomška Vrhnika Razred: 8.a/8 Predmet: Fizika Mentor: prof. Primož Trček Copyright by: Doman Blagojević www.cd copy.tk

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

Letter to the Editor Evolution of the Galactic potential and halo streamers with future astrometric satellites

Letter to the Editor Evolution of the Galactic potential and halo streamers with future astrometric satellites Astron. Astrophys. 348, L49 L53 (1999) Letter to the Editor Evolution of the Galactic potential and halo streamers with future astrometric satellites ASTRONOMY AND ASTROPHYSICS HongSheng Zhao 1, Kathryn

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

Abundance distribution in the Galactic thick disk

Abundance distribution in the Galactic thick disk Abundance distribution in the Galactic thick disk omas Bensby Lund Observatory, Department of Astronomy and eoretical Physics Discovery of thick disks (Burstein 1979, ApJ, 234, 829) Discovery of the Galactic

More information

Reševanje problemov in algoritmi

Reševanje problemov in algoritmi Reševanje problemov in algoritmi Vhod Algoritem Izhod Kaj bomo spoznali Zgodovina algoritmov. Primeri algoritmov. Algoritmi in programi. Kaj je algoritem? Algoritem je postopek, kako korak za korakom rešimo

More information

Attempt to prepare seasonal weather outlook for Slovenia

Attempt to prepare seasonal weather outlook for Slovenia Attempt to prepare seasonal weather outlook for Slovenia Main available sources (ECMWF, EUROSIP, IRI, CPC.NCEP.NOAA,..) Two parameters (T and RR anomally) Textual information ( Met Office like ) Issued

More information

Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way

Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way Amina Helmi, Simon D.M. White, P. Tim de Zeeuw and HongSheng Zhao Leiden Observatory, P.O. Box 9513, 2300 RA Leiden,

More information

Distribution of Mass in the Milky Way Galaxy, Leiden, July Laura V. Sales. Kapteyn Astronomical Institute, Groningen, The Netherlands

Distribution of Mass in the Milky Way Galaxy, Leiden, July Laura V. Sales. Kapteyn Astronomical Institute, Groningen, The Netherlands Distribution of Mass in the Milky Way Galaxy, Leiden, 13-17 July 2009 Laura V. Sales Kapteyn Astronomical Institute, Groningen, The Netherlands Outline - Brief review of thick disk formation scenarios:

More information

arxiv: v1 [astro-ph.ga] 17 Jun 2009

arxiv: v1 [astro-ph.ga] 17 Jun 2009 Discovery of a New, Polar-Orbiting Debris Stream in the Milky Way Stellar Halo Heidi Jo Newberg 1, Brian Yanny 2, & Benjamin A. Willett 1 arxiv:0906.3291v1 [astro-ph.ga] 17 Jun 2009 ABSTRACT We show that

More information

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch

Milky Way Companions. Dave Nero. February 3, UT Astronomy Bag Lunch UT Astronomy Bag Lunch February 3, 2008 Outline 1 Background 2 Cats and Dogs, Hair and a Hero 3 Theoretical Evolution of the Galactic Halo Outline Background 1 Background 2 Cats and Dogs, Hair and a Hero

More information

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012 The HERMES project Reconstructing Galaxy Formation Ken Freeman RSAA, ANU The metallicity distribution in the Milky Way discs Bologna May 2012 HERMES is a new high-resolution fiber-fed multi-object spectrometer

More information

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae The Geometry of Sagittarius Stream from PS1 3π RR Lyrae Nina Hernitschek, Caltech collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen Swinburne-Caltech Workshop: Galaxies and their Halos, Sept.

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

The Milky Way and Near-Field Cosmology

The Milky Way and Near-Field Cosmology The Milky Way and Near-Field Cosmology Kathryn V Johnston (Columbia University) Collaborators (theorists): James S Bullock (Irvine), Andreea Font (Durham), Brant Robertson (Chicago), Sanjib Sharma (Columbia),

More information

Evidence for coupling between the Sagittarius dwarf galaxy and the Milky Way warp

Evidence for coupling between the Sagittarius dwarf galaxy and the Milky Way warp Evidence for coupling between the Sagittarius dwarf galaxy and the Milky Way warp Jeremy Bailin Steward Observatory, University of Arizona 933 North Cherry Ave, Tucson, AZ 85721, USA ABSTRACT Using recent

More information

Probing GCs in the GC region with GLAO

Probing GCs in the GC region with GLAO Probing GCs in the GC region with GLAO Masashi Chiba (Tohoku University) AO beginner! Life is good! Subaru/GLAO in Galactic Archaeology Resolved stars provide important information on galaxy formation

More information

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars Properties of Nearby Stars Most in orbit with the Sun around Galactic Center Stellar Kinematics Reveal Groups of Stars with Common Space Motion (Moving

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

JEDRSKA URA JAN JURKOVIČ. Fakulteta za matematiko in fiziko Univerza v Ljubljani

JEDRSKA URA JAN JURKOVIČ. Fakulteta za matematiko in fiziko Univerza v Ljubljani JEDRSKA URA JAN JURKOVIČ Fakulteta za matematiko in fiziko Univerza v Ljubljani Natančnost časa postaja vse bolj uporabna in pomembna, zato se rojevajo novi načini merjenja časa. Do danes najbolj natančnih

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

for Astrometry in the 21st Century William van Altena

for Astrometry in the 21st Century William van Altena The Opportunities and Challenges for Astrometry in the 21st Century William van Altena Yale University, New Haven, CT USA (With slides from Elliott Horch, Dana Casetti-Dinescu and Daniel Harbeck) ADeLA

More information

Substructure in the Galaxy

Substructure in the Galaxy Substructure in the Galaxy Amina Helmi Kapteyn Astronomical Institute Groningen, NL Is this how our Galaxy formed? Jeffrey Gardner Hierarchical paradigm Main characteristic of model: mergers Can we find

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE IAU Symposium 330 Nice, 27. April 2017 Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE Wilma Trick (MPIA, Heidelberg) Hans-Walter Rix (MPIA) Jo Bovy (Uni Toronto) Open Questions

More information

Module 3: Astronomy The Universe Topic 2 Content: The Milky Way Galaxy Presentation Notes

Module 3: Astronomy The Universe Topic 2 Content: The Milky Way Galaxy Presentation Notes On a clear night, you can go outside and view the Moon and the stars scattered throughout the night sky. At times, you can also see neighboring planets. When you look at the sky and these objects, almost

More information

arxiv: v1 [astro-ph] 1 Oct 2007

arxiv: v1 [astro-ph] 1 Oct 2007 Draft version August 4, 28 Preprint typeset using L A TEX style emulateapj v. 1/9/6 SIGNATURES OF ΛCDM SUBSTRUCTURE IN TIDAL DEBRIS Jennifer M. Siegal-Gaskins 1,2 and Monica Valluri 1,3,4 Draft version

More information

Today in Astronomy 142: the Milky Way

Today in Astronomy 142: the Milky Way Today in Astronomy 142: the Milky Way The shape of the Galaxy Stellar populations and motions Stars as a gas: Scale height, velocities and the mass per area of the disk Missing mass in the Solar neighborhood

More information

arxiv:astro-ph/ v1 19 Nov 1999

arxiv:astro-ph/ v1 19 Nov 1999 Where are the First Stars now? Simon D.M. White & Volker Springel Max-Planck-Institute for Astrophysics, Garching bei München, Germany arxiv:astro-ph/9911378v1 19 Nov 1999 Abstract. We use high-resolution

More information

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

Gaia-LSST Synergy. A. Vallenari. INAF, Padova Gaia-LSST Synergy A. Vallenari INAF, Padova The Galaxy view Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics However the specific

More information

Smoking Gun in the Milky Way Galaxy: Dwarf Galaxies and Open Clusters

Smoking Gun in the Milky Way Galaxy: Dwarf Galaxies and Open Clusters : Dwarf Galaxies and Open Clusters 1 March, 2015 Abstract Although many open clusters (OCs) have been found to date, little has been done with them to investigate problems and questions about the Milky

More information

The tidal stirring model and its application to the Sagittarius dwarf

The tidal stirring model and its application to the Sagittarius dwarf The tidal stirring model and its application to the Sagittarius dwarf Ewa L. Łokas Copernicus Center, Warsaw Stelios Kazantzidis (Ohio State) Lucio Mayer (University of Zurich) Collaborators: Steven Majewski

More information

Radial Velocity Surveys. Matthias Steinmetz (AIP)

Radial Velocity Surveys. Matthias Steinmetz (AIP) Radial Velocity Surveys Matthias Steinmetz (AIP) The Galactic case for RV surveys Information on how galaxies form is locked in n the phase-space (position,velocities) Information is locked in stars (abundances)

More information

Renegades in the Solar neighborhood

Renegades in the Solar neighborhood Title Renegades in the Solar neighborhood Ana Bonaca ITC Fellow Harvard University // Charlie Conroy // // Andrew Wetzel // Origin of the halo stars: In situ Eggen, Lynden-Bell & Sandage (1962) Accretion

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

Signatures of star streams in the phase space distribution of nearby halo stars ABSTRACT

Signatures of star streams in the phase space distribution of nearby halo stars ABSTRACT A&A 474, 857 861 (2007) DOI: 10.1051/0004-6361:20077463 c ESO 2007 Astronomy & Astrophysics Signatures of star streams in the phase space distribution of nearby halo stars C. Dettbarn 1, B. Fuchs 1,C.Flynn

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 12 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 13. September 2017 1 / 77 Overview part 12 The Galaxy Historical Overview

More information

Exploring the Structure of the Milky Way with WFIRST

Exploring the Structure of the Milky Way with WFIRST Exploring the Structure of the Milky Way with WFIRST Heidi Jo Newberg Rensselaer Polytechnic Institute Simulation: Stefan Gottlöber/AIP Image Credit: Heidi Newberg Milky Way Structure we want it all: The

More information

Modeli dinamičnega vzgona letalskih kril. Drugi del.

Modeli dinamičnega vzgona letalskih kril. Drugi del. Modeli dinamičnega vzgona letalskih kril. Drugi del. Sašo Knez in Rudolf Podgornik Oddelek za fiziko, Fakulteta za Matematiko in Fiziko Univerza v Ljubljani Povzetek V drugem delu tega članka se bova posvetila

More information

THE MILKY WAY HALO. Wyn Evans Institute of Astronomy, Cambridge. Garching, 23 February 2015

THE MILKY WAY HALO. Wyn Evans Institute of Astronomy, Cambridge. Garching, 23 February 2015 THE MILKY WAY HALO Wyn Evans Institute of Astronomy, Cambridge Garching, 23 February 2015 THE STELLAR HALO The fundamental observation goes back half a century. Eggen, Lynden-Bell & Sandage (1962) noted

More information

arxiv: v1 [astro-ph.ga] 3 Dec 2018

arxiv: v1 [astro-ph.ga] 3 Dec 2018 Astronomy & Astrophysics manuscript no. paper-vc c ESO 18 December, 18 Characterization and history of the Helmi streams with Gaia DR Helmer H. Koppelman 1, Amina Helmi 1, Davide Massari 1, Sebastian Roelenga

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz

Modelling the Milky Way: challenges in scientific computing and data analysis. Matthias Steinmetz Modelling the Milky Way: challenges in scientific computing and data analysis Matthias Steinmetz Can we form disk galaxies? 3 Not really Formation of disks has been notoriously difficult Feedback? Resolution?

More information

The Thick Disk-Halo Interface

The Thick Disk-Halo Interface Dynamics of Star Clusters and the Milky Way ASP Conference Series, Vol. 228, 2001 S. Deiters, B. Fuchs, A. Just, R. Spurzem, and R. Wielen eds. The Thick Disk-Halo Interface Gerard Gilmore Institute of

More information

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) The Gaia-ESO Survey http://www.gaia-eso.eu Public spectroscopic

More information

SIMETRIČNE KOMPONENTE

SIMETRIČNE KOMPONENTE Univerza v Ljubljani Fakulteta za elektrotehniko SIMETRIČNE KOMPONENTE Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Poročilo izdelala: ELIZABETA STOJCHEVA Mentor: prof. dr. Grega Bizjak,

More information

The Sloan Digital Sky Survey. Sebastian Jester Experimental Astrophysics Group Fermilab

The Sloan Digital Sky Survey. Sebastian Jester Experimental Astrophysics Group Fermilab The Sloan Digital Sky Survey Sebastian Jester Experimental Astrophysics Group Fermilab SLOAN DIGITAL SKY SURVEY Sloan Digital Sky Survey Goals: 1. Image ¼ of sky in 5 bands 2. Measure parameters of objects

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys)

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Rodolfo Smiljanic Nicolaus Copernicus Astronomical Center Warsaw/Poland (image credit: ESA/ESO) Cool Stars 20, July 29 - August

More information

Exploring the structure and evolu4on of the Milky Way disk

Exploring the structure and evolu4on of the Milky Way disk Exploring the structure and evolu4on of the Milky Way disk Results from the Gaia-ESO survey and plans for 4MOST Thomas Bensby Dept. of Astronomy and Theore3cal Physics Lund University Sweden Chemistry

More information

PE#4: It contains some useful diagrams and formula which we ll use today

PE#4: It contains some useful diagrams and formula which we ll use today Sep 6, 2017 Overview of the MW PE#4: It contains some useful diagrams and formula which we ll use today HW#2 is due next Wed and is now posted. Don t wait for the last minute to start it. Includes a short

More information

PRESENEČENJA V FIZIKI: VRTAVKE. Mitja Rosina Fakulteta za matematiko in fiziko Ljubljana, 12.marca 2010

PRESENEČENJA V FIZIKI: VRTAVKE. Mitja Rosina Fakulteta za matematiko in fiziko Ljubljana, 12.marca 2010 PRESENEČENJA V FIZIKI: VRTAVKE Mitja Rosina Fakulteta za matematiko in fiziko Ljubljana, 12.marca 2010 1. Vrtavka na prostem 2. Vrtavka na mizi: vrtenje, precesija, nutacija 3. Vrtavka na mizi: trenje,

More information

Substructure in the Stellar Halo of the Andromeda Spiral Galaxy

Substructure in the Stellar Halo of the Andromeda Spiral Galaxy Substructure in the Stellar Halo of the Andromeda Spiral Galaxy Raja Guhathakurta University of California Observatories (Lick, Keck, TMT) University of California at Santa Cruz M31 s extended stellar

More information

Lecture 25 The Milky Way Galaxy November 29, 2017

Lecture 25 The Milky Way Galaxy November 29, 2017 Lecture 25 The Milky Way Galaxy November 29, 2017 1 2 Size of the Universe The Milky Way galaxy is very much larger than the solar system Powers of Ten interactive applet 3 Galaxies Large collections of

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 23. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September 2011 Outline The local Mass

More information

ASTRO 1050 LAB #10: The Structure of the Milky Way Galaxy

ASTRO 1050 LAB #10: The Structure of the Milky Way Galaxy ASTRO 1050 LAB #10: The Structure of the Milky Way Galaxy ABSTRACT In this lab, you will learn that we live in the Milky Way galaxy. Our Solar System and all the stars you can see with your own eyes are

More information

arxiv: v1 [astro-ph.ga] 9 Sep 2009

arxiv: v1 [astro-ph.ga] 9 Sep 2009 Accepted for Publication in the Astrophysical Journal Exploring the Sagittarius Stream with SEKBO Survey RR Lyrae Stars arxiv:0909.1635v1 [astro-ph.ga] 9 Sep 2009 Sayuri L. Prior, G. S. Da Costa, Stefan

More information

Mikrovalovno sevanje ozadja

Mikrovalovno sevanje ozadja Seminar Ia 1. Letnik, II. stopnja Mikrovalovno sevanje ozadja Avtor: Lino Šalamon Mentor: Simon Širca Ljubljana, januar 2014 Povzetek: V seminarju bom najprej govoril o zgodovini mikrovalovnega sevanja

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester

The Milky Way. 20 March The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas. University of Rochester The Milky Way The Shape of the Galaxy Stellar Populations and Motions Stars as a Gas 20 March 2018 University of Rochester The Milky Way Today s lecture: The shape of the Galaxy Stellar populations and

More information

Dolgi izbruhi sevanja gama in njihova povezava s supernovami

Dolgi izbruhi sevanja gama in njihova povezava s supernovami Oddelek za fiziko Seminar II, 4. letnik dodiplomskega programa Dolgi izbruhi sevanja gama in njihova povezava s supernovami Avtor: Peter Opara Mentorica: doc. dr. Andreja Gomboc Ljubljana, november 2013

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy: III. Constraints on the Flattening of the Galactic Halo

A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy: III. Constraints on the Flattening of the Galactic Halo A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy: III. Constraints on the Flattening of the Galactic Halo Kathryn V. Johnston 1, David R. Law 2,3, and Steven R. Majewski 3 ABSTRACT arxiv:astro-ph/0407565v2

More information

Astro2010 Science White Paper: The Galactic Neighborhood (GAN)

Astro2010 Science White Paper: The Galactic Neighborhood (GAN) Astro2010 Science White Paper: The Galactic Neighborhood (GAN) Thomas M. Brown (tbrown@stsci.edu) and Marc Postman (postman@stsci.edu) Space Telescope Science Institute Daniela Calzetti (calzetti@astro.umass.edu)

More information

Matthias Steinmetz. 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1

Matthias Steinmetz. 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1 Matthias Steinmetz 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1 The RAVE Survey Spectroscopic high latitude survey of the MW 9 < I < 13 GAIA spectral range and resolution

More information

Dark Matter: Observational Constraints

Dark Matter: Observational Constraints Dark Matter: Observational Constraints Properties of Dark Matter: What is it? And what isn t it? Leo Blitz UC Berkeley Stanford July 31, 2007 How much is there? WMAP results Rotation curves of Galaxies

More information

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA POLONA ŠENKINC REŠEVANJE LINEARNIH DIFERENCIALNIH ENAČB DRUGEGA REDA S POMOČJO POTENČNIH VRST DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA POLONA ŠENKINC REŠEVANJE LINEARNIH DIFERENCIALNIH ENAČB DRUGEGA REDA S POMOČJO POTENČNIH VRST DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA POLONA ŠENKINC REŠEVANJE LINEARNIH DIFERENCIALNIH ENAČB DRUGEGA REDA S POMOČJO POTENČNIH VRST DIPLOMSKO DELO LJUBLJANA, 2016 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA

More information

arxiv: v2 [astro-ph.ga] 6 Mar 2017

arxiv: v2 [astro-ph.ga] 6 Mar 2017 Draft version March 8, 217 Preprint typeset using L A TEX style emulateapj v. 12/16/11 PREDICTED EXTENSION OF THE SAGITTARIUS STREAM TO THE MILKY WAY VIRIAL RADIUS Marion I. P. Dierickx 1 and Abraham Loeb

More information

arxiv:astro-ph/ v2 7 Oct 2004

arxiv:astro-ph/ v2 7 Oct 2004 Formation of ω Centauri by Tidal Stripping of a Dwarf Galaxy Makoto Ideta Astronomical Data Analysis Center, National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan arxiv:astro-ph/0408431v2

More information

ASTRO504 Extragalactic Astronomy. 2. Classification

ASTRO504 Extragalactic Astronomy. 2. Classification ASTRO504 Extragalactic Astronomy 2. Classification Morphological classification Elliptical (E) galaxies Lenticular (SO) galaxies Spiral (S) galaxies Irregular (Im) galaxies The realm of nebulae Hubble

More information

The Milky Way and Local Volume as Rosetta Stones in Galaxy Formation

The Milky Way and Local Volume as Rosetta Stones in Galaxy Formation 0 The Milky Way and Local Volume as Rosetta Stones in Galaxy Formation Kathryn V. Johnston Department of Astronomy, Columbia University contact: 212-854-3884, kvj@astro.columbia.edu James S. Bullock Center

More information

l about Ralph Schönrich (MPA, Hubble Fellow, OSU)

l about Ralph Schönrich (MPA, Hubble Fellow, OSU) Al l about n io t a t ro Ralph Schönrich (MPA, Hubble Fellow, OSU) with Martin Asplund, James Binney Thomas Bilitewski, Luca Casagrande Walter Dehnen, Heather Morrison Model direct onflow ~ 75% of feed

More information

SPACE MOTIONS OF GALACTIC GLOBULAR CLUSTERS: NEW RESULTS AND HALO-FORMATION IMPLICATIONS

SPACE MOTIONS OF GALACTIC GLOBULAR CLUSTERS: NEW RESULTS AND HALO-FORMATION IMPLICATIONS SPACE MOTIONS OF GALACTIC GLOBULAR CLUSTERS: NEW RESULTS AND HALO-FORMATION IMPLICATIONS Dana I. Casetti-Dinescu, Terrence M. Girard, David Herrera, William F. van Altena, Young-Wook Lee, Carlos Lopez

More information

Galaxies -- Introduction. Classification -- Feb 13, 2014

Galaxies -- Introduction. Classification -- Feb 13, 2014 Galaxies -- Introduction Classification -- Feb 13, 2014 Why Begin with Classification? The Hubble system forms the basic vocabulary of the subject. The sequence of galaxy types reflects an underlying physical

More information

The Structure and Substructure of the Milky Way Galaxy Discs. Rosemary Wyse

The Structure and Substructure of the Milky Way Galaxy Discs. Rosemary Wyse The Structure and Substructure of the Milky Way Galaxy Discs Rosemary Wyse Hiroshima, 30 th November 2016 The Fossil Record: Galactic Archaeology Studying low-mass old stars near-field cosmology There

More information

Taking the census of the Milky Way Galaxy. Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge

Taking the census of the Milky Way Galaxy. Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge Taking the census of the Milky Way Galaxy Gerry Gilmore Professor of Experimental Philosophy Institute of Astronomy Cambridge astrophysics cannot experiment merely observe and deduce: so how do we analyse

More information

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug

Halo Tidal Star Streams with DECAM. Brian Yanny Fermilab. DECam Community Workshop NOAO Tucson Aug Halo Tidal Star Streams with DECAM Brian Yanny Fermilab DECam Community Workshop NOAO Tucson Aug 19 2011 M31 (Andromeda) Our Local Group neighbors: Spiral galaxies similar to The Milky Way 150 kpc M33

More information

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 29: Internal Properties of Galaxies Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 29 20 Apr 2007 Read: Ch. 26 Astronomy 114 1/16 Announcements

More information