Mismatched Estimation in Large Linear Systems

Size: px
Start display at page:

Download "Mismatched Estimation in Large Linear Systems"

Transcription

1 Mismatched Estimation in Large Linear Systems Yanting Ma, Dror Baron, and Ahmad Beirami North Carolina State University Massachusetts Institute of Technology & Duke University Supported by NSF & ARO

2 Motivation True prior minimum mean square error (MMSE) True prior unknown in practical problems use postulated prior different from true prior mismatch in prior Mismatched estimation mean square error (MSE) bigger than MMSE excess mean square error (EMSE)

3 Motivation Mismatched estimation in scalar channels [Verdú 010] Many practical problems are modeled by linear systems (e.g., medical imaging, compressed sensing) Extension to large linear systems y x σ z z y A x σ z z = + = + scalar channel linear system

4 Simplification y x σ z z = + x, z i.i.d. Y X σ z Z = +

5 Mismatch in Scalar Channels [Verdú 010] Additive white Gaussian noise channel: Y = X + σ z Z R; X~P, Z~N(0,1) = + Y X σ z Z

6 Mismatch in Scalar Channels [Verdú 010] Additive white Gaussian noise channel: Y = X + σ z Z R; X~P, Z~N(0,1) = + Y X σ z Z True prior P: Conditional expectation: X P Y = E P X Y Mean square error (MSE): MSE P (σ z ) = E X P Y X minimum MSE (MMSE): MMSE(σ z ) = MSE P (σ z )

7 Mismatch in Scalar Channels [Verdú 010] Additive white Gaussian noise channel: Y = X + σ z Z R; X~P, Z~N(0,1) Y X σ z Z = + True prior P: Conditional expectation: X P Y = E P X Y Mean square error (MSE): MSE P (σ z ) = E X P Y X minimum MSE (MMSE): MMSE(σ z ) = MSE P (σ z ) Mismatched prior Q: MSE: MSE Q (σ z ) = E X Q Y X Bigger than MMSE

8 Mismatch in Scalar Channels [Verdú 010] Excess MSE of scalar channel (S-EMSE): S-EMSE(σ z ) = MSE Q (σ z ) MMSE(σ z ) D(P Q) = 1 0 S EMSE 1/γ dγ, γ = 1/σz relative entropy

9 Linear System Linear system: y = Ax + σ z z R M Input signal: x R N, x j ~P Noise: z i ~N(0,1) Measurement matrix: A R M N, E A ij = 0, Var A ij = 1 M σ z z

10 Decoupling [Tanaka 00, Guo & Verdú 005, ] Linear system: y = Ax + σ z z decoupling N, M N δ large system limit Scalar channel: y i = x i + σ P z i x i ~P, z i ~N(0,1) Fixed point equation: δ σ P σ z = MSE P σ p

11 Problem Statement

12 MMSE in Large Linear Systems Focusing on large linear systems True prior P: Conditional expectation: x P y, A = E P x y, A MSE: LMSE P σ z 1 = lim E x N N P y, A x = MMSE(σ z ) linear system

13 LMSE via Decoupling [Bernoulli-Gaussian input] LMSE P σ z (MMSE) Fixed point equation: δ σ σ z = MSE P σ with solution σ P

14 Mismatch in Large Linear Systems Mismatched prior Q: MSE: LMSE Q σ z 1 = lim E x N N Q y, A x Excess MSE of linear system: L-EMSE(σ z )=LMSE Q σ z MMSE(σ z )

15 Mismatch in Large Linear Systems LMSE Q σ z LMSE P σ z (MMSE) Goal: relate L-EMSE(σ z ) to S-EMSE(σ P )

16 Main Results

17 Main Result (derivation in paper) L-EMSE σ z = S-EMSE σ P + σp σ P + 1 δ L EMSE(σ z ) d dσ MSE Q σ dσ

18 Main Result (derivation in paper) L-EMSE σ z = S-EMSE σ P + σp σ P + 1 δ L EMSE(σ z ) Taylor expansion d dσ MSE Q σ dσ

19 Taylor Approximations First order approximation: L-EMSE σ z = δ δ α S-EMSE σ p + o(δ) Second order approximation: L EMSE σ z = δ δ α S EMSE σ p β δ α S EMSE σ p + o(δ ) Δ = σ Q σ P α: first derivative of MSE Q (σ ) at σ P β: second derivative of MSE Q (σ ) at σ P

20 Taylor Approximations First order approximation: L-EMSE σ z = δ δ α S-EMSE σ p + o(δ) Second order approximation: L EMSE σ z = δ δ α S EMSE σ p β δ α S EMSE σ p + o(δ ) Δ = σ Q σ P α: first derivative of MSE Q (σ ) at σ P β: second derivative of MSE Q (σ ) at σ P

21 Numerical Examples

22 Example 1: Bernoulli-Gaussian input f X x = θ N 0,1 + 1 θ δ 0 (x)

23 Example : Markov Source Two state Markov source with state space {0,1} For non-i.i.d. input (e.g., Markov source) decoupling principal not well-understood Alternative tool: state evolution (SE) of approximate message passing (AMP) [Bayati & Montanari 011]

24 Approximate Message Passing [Donoho et al. 009] AMP solves linear system by iterative decoupling Decoupled scalar channel characterized by state evolution (SE) t SE for AMP with E x i y i coincides with fixed point equation for information theoretic decoupling For non-i.i.d. input E x i window i better than E x i y i t SE for AMP with E x i window i not rigorous but numerically verified [Ma et al. 014] y x σ z z window = +

25 Example : Markov Source Two state Markov source with state space {0,1} W(3): E x i window i with window-size (3) δ σ W3 σ z = MSE W3 σ W3 Y = X + σ W3 Z

26 Example : Markov Source Two state Markov source with state space {0,1} W(3): E x i window i with window-size (3) δ σ W3 σ z = MSE W3 σ W3 Apply W to Y = X + σ W3 Z

27 Example : Markov Source Two state Markov source with state space {0,1} W(3): E x i window i with window-size (3) δ σ W σ z = MSE W σ W δ σ W3 σ z = MSE W3 σ W3 Y = X + σ W3 Z

28 Example : Markov Source Two state Markov source with state space {0,1} W(3): E x i window i with window-size (3) δ σ W3 σ z = MSE W3 σ W3 Y = X + σ W3 Z

29 Discussion

30 Summary Provided expression relating L-EMSE to S-EMSE Two Taylor approximations derived and accuracy verified numerically Next step How does parameter estimation error affect EMSE in linear systems?

31 Thank you!

Mismatched Estimation in Large Linear Systems

Mismatched Estimation in Large Linear Systems Mismatched Estimation in Large Linear Systems Yanting Ma, Dror Baron, Ahmad Beirami Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 7695, USA Department

More information

Performance Trade-Offs in Multi-Processor Approximate Message Passing

Performance Trade-Offs in Multi-Processor Approximate Message Passing Performance Trade-Offs in Multi-Processor Approximate Message Passing Junan Zhu, Ahmad Beirami, and Dror Baron Department of Electrical and Computer Engineering, North Carolina State University, Email:

More information

Sparse Superposition Codes for the Gaussian Channel

Sparse Superposition Codes for the Gaussian Channel Sparse Superposition Codes for the Gaussian Channel Florent Krzakala (LPS, Ecole Normale Supérieure, France) J. Barbier (ENS) arxiv:1403.8024 presented at ISIT 14 Long version in preparation Communication

More information

Single-letter Characterization of Signal Estimation from Linear Measurements

Single-letter Characterization of Signal Estimation from Linear Measurements Single-letter Characterization of Signal Estimation from Linear Measurements Dongning Guo Dror Baron Shlomo Shamai The work has been supported by the European Commission in the framework of the FP7 Network

More information

Performance Regions in Compressed Sensing from Noisy Measurements

Performance Regions in Compressed Sensing from Noisy Measurements Performance egions in Compressed Sensing from Noisy Measurements Junan Zhu and Dror Baron Department of Electrical and Computer Engineering North Carolina State University; aleigh, NC 27695, USA Email:

More information

Signal Reconstruction in Linear Mixing Systems with Different Error Metrics

Signal Reconstruction in Linear Mixing Systems with Different Error Metrics Signal Reconstruction in Linear Mixing Systems with Different Error Metrics Jin Tan and Dror Baron North Carolina State University Feb. 14, 2013 Jin Tan and Dror Baron (NCSU) Reconstruction with Different

More information

Risk and Noise Estimation in High Dimensional Statistics via State Evolution

Risk and Noise Estimation in High Dimensional Statistics via State Evolution Risk and Noise Estimation in High Dimensional Statistics via State Evolution Mohsen Bayati Stanford University Joint work with Jose Bento, Murat Erdogdu, Marc Lelarge, and Andrea Montanari Statistical

More information

much more on minimax (order bounds) cf. lecture by Iain Johnstone

much more on minimax (order bounds) cf. lecture by Iain Johnstone much more on minimax (order bounds) cf. lecture by Iain Johnstone http://www-stat.stanford.edu/~imj/wald/wald1web.pdf today s lecture parametric estimation, Fisher information, Cramer-Rao lower bound:

More information

Interactions of Information Theory and Estimation in Single- and Multi-user Communications

Interactions of Information Theory and Estimation in Single- and Multi-user Communications Interactions of Information Theory and Estimation in Single- and Multi-user Communications Dongning Guo Department of Electrical Engineering Princeton University March 8, 2004 p 1 Dongning Guo Communications

More information

An Overview of Multi-Processor Approximate Message Passing

An Overview of Multi-Processor Approximate Message Passing An Overview of Multi-Processor Approximate Message Passing Junan Zhu, Ryan Pilgrim, and Dror Baron JPMorgan Chase & Co., New York, NY 10001, Email: jzhu9@ncsu.edu Department of Electrical and Computer

More information

MMSE Dimension. snr. 1 We use the following asymptotic notation: f(x) = O (g(x)) if and only

MMSE Dimension. snr. 1 We use the following asymptotic notation: f(x) = O (g(x)) if and only MMSE Dimension Yihong Wu Department of Electrical Engineering Princeton University Princeton, NJ 08544, USA Email: yihongwu@princeton.edu Sergio Verdú Department of Electrical Engineering Princeton University

More information

The Minimax Noise Sensitivity in Compressed Sensing

The Minimax Noise Sensitivity in Compressed Sensing The Minimax Noise Sensitivity in Compressed Sensing Galen Reeves and avid onoho epartment of Statistics Stanford University Abstract Consider the compressed sensing problem of estimating an unknown k-sparse

More information

Multi-Processor Approximate Message Passing with Lossy Compression

Multi-Processor Approximate Message Passing with Lossy Compression 1 Multi-rocessor Approximate Message assing with Lossy Compression Junan Zhu, Student Member, IEEE, and Dror Baron, Senior Member, IEEE Abstract We consider large-scale linear inverse problems in Bayesian

More information

arxiv: v2 [cs.it] 12 Jul 2017

arxiv: v2 [cs.it] 12 Jul 2017 ABSTRACT ZHU, JUNAN. Statistical Physics and Information Theory Perspectives on Linear Inverse Problems. (Under the direction of Dror Baron.) arxiv:1705.05070v2 [cs.it] 12 Jul 2017 Many real-world problems

More information

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Asilomar 2011 Jason T. Parker (AFRL/RYAP) Philip Schniter (OSU) Volkan Cevher (EPFL) Problem Statement Traditional

More information

Approximate Message Passing for Bilinear Models

Approximate Message Passing for Bilinear Models Approximate Message Passing for Bilinear Models Volkan Cevher Laboratory for Informa4on and Inference Systems LIONS / EPFL h,p://lions.epfl.ch & Idiap Research Ins=tute joint work with Mitra Fatemi @Idiap

More information

An Approximate Message Passing Framework for Side Information

An Approximate Message Passing Framework for Side Information An Approximate Message Passing Framework for Side Information Anna Ma 1, You (Joe) Zhou, Cynthia Rush 3, Dror Baron, and Deanna Needell 4 arxiv:1807.04839v1 [cs.it] 1 Jul 018 1 Department of Mathematics,

More information

Passing and Interference Coordination

Passing and Interference Coordination Generalized Approximate Message Passing and Interference Coordination Sundeep Rangan, Polytechnic Institute of NYU Joint work with Alyson Fletcher (Berkeley), Vivek Goyal (MIT), Ulugbek Kamilov (EPFL/MIT),

More information

Information-theoretically Optimal Sparse PCA

Information-theoretically Optimal Sparse PCA Information-theoretically Optimal Sparse PCA Yash Deshpande Department of Electrical Engineering Stanford, CA. Andrea Montanari Departments of Electrical Engineering and Statistics Stanford, CA. Abstract

More information

Wiener Filters in Gaussian Mixture Signal Estimation with l -Norm Error

Wiener Filters in Gaussian Mixture Signal Estimation with l -Norm Error Wiener Filters in Gaussian Mixture Signal Estimation with l -Norm Error Jin Tan, Student Member, IEEE, Dror Baron, Senior Member, IEEE, and Liyi Dai, Fellow, IEEE Abstract Consider the estimation of a

More information

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems 1 Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Philip Schniter, and Sundeep Rangan Abstract arxiv:1706.06054v1 cs.it

More information

On convergence of Approximate Message Passing

On convergence of Approximate Message Passing On convergence of Approximate Message Passing Francesco Caltagirone (1), Florent Krzakala (2) and Lenka Zdeborova (1) (1) Institut de Physique Théorique, CEA Saclay (2) LPS, Ecole Normale Supérieure, Paris

More information

Phil Schniter. Supported in part by NSF grants IIP , CCF , and CCF

Phil Schniter. Supported in part by NSF grants IIP , CCF , and CCF AMP-inspired Deep Networks, with Comms Applications Phil Schniter Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA), Mark Borgerding (OSU) Supported in part by NSF grants IIP-1539960, CCF-1527162,

More information

Optimal Data Detection in Large MIMO

Optimal Data Detection in Large MIMO 1 ptimal Data Detection in Large MIM Charles Jeon, Ramina Ghods, Arian Maleki, and Christoph Studer Abstract arxiv:1811.01917v1 [cs.it] 5 Nov 018 Large multiple-input multiple-output (MIM) appears in massive

More information

On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO Systems

On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO Systems On the Achievable Rates of Decentralized Equalization in Massive MU-MIMO Systems Charles Jeon, Kaipeng Li, Joseph R. Cavallaro, and Christoph Studer Abstract Massive multi-user (MU) multiple-input multipleoutput

More information

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016 Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines Eric W. Tramel itwist 2016 Aalborg, DK 24 August 2016 Andre MANOEL, Francesco CALTAGIRONE, Marylou GABRIE, Florent

More information

Decoupling of CDMA Multiuser Detection via the Replica Method

Decoupling of CDMA Multiuser Detection via the Replica Method Decoupling of CDMA Multiuser Detection via the Replica Method Dongning Guo and Sergio Verdú Dept. of Electrical Engineering Princeton University Princeton, NJ 08544, USA email: {dguo,verdu}@princeton.edu

More information

Turbo-AMP: A Graphical-Models Approach to Compressive Inference

Turbo-AMP: A Graphical-Models Approach to Compressive Inference Turbo-AMP: A Graphical-Models Approach to Compressive Inference Phil Schniter (With support from NSF CCF-1018368 and DARPA/ONR N66001-10-1-4090.) June 27, 2012 1 Outline: 1. Motivation. (a) the need for

More information

Approximate Message Passing Algorithms

Approximate Message Passing Algorithms November 4, 2017 Outline AMP (Donoho et al., 2009, 2010a) Motivations Derivations from a message-passing perspective Limitations Extensions Generalized Approximate Message Passing (GAMP) (Rangan, 2011)

More information

Optimality of Large MIMO Detection via Approximate Message Passing

Optimality of Large MIMO Detection via Approximate Message Passing ptimality of Large MIM Detection via Approximate Message Passing Charles Jeon, Ramina Ghods, Arian Maleki, and Christoph Studer arxiv:5.695v [cs.it] ct 5 Abstract ptimal data detection in multiple-input

More information

Lecture 20: Quantization and Rate-Distortion

Lecture 20: Quantization and Rate-Distortion Lecture 20: Quantization and Rate-Distortion Quantization Introduction to rate-distortion theorem Dr. Yao Xie, ECE587, Information Theory, Duke University Approimating continuous signals... Dr. Yao Xie,

More information

arxiv: v2 [cs.it] 6 Sep 2016

arxiv: v2 [cs.it] 6 Sep 2016 The Mutual Information in Random Linear Estimation Jean Barbier, Mohamad Dia, Nicolas Macris and Florent Krzakala Laboratoire de Théorie des Communications, Faculté Informatique et Communications, Ecole

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel

On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel On the Shamai-Laroia Approximation for the Information Rate of the ISI Channel Yair Carmon and Shlomo Shamai (Shitz) Department of Electrical Engineering, Technion - Israel Institute of Technology 2014

More information

Information Dimension

Information Dimension Information Dimension Mina Karzand Massachusetts Institute of Technology November 16, 2011 1 / 26 2 / 26 Let X would be a real-valued random variable. For m N, the m point uniform quantized version of

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing

Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing Sundeep Rangan Qualcomm Technologies Bedminster, NJ srangan@qualcomm.com Alyson K. Fletcher University of California,

More information

Performance Limits for Noisy Multi-Measurement Vector Problems

Performance Limits for Noisy Multi-Measurement Vector Problems Performance Limits for Noisy Multi-Measurement Vector Problems Junan Zhu, Student Member, IEEE, Dror Baron, Senior Member, IEEE, and Florent Krzakala Abstract Compressed sensing CS) demonstrates that sparse

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error

Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error Dongning Guo, Yihong Wu, Shlomo Shamai (Shitz), and Sergio Verdú Abstract arxiv:1004.333v1 [cs.it] 0 Apr 010 Consider the minimum

More information

Sparsity Pattern Recovery in Compressed Sensing

Sparsity Pattern Recovery in Compressed Sensing Sparsity Pattern Recovery in Compressed Sensing Galen Reeves Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-20-50 http://www.eecs.berkeley.edu/pubs/techrpts/20/eecs-20-50.html

More information

Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation

Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation David L. Donoho Department of Statistics Arian Maleki Department of Electrical Engineering Andrea Montanari Department of

More information

Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing

Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing ANALYSIS OF MAP ESTIMATION VIA THE REPLICA METHOD AND APPLICATIONS TO COMPRESSED SENSING Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing Sundeep Rangan,

More information

A Truncated Prediction Framework for Streaming over Erasure Channels

A Truncated Prediction Framework for Streaming over Erasure Channels A Truncated Prediction Framework for Streaming over Erasure Channels Farrokh Etezadi, Ashish Khisti, Jun Chen Abstract We propose a new coding technique for sequential transmission of a stream of Gauss-Markov

More information

Computational Methods Short Course on Image Quality

Computational Methods Short Course on Image Quality Computational Methods Short Course on Image Quality Matthew A. Kupinski What we Will Cover Sources of randomness Computation of linear-observer performance Computation of ideal-observer performance Miscellaneous

More information

Phase transitions in low-rank matrix estimation

Phase transitions in low-rank matrix estimation Phase transitions in low-rank matrix estimation Florent Krzakala http://krzakala.github.io/lowramp/ arxiv:1503.00338 & 1507.03857 Thibault Lesieur Lenka Zeborová Caterina Debacco Cris Moore Jess Banks

More information

Planted Cliques, Iterative Thresholding and Message Passing Algorithms

Planted Cliques, Iterative Thresholding and Message Passing Algorithms Planted Cliques, Iterative Thresholding and Message Passing Algorithms Yash Deshpande and Andrea Montanari Stanford University November 5, 2013 Deshpande, Montanari Planted Cliques November 5, 2013 1 /

More information

Hamilton-Jacobi-Bellman Equation Feb 25, 2008

Hamilton-Jacobi-Bellman Equation Feb 25, 2008 Hamilton-Jacobi-Bellman Equation Feb 25, 2008 What is it? The Hamilton-Jacobi-Bellman (HJB) equation is the continuous-time analog to the discrete deterministic dynamic programming algorithm Discrete VS

More information

Analyticity and Derivatives of Entropy Rate for HMP s

Analyticity and Derivatives of Entropy Rate for HMP s Analyticity and Derivatives of Entropy Rate for HMP s Guangyue Han University of Hong Kong Brian Marcus University of British Columbia 1 Hidden Markov chains A hidden Markov chain Z = {Z i } is a stochastic

More information

Estimating LASSO Risk and Noise Level

Estimating LASSO Risk and Noise Level Estimating LASSO Risk and Noise Level Mohsen Bayati Stanford University bayati@stanford.edu Murat A. Erdogdu Stanford University erdogdu@stanford.edu Andrea Montanari Stanford University montanar@stanford.edu

More information

An equivalence between high dimensional Bayes optimal inference and M-estimation

An equivalence between high dimensional Bayes optimal inference and M-estimation An equivalence between high dimensional Bayes optimal inference and M-estimation Madhu Advani Surya Ganguli Department of Applied Physics, Stanford University msadvani@stanford.edu and sganguli@stanford.edu

More information

Statistical Mechanics of MAP Estimation: General Replica Ansatz

Statistical Mechanics of MAP Estimation: General Replica Ansatz 1 Statistical Mechanics of MAP Estimation: General Replica Ansatz Ali Bereyhi, Ralf R. Müller, and Hermann Schulz-Baldes arxiv:1612.01980v2 [cs.it 23 Oct 2017 Abstract The large-system performance of maximum-a-posterior

More information

I. INTRODUCTION. A. Motivation

I. INTRODUCTION. A. Motivation Approximate Message Passing Algoritm wit Universal Denoising and Gaussian Mixture Learning Yanting Ma, Student Member, IEEE, Junan Zu, Student Member, IEEE, and Dror Baron, Senior Member, IEEE Abstract

More information

Sparse Sensing for Statistical Inference

Sparse Sensing for Statistical Inference Sparse Sensing for Statistical Inference Model-driven and data-driven paradigms Geert Leus, Sundeep Chepuri, and Georg Kail ITA 2016, 04 Feb 2016 1/17 Power networks, grid analytics Health informatics

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #34 Prof Young-Han Kim Tuesday, May 7, 04 Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) Linear estimator Consider a channel with the observation Y XZ, where the

More information

Variable-Rate Universal Slepian-Wolf Coding with Feedback

Variable-Rate Universal Slepian-Wolf Coding with Feedback Variable-Rate Universal Slepian-Wolf Coding with Feedback Shriram Sarvotham, Dror Baron, and Richard G. Baraniuk Dept. of Electrical and Computer Engineering Rice University, Houston, TX 77005 Abstract

More information

information estimation feedback

information estimation feedback relations between information and estimation in the presence of feedback talk at workshop on: Tsachy Weissman Information and Control in Networks LCCC - Lund Center for Control of Complex Engineering Systems

More information

11 - The linear model

11 - The linear model 11-1 The linear model S. Lall, Stanford 2011.02.15.01 11 - The linear model The linear model The joint pdf and covariance Example: uniform pdfs The importance of the prior Linear measurements with Gaussian

More information

Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y)

Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y) Gaussian source Assumptions d = (x-y) 2, given D, find lower bound of I(X;Y) E{(X-Y) 2 } D

More information

Fundamental Limits of Compressed Sensing under Optimal Quantization

Fundamental Limits of Compressed Sensing under Optimal Quantization Fundamental imits of Compressed Sensing under Optimal Quantization Alon Kipnis, Galen Reeves, Yonina C. Eldar and Andrea J. Goldsmith Department of Electrical Engineering, Stanford University Department

More information

Statistical Mechanics of MAP Estimation: General Replica Ansatz

Statistical Mechanics of MAP Estimation: General Replica Ansatz 1 Statistical Mechanics of MAP Estimation: General Replica Ansatz Ali Bereyhi, Ralf R. Müller, and Hermann Schulz-Baldes arxiv:1612.01980v1 [cs.it 6 Dec 2016 Abstract The large-system performance of maximum-a-posterior

More information

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE)

ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) 1 ELEG 5633 Detection and Estimation Minimum Variance Unbiased Estimators (MVUE) Jingxian Wu Department of Electrical Engineering University of Arkansas Outline Minimum Variance Unbiased Estimators (MVUE)

More information

Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula

Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula Jean Barbier, Mohamad Dia and Nicolas Macris Laboratoire de Théorie des Communications, Faculté Informatique

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model

ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model D. Richard Brown III Worcester Polytechnic Institute 02-Apr-2009 Worcester Polytechnic Institute D. Richard Brown III 02-Apr-2009 1 / 14 Introduction

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

Communication constraints and latency in Networked Control Systems

Communication constraints and latency in Networked Control Systems Communication constraints and latency in Networked Control Systems João P. Hespanha Center for Control Engineering and Computation University of California Santa Barbara In collaboration with Antonio Ortega

More information

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels Giuseppe Caire University of Southern California Los Angeles, CA, USA Email: caire@usc.edu Nihar

More information

M-Estimation under High-Dimensional Asymptotics

M-Estimation under High-Dimensional Asymptotics M-Estimation under High-Dimensional Asymptotics 2014-05-01 Classical M-estimation Big Data M-estimation An out-of-the-park grand-slam home run Annals of Mathematical Statistics 1964 Richard Olshen Classical

More information

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016 Midterm Exam Time: 09:10 12:10 11/23, 2016 Name: Student ID: Policy: (Read before You Start to Work) The exam is closed book. However, you are allowed to bring TWO A4-size cheat sheet (single-sheet, two-sided).

More information

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011 UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, 2014 Homework Set #6 Due: Thursday, May 22, 2011 1. Linear estimator. Consider a channel with the observation Y = XZ, where the signal X and

More information

Coding over Interference Channels: An Information-Estimation View

Coding over Interference Channels: An Information-Estimation View Coding over Interference Channels: An Information-Estimation View Shlomo Shamai Department of Electrical Engineering Technion - Israel Institute of Technology Information Systems Laboratory Colloquium

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Vincent Y. F. Tan (Joint work with Silas L. Fong) National University of Singapore (NUS) 2016 International Zurich Seminar on

More information

Graphical Models Concepts in Compressed Sensing

Graphical Models Concepts in Compressed Sensing Graphical Models Concepts in Compressed Sensing Andrea Montanari Abstract This paper surveys recent work in applying ideas from graphical models and message passing algorithms to solve large scale regularized

More information

Compressed Sensing Using Bernoulli Measurement Matrices

Compressed Sensing Using Bernoulli Measurement Matrices ITSchool 11, Austin Compressed Sensing Using Bernoulli Measurement Matrices Yuhan Zhou Advisor: Wei Yu Department of Electrical and Computer Engineering University of Toronto, Canada Motivation Motivation

More information

Functional Properties of MMSE

Functional Properties of MMSE Functional Properties of MMSE Yihong Wu epartment of Electrical Engineering Princeton University Princeton, NJ 08544, USA Email: yihongwu@princeton.edu Sergio Verdú epartment of Electrical Engineering

More information

Signal Estimation in Gaussian Noise: A Statistical Physics Perspective

Signal Estimation in Gaussian Noise: A Statistical Physics Perspective Signal Estimation in Gaussian Noise: A Statistical Physics Perspective Neri Merhav Electrical Engineering Dept. Technion Israel Inst. of Tech. Haifa 3000, Israel Email: merhav@ee.technion.ac.il Dongning

More information

Compressed Sensing under Optimal Quantization

Compressed Sensing under Optimal Quantization Compressed Sensing under Optimal Quantization Alon Kipnis, Galen Reeves, Yonina C. Eldar and Andrea J. Goldsmith Department of Electrical Engineering, Stanford University Department of Electrical and Computer

More information

ee378a spring 2013 April 1st intro lecture statistical signal processing/ inference, estimation, and information processing Monday, April 1, 13

ee378a spring 2013 April 1st intro lecture statistical signal processing/ inference, estimation, and information processing Monday, April 1, 13 ee378a statistical signal processing/ inference, estimation, and information processing spring 2013 April 1st intro lecture 1 what is statistical signal processing? anything & everything inference, estimation,

More information

Vector Approximate Message Passing. Phil Schniter

Vector Approximate Message Passing. Phil Schniter Vector Approximate Message Passing Phil Schniter Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA) Supported in part by NSF grant CCF-1527162. itwist @ Aalborg University Aug 24, 2016 Standard

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

Binary Classification and Feature Selection via Generalized Approximate Message Passing

Binary Classification and Feature Selection via Generalized Approximate Message Passing Binary Classification and Feature Selection via Generalized Approximate Message Passing Phil Schniter Collaborators: Justin Ziniel (OSU-ECE) and Per Sederberg (OSU-Psych) Supported in part by NSF grant

More information

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7

UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7 UCSD ECE50 Handout #0 Prof. Young-Han Kim Monday, February 6, 07 Solutions to Exercise Set #7. Minimum waiting time. Let X,X,... be i.i.d. exponentially distributed random variables with parameter λ, i.e.,

More information

2 Statistical Estimation: Basic Concepts

2 Statistical Estimation: Basic Concepts Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 2 Statistical Estimation:

More information

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π

Solutions to Homework Set #5 (Prepared by Lele Wang) MSE = E [ (sgn(x) g(y)) 2],, where f X (x) = 1 2 2π e. e (x y)2 2 dx 2π Solutions to Homework Set #5 (Prepared by Lele Wang). Neural net. Let Y X + Z, where the signal X U[,] and noise Z N(,) are independent. (a) Find the function g(y) that minimizes MSE E [ (sgn(x) g(y))

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

Large sample covariance matrices and the T 2 statistic

Large sample covariance matrices and the T 2 statistic Large sample covariance matrices and the T 2 statistic EURANDOM, the Netherlands Joint work with W. Zhou Outline 1 2 Basic setting Let {X ij }, i, j =, be i.i.d. r.v. Write n s j = (X 1j,, X pj ) T and

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy

The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy The Game of Twenty Questions with noisy answers. Applications to Fast face detection, micro-surgical tool tracking and electron microscopy Graduate Summer School: Computer Vision July 22 - August 9, 2013

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Threshold Policy for Global Games with Noisy Information Sharing

Threshold Policy for Global Games with Noisy Information Sharing 05 IEEE 54th Annual Conference on Decision and Control CDC December 5-8, 05 Osaka, Japan Threshold olicy for Global Games with Noisy Information Sharing Hessam Mahdavifar, Ahmad Beirami, Behrouz Touri,

More information

Advanced Signal Processing Introduction to Estimation Theory

Advanced Signal Processing Introduction to Estimation Theory Advanced Signal Processing Introduction to Estimation Theory Danilo Mandic, room 813, ext: 46271 Department of Electrical and Electronic Engineering Imperial College London, UK d.mandic@imperial.ac.uk,

More information

Integer-Forcing Source Coding

Integer-Forcing Source Coding Or Ordentlich Joint work with Uri Erez June 30th, 2014 ISIT, Honolulu, HI, USA Motivation 1 - Universal Quantization [ x1 x 2 ] N(0,K xx) x 1 E 1 x 2 E 2 D (ˆx 1,d) (ˆx 2,d) Motivation 1 - Universal Quantization

More information

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis Stéphanie Allassonnière CIS, JHU July, 15th 28 Context : Computational Anatomy Context and motivations :

More information