Approximate Message Passing Algorithms

Size: px
Start display at page:

Download "Approximate Message Passing Algorithms"

Transcription

1 November 4, 2017

2 Outline AMP (Donoho et al., 2009, 2010a) Motivations Derivations from a message-passing perspective Limitations Extensions Generalized Approximate Message Passing (GAMP) (Rangan, 2011) Vector Approximate Message Passing (VAMP) (Schniter et al., 2016; Rangan et al., 2017) institution-logo-filen

3 Compressed Sensing Most of the data is redundant Enormously wasteful in storage and transmission institution-logo-filen

4 Compressed Sensing y R n measurement vector x R N unknown sparse signal vector A R n N incoherent measurement matrix with n < N w R n measurement noise

5 Compressed Sensing Noiseless: y = Ax min x p. (1) y=ax Noisy: y = Ax + w 1 min x 2 y Ax λ x p. (2)

6 Compressed Sensing p = 2: l 2 minimization mostly gives unsatisfactory results as real world signals are often compressible p = 0: l 0 minimization though gives accurate results, it has computational disadvantage of being a NP hard problem p = 1: l 1 minimization is computationally tractable and has theoretical upper bound of the reconstruction error We focus on the l 1 cases below.

7 Disadvantages of LP methods Convex optimization (LP-based) methods yield accurate reconstructions (Candès and Wakin, 2008) for (1), but Realistic modern problems in spectroscopy and medical imaging demand reconstructions of objects with tens of thousands or even millions of unknowns. Existing convex optimization algorithms are too slow on large problems

8 Iterative Shrinkage/Thresholding Algorithm (ISTA) Notice that ( y Ax 2 2/2) = A T (Ax y). Let η( ) be a scalar soft-thresholding function (applied on vectors component-wisely), the ISTA updates for (2) z t = y Ax t x t+1 = η(x t + 1 ρ AT z t ; λ). (3)

9 ISTA Low per-iteration cost: matrix vector multiplications Convergence rate: O(1/t)

10 FISTA FISTA (Beck and Teboulle, 2009) update: z t = y Ax t u t+1 = η(x t + 1 ρ AT z t ; λ) x t+1 = u t+1 + ( s t 1 s t+1 )(u t+1 u t ) s 0 = 0, s t+1 = ( s 2 t )/2 (not unique). Convergence rate: O(1/t 2 ) (4) Faster algorithms if A is large, random matrix (e.g., i.i.d Gaussian)? institution-logo-filen

11 Markov Random Fields Suppose that we are modeling selection preferences among persons A,B,C,D. Based on the Hammersley Clifford theorem, we can model the joint probability (p > 0) p(a, B, C, D) = 1 φ(a, B)φ(B, C )φ(c, D)φ(D, A), Z where Z is the normalization constant (MRF). institution-logo-filen

12 Markov Random Fields Marginal distribution: find p(a), p(b), p(c), p(d) Maximizer: find argmax a,b,c,d p(a, b, c, d) With k nodes each taking s values, O(s k ) computations for brute force methods!

13 Message Passing (Belief Propagation)

14 Message Passing Message from i to node j : m i j (x j ) Messages are similar to likelihoods: non-negative (don t have to sum to 1) A high value of m i j (x j ) indicates that node i believes the marginal value p(x j ) to be high Usually initialize all messages to 1 (or random positive values).

15 Message Passing Sum-product message passing: m i j (x j ) = φ(x i, x j ) x i m l i (x i ) l N (i)\j m B D (x D ) = x B φ(x B, x D )m A B (x B )m C B (x B ) Marginal distribution p(x i ) = l N (i) m l i(x i ). institution-logo-filen

16 Message Passing

17 Message Passing Noiseless: p 1 (x 1... x N ) 1 Z N n exp( β x i ) δ {yj =(Ax) j } (5) i=1 j =1 Noisy: p 2 (x 1... x N ) 1 Z N n exp( β x i ) exp{ β 2 [y j (Ax) j ] 2 } i=1 j =1 (6) Find marginal distribution p 1 (x i ) and p 2 (x i ) when β. institution-logo-filen

18 Approximate Message Passing Construct a undirected graphical model (last slide) Large system limit (thermodynamic limit N, δ = n/n fixed) Large β limit (low temperature limit) From message passing to AMP (Onsager correction)

19 Approximate Message Passing Message passing for (5): z t a i = y a j i A aj x t j a x t+1 i a = η( b a A bi z t b i; τ t ) τ t+1 = τ t N δ N η ( b i=1 A bi z t b i; τ t ) (7) O(nN ) messages passing per-iteration!

20 Approximate Message Passing AMP for (5): z t = y Ax t + 1 δ z t 1 η (A T z t 1 + x t 1 ; τ t 1 ) x t+1 = η(a T z t + x t ; τ t ) (8) τ t = λt 1 δ η (A T z t 1 + x t ; τ t 1 ) Efficient: vectorized updates Parameter free: threshold is updated recursively (noiseless problem, no λ) institution-logo-filen

21 ISTA vs. AMP (Noisy) Recall 1 δ z t 1 η (x t 1 + A T z t 1 ; τ t 1 ) = 1 n x t 0 z t 1. ISTA AMP z t = y Ax t x t+1 = η(x t + 1 ρ AT z t ; λ) z t = y Ax t + 1 n x t 0 z t 1 x t+1 = η(x t + A T z t ; λ t ) stepsize momentum term iteration dependent thresholding λ t = λ + τ t with τ t update similarly, see Donoho et al. (2010a) institution-logo-filen

22 Onsager Correction (Thouless et al., 1977)

23 NMSE (log 10 ) AMP Demo n = 500 N = 1000 x 0 = 50 A ij i.i.d N (0, 1) iid Gaussian (scaled by 1/ n) w additive white Gaussian noise (AWGN) with SNR 40 db λ = 2 log N ˆσ λ t = αˆσ t with α = 1 and ˆσ t = z t 2 2/n ISTA FISTA OWL-QN AMP Iterations (log 10 ) institution-logo-filen

24 NMSE (log 10 ) NMSE (log 10 ) NMSE (log 10 ) NMSE (log 10 ) NMSE (log 10 ) NMSE (log 10 ) AMP Demo ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP Iterations (log 10 ) Iterations (log 10 ) Iterations (log 10 ) ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP Iterations (log 10 ) Iterations (log 10 ) Iterations (log 10 ) j k Figure: A = N (0, [ρ 0 ])/ n, ρ 0 = 0, 0.1, 0.15 (top) 0.17, 0.18, 0.20 (bottom). institution-logo-filen

25 NMSE (log 10 ) NMSE (log 10 ) NMSE (log 10 ) institution-logo-filen AMP Demo ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP -1 ISTA FISTA OWL-QN AMP Iterations (log 10 ) Iterations (log 10 ) Iterations (log 10 ) Figure: ρ 0 = 0.2, 0.3, 0.5, stepsize s = 0.95, 0.9, 0.5. Line search?

26 State Evolution The AMP iterates r t x t + A T z t = x + N (0, σ 2 t I N N ) ε t 1 N E( x t x 2 2) obeys a scalar recursion (Donoho et al., 2010b): σ 2 t = σ 2 w + N ε t /n, ε t+1 = 1 N E( η(x + N (0, σ 2 t I N N ); λ t ) x 2 2)

27 Phase Transition Figure: Observed phase transitions of reconstruction algorithms. institution-logo-filen

28 Universality of Phase Transition Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing (Donoho and Tanner, 2009)

29 Limitations of AMP y is a linear transformation of the signal x with additive noise A large i.i.d (sub) Gaussian

30 Generalized approximate message passing Recover the sparse signal x given A and measurements y v = Ax y p(y v), where p(y v) captures the non-gaussianity. Binary classifications (probit, logit models) Poisson measurements (photon-limited imaging, neural spike models)

31 GAMP vs. FISTA n = 200, N = 500, y = Ax + w (w complex noise vector)

32 GAMP SVM n = N /3, N = 512, y = (1/2)[sgn(Ax + w) + 1]

33 GAMP Mixed Gaussian n = 500, N = 1000, y = Ax + w with w = φn (µ 1, 1) + (1 φ)n (µ 2, 1).

34 VAMP Standard Linear Model Denoising x t 1 = η(r t 1, λ t 1) α t 1 = η (r t 1, λ t 1) λ t 2 = (1/α t 1 1)λ t 1 r t 2 = (x t 1/α t 1 r t 1)(λ t 1/λ t 2) LMMSE estimation x t 2 = g(r t 2, λ t 2) α t 2 = g (r t 2, λ t 2) λ t+1 1 = (1/α t 2 1)λ t 2 r t+1 1 = (x t 2/α t 2 r t 2)(λ t 2/λ t+1 1 ) x t 2 = argminˆx E x ˆx 2 2 s.t. ˆx = Ŵ y + ˆb, where x N (r t 2, (λ t 2) 1 I ) and p(y x) = N (y, Ax; σ 2 wi ).

35 VAMP VAMP generalizes AMP to right-notionally invariant A distribution of A is identical to that of AV 0 for any V0 T V 0 = V 0 V0 T = I VAMP alternates between denoising (shrinkage) and LMMSE steps with Onsager corrections VAMP has similar per-iteration cost compared to AMP VAMP can be extended to generalized linear models

36 VAMP AWGN

37 VAMP Probit

38 I Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1): Candès, E. J. and Wakin, M. B. (2008). An introduction to compressive sampling. IEEE signal processing magazine, 25(2): Donoho, D. and Tanner, J. (2009). Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367(1906): Donoho, D. L., Maleki, A., and Montanari, A. (2009). Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences, 106(45): institution-logo-filen

39 II Donoho, D. L., Maleki, A., and Montanari, A. (2010a). Message passing algorithms for compressed sensing: I. motivation and construction. In 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo), pages 1 5. Donoho, D. L., Maleki, A., and Montanari, A. (2010b). Message passing algorithms for compressed sensing: II. analysis and validation. In 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo), pages 1 5. Rangan, S. (2011). Generalized approximate message passing for estimation with random linear mixing. In 2011 IEEE International Symposium on Information Theory Proceedings, pages Rangan, S., Schniter, P., and Fletcher, A. K. (2017). Vector approximate message passing. In 2017 IEEE International Symposium on Information Theory (ISIT), pages institution-logo-filen

40 III Schniter, P., Rangan, S., and Fletcher, A. K. (2016). Vector approximate message passing for the generalized linear model. In th Asilomar Conference on Signals, Systems and Computers, pages Thouless, D. J., Anderson, P. W., and Palmer, R. G. (1977). Solution of solvable model of a spin glass. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 35(3):

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems

Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems 1 Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems Alyson K. Fletcher, Mojtaba Sahraee-Ardakan, Philip Schniter, and Sundeep Rangan Abstract arxiv:1706.06054v1 cs.it

More information

Vector Approximate Message Passing. Phil Schniter

Vector Approximate Message Passing. Phil Schniter Vector Approximate Message Passing Phil Schniter Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA) Supported in part by NSF grant CCF-1527162. itwist @ Aalborg University Aug 24, 2016 Standard

More information

Phil Schniter. Supported in part by NSF grants IIP , CCF , and CCF

Phil Schniter. Supported in part by NSF grants IIP , CCF , and CCF AMP-inspired Deep Networks, with Comms Applications Phil Schniter Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA), Mark Borgerding (OSU) Supported in part by NSF grants IIP-1539960, CCF-1527162,

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Asilomar 2011 Jason T. Parker (AFRL/RYAP) Philip Schniter (OSU) Volkan Cevher (EPFL) Problem Statement Traditional

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation

Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation Message Passing Algorithms for Compressed Sensing: II. Analysis and Validation David L. Donoho Department of Statistics Arian Maleki Department of Electrical Engineering Andrea Montanari Department of

More information

On convergence of Approximate Message Passing

On convergence of Approximate Message Passing On convergence of Approximate Message Passing Francesco Caltagirone (1), Florent Krzakala (2) and Lenka Zdeborova (1) (1) Institut de Physique Théorique, CEA Saclay (2) LPS, Ecole Normale Supérieure, Paris

More information

Probabilistic Graphical Models Lecture Notes Fall 2009

Probabilistic Graphical Models Lecture Notes Fall 2009 Probabilistic Graphical Models Lecture Notes Fall 2009 October 28, 2009 Byoung-Tak Zhang School of omputer Science and Engineering & ognitive Science, Brain Science, and Bioinformatics Seoul National University

More information

Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction

Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction Message Passing Algorithms for Compressed Sensing: I. Motivation and Construction David L. Donoho Department of Statistics Arian Maleki Department of Electrical Engineering Andrea Montanari Department

More information

Sparse Superposition Codes for the Gaussian Channel

Sparse Superposition Codes for the Gaussian Channel Sparse Superposition Codes for the Gaussian Channel Florent Krzakala (LPS, Ecole Normale Supérieure, France) J. Barbier (ENS) arxiv:1403.8024 presented at ISIT 14 Long version in preparation Communication

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

Message passing and approximate message passing

Message passing and approximate message passing Message passing and approximate message passing Arian Maleki Columbia University 1 / 47 What is the problem? Given pdf µ(x 1, x 2,..., x n ) we are interested in arg maxx1,x 2,...,x n µ(x 1, x 2,..., x

More information

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016

Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines. Eric W. Tramel. itwist 2016 Aalborg, DK 24 August 2016 Inferring Sparsity: Compressed Sensing Using Generalized Restricted Boltzmann Machines Eric W. Tramel itwist 2016 Aalborg, DK 24 August 2016 Andre MANOEL, Francesco CALTAGIRONE, Marylou GABRIE, Florent

More information

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems) Donghwan Kim and Jeffrey A. Fessler EECS Department, University of Michigan

More information

Risk and Noise Estimation in High Dimensional Statistics via State Evolution

Risk and Noise Estimation in High Dimensional Statistics via State Evolution Risk and Noise Estimation in High Dimensional Statistics via State Evolution Mohsen Bayati Stanford University Joint work with Jose Bento, Murat Erdogdu, Marc Lelarge, and Andrea Montanari Statistical

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Statistical Image Recovery: A Message-Passing Perspective. Phil Schniter

Statistical Image Recovery: A Message-Passing Perspective. Phil Schniter Statistical Image Recovery: A Message-Passing Perspective Phil Schniter Collaborators: Sundeep Rangan (NYU) and Alyson Fletcher (UC Santa Cruz) Supported in part by NSF grants CCF-1018368 and NSF grant

More information

Improving Approximate Message Passing Recovery of Sparse Binary Vectors by Post Processing

Improving Approximate Message Passing Recovery of Sparse Binary Vectors by Post Processing 10th International ITG Conference on Systems, Communications and Coding (SCC 2015) Improving Approximate Message Passing Recovery of Sparse Binary Vectors by Post Processing Martin Mayer and Norbert Goertz

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Scalable Inference for Neuronal Connectivity from Calcium Imaging

Scalable Inference for Neuronal Connectivity from Calcium Imaging Scalable Inference for Neuronal Connectivity from Calcium Imaging Alyson K. Fletcher Sundeep Rangan Abstract Fluorescent calcium imaging provides a potentially powerful tool for inferring connectivity

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015 Course 16:198:520: Introduction To Artificial Intelligence Lecture 9 Markov Networks Abdeslam Boularias Monday, October 14, 2015 1 / 58 Overview Bayesian networks, presented in the previous lecture, are

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising

BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising BM3D-prGAMP: Compressive Phase Retrieval Based on BM3D Denoising Chris Metzler, Richard Baraniuk Rice University Arian Maleki Columbia University Phase Retrieval Applications: Crystallography Microscopy

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Phil Schniter. Collaborators: Jason Jeremy and Volkan

Phil Schniter. Collaborators: Jason Jeremy and Volkan Bilinear Generalized Approximate Message Passing (BiG-AMP) for Dictionary Learning Phil Schniter Collaborators: Jason Parker @OSU, Jeremy Vila @OSU, and Volkan Cehver @EPFL With support from NSF CCF-,

More information

AMP-Inspired Deep Networks for Sparse Linear Inverse Problems

AMP-Inspired Deep Networks for Sparse Linear Inverse Problems 1 AMP-Inspired Deep Networks for Sparse Linear Inverse Problems Mark Borgerding, Philip Schniter, and Sundeep Rangan arxiv:1612.01183v2 [cs.it] 19 May 2017 Abstract Deep learning has gained great popularity

More information

How to Design Message Passing Algorithms for Compressed Sensing

How to Design Message Passing Algorithms for Compressed Sensing How to Design Message Passing Algorithms for Compressed Sensing David L. Donoho, Arian Maleki and Andrea Montanari, February 17, 2011 Abstract Finding fast first order methods for recovering signals from

More information

MMSE Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm

MMSE Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm Denoising of 2-D Signals Using Consistent Cycle Spinning Algorithm Bodduluri Asha, B. Leela kumari Abstract: It is well known that in a real world signals do not exist without noise, which may be negligible

More information

Binary Classification and Feature Selection via Generalized Approximate Message Passing

Binary Classification and Feature Selection via Generalized Approximate Message Passing Binary Classification and Feature Selection via Generalized Approximate Message Passing Phil Schniter Collaborators: Justin Ziniel (OSU-ECE) and Per Sederberg (OSU-Psych) Supported in part by NSF grant

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

Does l p -minimization outperform l 1 -minimization?

Does l p -minimization outperform l 1 -minimization? Does l p -minimization outperform l -minimization? Le Zheng, Arian Maleki, Haolei Weng, Xiaodong Wang 3, Teng Long Abstract arxiv:50.03704v [cs.it] 0 Jun 06 In many application areas ranging from bioinformatics

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

Minimizing Isotropic Total Variation without Subiterations

Minimizing Isotropic Total Variation without Subiterations MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Minimizing Isotropic Total Variation without Subiterations Kamilov, U. S. TR206-09 August 206 Abstract Total variation (TV) is one of the most

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Turbo-AMP: A Graphical-Models Approach to Compressive Inference

Turbo-AMP: A Graphical-Models Approach to Compressive Inference Turbo-AMP: A Graphical-Models Approach to Compressive Inference Phil Schniter (With support from NSF CCF-1018368 and DARPA/ONR N66001-10-1-4090.) June 27, 2012 1 Outline: 1. Motivation. (a) the need for

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

Approximate Message Passing for Bilinear Models

Approximate Message Passing for Bilinear Models Approximate Message Passing for Bilinear Models Volkan Cevher Laboratory for Informa4on and Inference Systems LIONS / EPFL h,p://lions.epfl.ch & Idiap Research Ins=tute joint work with Mitra Fatemi @Idiap

More information

Recent developments on sparse representation

Recent developments on sparse representation Recent developments on sparse representation Zeng Tieyong Department of Mathematics, Hong Kong Baptist University Email: zeng@hkbu.edu.hk Hong Kong Baptist University Dec. 8, 2008 First Previous Next Last

More information

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Brian M. Kurkoski, Kazuhiko Yamaguchi and Kingo Kobayashi kurkoski@ice.uec.ac.jp Dept. of Information and Communications Engineering

More information

Sparsity Regularization

Sparsity Regularization Sparsity Regularization Bangti Jin Course Inverse Problems & Imaging 1 / 41 Outline 1 Motivation: sparsity? 2 Mathematical preliminaries 3 l 1 solvers 2 / 41 problem setup finite-dimensional formulation

More information

An equivalence between high dimensional Bayes optimal inference and M-estimation

An equivalence between high dimensional Bayes optimal inference and M-estimation An equivalence between high dimensional Bayes optimal inference and M-estimation Madhu Advani Surya Ganguli Department of Applied Physics, Stanford University msadvani@stanford.edu and sganguli@stanford.edu

More information

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations

ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations ECE531 Screencast 9.2: N-P Detection with an Infinite Number of Possible Observations D. Richard Brown III Worcester Polytechnic Institute Worcester Polytechnic Institute D. Richard Brown III 1 / 7 Neyman

More information

This is an author-deposited version published in : Eprints ID : 16992

This is an author-deposited version published in :  Eprints ID : 16992 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Sean Borman and Robert L. Stevenson Department of Electrical Engineering, University of Notre Dame Notre Dame,

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

An Overview of Multi-Processor Approximate Message Passing

An Overview of Multi-Processor Approximate Message Passing An Overview of Multi-Processor Approximate Message Passing Junan Zhu, Ryan Pilgrim, and Dror Baron JPMorgan Chase & Co., New York, NY 10001, Email: jzhu9@ncsu.edu Department of Electrical and Computer

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

sparse and low-rank tensor recovery Cubic-Sketching

sparse and low-rank tensor recovery Cubic-Sketching Sparse and Low-Ran Tensor Recovery via Cubic-Setching Guang Cheng Department of Statistics Purdue University www.science.purdue.edu/bigdata CCAM@Purdue Math Oct. 27, 2017 Joint wor with Botao Hao and Anru

More information

Learning MMSE Optimal Thresholds for FISTA

Learning MMSE Optimal Thresholds for FISTA MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Learning MMSE Optimal Thresholds for FISTA Kamilov, U.; Mansour, H. TR2016-111 August 2016 Abstract Fast iterative shrinkage/thresholding algorithm

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 2016 Robert Nowak Probabilistic Graphical Models 1 Introduction We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, where U is a n k matrix and θ R k is a vector

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Estimating Unknown Sparsity in Compressed Sensing

Estimating Unknown Sparsity in Compressed Sensing Estimating Unknown Sparsity in Compressed Sensing Miles Lopes UC Berkeley Department of Statistics CSGF Program Review July 16, 2014 early version published at ICML 2013 Miles Lopes ( UC Berkeley ) estimating

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

The Minimax Noise Sensitivity in Compressed Sensing

The Minimax Noise Sensitivity in Compressed Sensing The Minimax Noise Sensitivity in Compressed Sensing Galen Reeves and avid onoho epartment of Statistics Stanford University Abstract Consider the compressed sensing problem of estimating an unknown k-sparse

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Continuous State MRF s

Continuous State MRF s EE64 Digital Image Processing II: Purdue University VISE - December 4, Continuous State MRF s Topics to be covered: Quadratic functions Non-Convex functions Continuous MAP estimation Convex functions EE64

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Passing and Interference Coordination

Passing and Interference Coordination Generalized Approximate Message Passing and Interference Coordination Sundeep Rangan, Polytechnic Institute of NYU Joint work with Alyson Fletcher (Berkeley), Vivek Goyal (MIT), Ulugbek Kamilov (EPFL/MIT),

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

DNNs for Sparse Coding and Dictionary Learning

DNNs for Sparse Coding and Dictionary Learning DNNs for Sparse Coding and Dictionary Learning Subhadip Mukherjee, Debabrata Mahapatra, and Chandra Sekhar Seelamantula Department of Electrical Engineering, Indian Institute of Science, Bangalore 5612,

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Adrien Todeschini Inria Bordeaux JdS 2014, Rennes Aug. 2014 Joint work with François Caron (Univ. Oxford), Marie

More information

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs)

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs) Machine Learning (ML, F16) Lecture#07 (Thursday Nov. 3rd) Lecturer: Byron Boots Undirected Graphical Models 1 Undirected Graphical Models In the previous lecture, we discussed directed graphical models.

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Graphical Models Adrian Weller MLSALT4 Lecture Feb 26, 2016 With thanks to David Sontag (NYU) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

Estimating LASSO Risk and Noise Level

Estimating LASSO Risk and Noise Level Estimating LASSO Risk and Noise Level Mohsen Bayati Stanford University bayati@stanford.edu Murat A. Erdogdu Stanford University erdogdu@stanford.edu Andrea Montanari Stanford University montanar@stanford.edu

More information

Enhanced Compressive Sensing and More

Enhanced Compressive Sensing and More Enhanced Compressive Sensing and More Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Nonlinear Approximation Techniques Using L1 Texas A & M University

More information

Sparse Approximation and Variable Selection

Sparse Approximation and Variable Selection Sparse Approximation and Variable Selection Lorenzo Rosasco 9.520 Class 07 February 26, 2007 About this class Goal To introduce the problem of variable selection, discuss its connection to sparse approximation

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Introduction to Low-Density Parity Check Codes. Brian Kurkoski

Introduction to Low-Density Parity Check Codes. Brian Kurkoski Introduction to Low-Density Parity Check Codes Brian Kurkoski kurkoski@ice.uec.ac.jp Outline: Low Density Parity Check Codes Review block codes History Low Density Parity Check Codes Gallager s LDPC code

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

Message-Passing Algorithms for GMRFs and Non-Linear Optimization

Message-Passing Algorithms for GMRFs and Non-Linear Optimization Message-Passing Algorithms for GMRFs and Non-Linear Optimization Jason Johnson Joint Work with Dmitry Malioutov, Venkat Chandrasekaran and Alan Willsky Stochastic Systems Group, MIT NIPS Workshop: Approximate

More information

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Anton Rodomanov Higher School of Economics, Russia Bayesian methods research group (http://bayesgroup.ru) 14 March

More information