NUMERICAL INVESTIGATION OF AERODYNAMIC SOUND RADIATED FROM A BLUFF BODY USING LIGHTHILL TENSOR

Size: px
Start display at page:

Download "NUMERICAL INVESTIGATION OF AERODYNAMIC SOUND RADIATED FROM A BLUFF BODY USING LIGHTHILL TENSOR"

Transcription

1 ICSV14 Carns Australa 9-1 July, 007 NUMERICAL INVESTIGATION OF AERODYNAMIC SOUND RADIATED FROM A BLUFF BODY USING LIGHTHILL TENSOR Shoj Kato 1, Hrosh Muraoka, Yuta Takahash, Tubagus Haedar, and Akyosh Ida 1 Abstract 1 Kogakun Unversty, Nakanomach. Hachoj-sh, Tokyo, , Japan skato@s.u-tokyo.ac.jp (emal address of lead author) Research Center of Computatonal Mechancs, Inc. Togosh NI-Bldg Togosh, Shnagawa-ku, Tokyo, , Japan actran@rccm.co.jp (emal address of lead author or presenter) Verfyng the effectveness of Lghthll tensor s applcaton coupled wth both Fnte Element Method (FEM) and Infnte Element Method (IEM) for aero acoustc scatterng analyss was the man purpose of ths research. The Lghthll tensor s classfed as the real source of aerodynamc sounds beng generated wthn a flud doman and understandng ts nature s crtcal n terms of nose reducton durng a product development phase. In order to evaluate both sound pressure strength and propagaton pattern, aeroacoustc felds surroundng a rectangular cylnder placed n a unform flow was tested. Lghthll tensor was taken from CFD (Front Flow/Blue, FLUENT) calculaton and the outcome was compared to ones usng Boundary Element Method (BEM) analyss based on reduced Curle s equaton along wth wnd tunnel expermental data. The man sound source was seen near the tralng edge of the cylnder at approxmately 1- tmes the length of the rectangle s sde. Although sgnfcant margns between the three methods were observed at low frequency, beyond 100Hz, the characterstc of sound pressure strength were closely matched. It became evdent that f consderaton regardng drectvty or the aerodynamc sound source scatterng needed to be taken nto account, ACTRAN (Lghthll tensor calculaton n the doman) applcaton was more promnent than utlzng reduced Curle s equaton (pressure on the surface). 1. INTRODUCTION One of the major problems n our socety s nose polluton and no matter where the sound orgnates, t s essental to understand how t s created, n order to control the magntude of ts effect. Commonly, the calculaton of the flow and sound felds are carred out separately as the relatve scalng for the two domans dffers. Also, t s stated that the aerodynamc sound s proportonal to the flow velocty order of 6 th to 8 th power. Aero acoustc nose s generated from vortces created when a flud makes contact wth a sold object n a flow feld, n ths paper a rectangular cylnder. Drect Numercal Smulaton (DNS) [1] was the obvous approach to aero acoustcs related to compressble Naver-Stokes equatons however, due to ts calculaton cost beng proportonal to Re 3 /M 4, ts use was lmted

2 ICSV July 007 Carns Australa to low Reynolds number flow. Smlarly, applcaton of BEM does have advantages n terms of reduced dmensonalty, however, as ts prncple can only take nto account the surface pressure from an object, t ends to be lmted for dpole analyss problems. Curle s equaton [] or the compact Green s functons are effectve under compact problem (sze of the propagated wavelength s consderably larger than the sze of the object) when dffracton effect s non-exstent. On the contrary, the FEM doman-based methods such as FEM/IEM [3] are more sutable for solvng exteror acoustc problems due to ts sparse matrces and effcent soluton procedures such as parallel calculatons along wth enablng a natural extenson of fnte element to an unbounded doman. Geometrcal complexty does not bear any effect on the effcency as t s based on the weak varatonal formulaton and sound hard condton s automatcally accounted as a natural boundary condton. Although the FEM offers hgh accuracy results, t should be noted that the computatonal load s heavy due to the need of dscretzaton of the whole computatonal doman (large stffness matrx). Lghthll s approach [4] s one, where the aerodynamc source s frst estmated usng ts analogy from the flow results then usng t to accurately obtan the true propagaton of the acoustc wave. The correspondng aerodynamc sound sources were obtaned by CFD analyss [5] under large eddy smulaton (LES) wth dynamc Smagornsky model. Couplng ths analogy wth FEM/IEM (see fgure 1) enables to facltate the calculaton of volumetrc sound propagaton wth hgh accuracy and constranng the nfnte boundary around the nose source culmnates n reducng calculaton tme and cost respectvely. Alternatvely, the Powell sound source (product of vortcty magntude and velocty) taken from CFD calculaton could replace the Lghthll tensor for acoustc calculaton. A square cylnder (sde length of 0.0m) was placed n a unform flow at varyng angles of attack (0 to 45 degrees) to determne ts turbulent nature. Essentally, outlnng dfferences between compact (BEM) and non-compact (FEM) sound was the am of ths paper. Fgure 1. Square cylnder and ts FEM/IEM boundary separaton Ths paper s organzed as follows: After ths ntroducton, the acoustc analogy s presented n secton. Secton 3 outlnes the square cylnder problem defnton and both numercal and contour results are compared n secton 4. The penultmate secton llustrate a smlar approach used on a sde mrror of a car and the fnal sectons summarze the valdty of ths research ndcatng plausble steps for further studes.. ACOUSTIC ANALOGY Frst the contnuty (1) and Naver-stokes () equatons are consdered. ρ ρv + = 0 (1) t x

3 ICSV July 007 Carns Australa ρv ρvv j ( pδj τj) + = t x x j j () Contnuty s dfferentated by t and sound terms are added to Naver-Stokes. Followng ths, equaton () s dfferentated by x and combnng wth equaton (1) provdes the followng. ( ρ ρ ) ( ρ ρ ) 0 0 a 0 = ρvv j + δj p a0 ρ τj t x x x xj [ ( ) ] (3) The fluctuaton densty s represented by ( ρ ρ0), where ρ 0 s the mean or atmospherc densty and a denotes the speed of sound. Placng the Lghthll tensor ( T ) term on the rght 0 hand sde of equaton (3) wll defne the Lghthll s equaton. j ρ ρ ρ ρ T ( 0) ( 0) j a 0 = t x x x xj (4) The weak varatonal form of equaton (4) s appled n ACTRAN [6] as derved by Obera et al [7,8]. ( ) ( ) T Σ ρ ρ δρ+ a ρ ρ dx= dx+ nδρdγ ( x ) (5) δρ j δρ j o o o t x x xj x x Ω Ω Γ j The two terms on the rght hand sde of equaton (5) s comprsed by volumetrc and surface aerodynamc source respectvely, where δρ s a test functon, Ω denotes the computatonal doman and Γ represent the surface boundary. In a far feld, acoustc pressure p a can be represented as follows. pa ( x, t) = a ( ρ ρ )( x, t) (6) 0 0 Hence aerodynamc sound propagated n a flow feld wth sold boundary can be defned by the followng Curle s equaton (7), where P s the pressure, T s the Lghthll tensor and S represents the sold object s surface. In addton, x represents the observaton pont, y s the locaton of the sound source, n s the normal vector from the boundary and r denotes the dstance between the source and the recpent. 1 Tj ( y, t r/ a0) 3 1 np ( y, t r/ a0 ) pa ( x, t) = d y ds (7) 4π x x r 4π x r j V S j Under low Mach number flow feld, the frst term on the rght of equaton (7), whch corresponds to quadrupole sound source can be neglected n relaton to the second term (dpole sound source). If the object scale s consderably smaller compared to the wavelength of the sound source, the dpole term s space dfferental s converted to tme dfferental resultng nto what we defne as the reduced Curle s equaton (8). In ths nstant r represent the dstance

4 ICSV July 007 Carns Australa between the recever and the centre of the sold object. 1 x pa( x, t) = np(, / y t r a0) ds (8) 4π a r t 0 S By defnng the Lghthll s tensor wthn the Helmholtz equaton (solved n the frequency doman), the surroundng sound pressure dstrbuton around the square cylnder and drectvty can be determned. 3. NUMERICAL CONDITIONS Two separate meshes sutable for flow and acoustc analyss were created to facltate the evaluaton process n terms of capturng the vortcty nature of the flow feld and the resultng sound wave propagaton nature respectvely. The flow feld mesh comprsed of.9 mllon elements and the Reynolds number was set to as llustrated below. Also, the LES calculaton results were used as a base for the reduced Curle s equaton applcaton to obtan the acoustc feature derved from surface pressure fluctuaton. Fgure. Aerodynamc boundary condton and grd structure Fve angles of attacks for the cylnder were tested (0, 10, 15, 30 and 45 degrees) and the spanwse length of the cylnder was set 15 tmes the sde length of the square. Boundary condtons were placed as to recreate the wnd tunnel settng and LES was appled to obtan the Lghthll tensor necessary for acoustc studes. Dmensons of the analyss doman and cylnder remaned unchanged, however the densty of the mesh was reduced to elements as shown n fgure 3. Fgure 3. Acoustc boundary condton and grd structure Unlke the aerodynamc mesh, the acoustc mesh does not need smlar densty as long as the elements sze are small enough to capture the wavelength of the relevant frequency. Nonreflectve boundary (IE) was placed for the surroundng except for the floor and cylnder whch

5 ICSV July 007 Carns Australa had the wall property (reflectve boundary). Acoustc smulatons were carred out across varyng Strouhal numbers (St = fl/u) havng relatve frequences between 49.5Hz to 734.5Hz n the goal of evaluatng sound propagaton nature, drectvty, peak frequency component and general effcency of the three dfferent methods. 4. RESULTS AND COMPARISON LES analyss llustrated that as the angle of attack attan 15 degrees, the separated flow re-attaches at the bottom of the cylnder whch decreases the sound source strength behnd and on the surface of the sold object as shown n fgure 4. Ths ndcates that the propagatng vortcty phase s not symmetrc between the top and bottom of the cylnder at ths partcular angle contrary to the others. Fgure 4. Velocty vector and Lghthll tensor dstrbuton ( log T j ) around the cylnder In essence the drectvty wll always be n a dpole shape when the reduced Curle s equaton s appled. Fgure 5 reterates that under smlar analyss usng a commercal BEM code, the drectvty s hardly affected by the angle of attack of the cylnder snce the analyss can be assumed as beng a compact body havng no dffracton effects. Fgure 5. Dstrbuton of sound pressure radated from a square cylnder (St = 0.13)

6 ICSV July 007 Carns Australa In contrast, as the Lghthll tensor represents the vortcty movement of the flow, the drectvty llustrate a quadrupole and dpole characterstcs under FEM condtons wth a compact body. Analyss method s effcences (reduced Curle s equaton, FEM, wnd tunnel experment) were compared usng the sound pressure level obtaned from a pont 1m lateral (Y drecton) to the square cylnder as demonstrated n Fgure 6. Fgure 6. Sound pressure level comparson between angle of attack at 0 degree and 15 degrees Both graphs have smlar curve patterns n terms of sound pressure fluctuaton ncludng the peak frequency at around 00Hz (St = 0.13) and except for the lower frequency regon; all three methods were wthn +10dB of each other. The mss algnment between the expermental and numercal analyss methods below 100Hz was probably due to the background nose created wthn the wnd tunnel. Followng these results, a slghtly more complex geometry was tested usng the Lghthll tensor applcaton to nvestgate the drectvty fluctuaton. 5. FURTHER STUDY A sde mrror of heght 0.3m and 0.1m radus was placed n a unform flow feld of 55m/s for LES calculaton usng FLUENT. Grd structures for both flow and sound analyss are shown below. Fgure 6. Aerodynamc and Acoustc mesh dmensons Smlar to the square cylnder case, the acoustc mesh (approxmately elements) was less dense compared to the aerodynamc mesh comprsng of.8 mllon elements. Although the frequency was set at 1000Hz (wavelength of 0.34m), the element sze was small enough to

7 ICSV July 007 Carns Australa accommodate up to 500Hz n order to maxmze the calculaton effcency. IE were placed on the ellpsodal surface of the acoustc grd. Fgure 7. Pressure and Powell sound source contours from FLUENT Approxmately 0000 teratons were carred out ( t = 6x10-5 ) to determne the wake characterstcs and the correspondng Lghthll tensor around the sde mrror shown n fgure 7. Applyng ths nto ACTRAN provded contours seen n fgure 8, where the sound seemed to be propagatng from a pont behnd the mrror. Fgure 8. Sound wave propagaton by the sde mrror (front and rear vew) Maxmum sound pressure level was calculated to be around 135dB and the hgh nose regon s manly concentrated at the back of the mrror. It s also evdent that sound pressure strength was dmnshed towards the front sde as the mrror surface dffracted the oncomng waves as llustrated n fgure 9. Fgure 9. Sound pressure level and Ampltude contour (sde vew)

8 ICSV July 007 Carns Australa 6. CONCLUSIONS Sound was generated from the rear of the cylnder at approxmately one to twce the sde length of the rectangular cylnder followng LES calculaton and the applcaton of Lghthll tensor allows the proper vsualzaton of sound drectvty and sound wave dstrbuton. When the cylnder was at angle of attack of 15 degrees, the re-attachment of the separated flow culmnated n a reducton effect upstream of the cylnder n both drectvty and dffracton. FEM provded both quadrupole and dpole drectvty characterstc at varyng angles unlke the reduced Curle s equaton cases where t contnuously generated dpole nature. However, all three methods showed smlarty n terms of numercal output concernng sound pressure levels across varable frequency range especally for the peak frequency value, whch stayed constant regardless of the angle of the cylnder at around 00Hz. It s therefore vald to state that compact (BEM) and non-compact (FEM) sound source do not dffer n terms of numercal result, hence the applcaton would be dependent on whether t s necessary to account for the sound source s dynamc movement and the accurate capturng of drectvty pattern. As a suggeston to further cement ths fndng, the case could be analysed at a small angle of attack and frequency ncrement along wth other calculaton methods for result refnement. Applyng a more complex geometry wll also be nvestgated. REFERENCES [1] C. Kato, M. Kaho, and A. Manabe, "Industral Applcaton of LES n Mechancal Engneerng" (nvted paper), DNS/LES Progress and Challenges, pp , Greyden Press (001-11). [] N. Curle, The nfluence of Sold Boundares on Aerodynamc Sound, Proc. Roy. Soc (London), Volume A 31, No. 1187, pp (1955). [3] R.J. Astley, G.J. Macaulay and J.P. Coyette, Mapped wave envelope elements for acoustc radaton and scatterng, JSV, 170 (1), (1994) [4] M.J. Lghthll, Waves n fluds, CAMBRIDGE UNIVERSITY PRESS, [5] K. Ohnsh, H. Zhang, T. Tomohro, H.Kayama, Kamsu-cho, M.Nawa, N.Tanguch, The evdence of the nose analyss technque by LES usng general-purpose code FrontFlow, JSFM, Vol. 18, (004) [6] Free-Feld-Technologes-S.A., Actran 006 Aeroacoustc Solutons: Actran/TM and Actran/LA - User s Manual, Belgum, 006. [7] A. Obera, F. Ronaldkn and T. Hughes, Computatonal Procedures for Determnng structural-acoustc Response due to Hydrodynamc Sources, Comput. Methods Appl. Mech. Engrg, Volume 190, pp (000). [8] A. Obera, F. Ronaldkn and T. Hughes, Computaton of Tralng-Edge Nose due to Turbulent Floe over an aerofol, Volume 40, pp (00). [9] M.S. Howe, Theory of Vortex Sound, CAMBRIDGE UNIVERSITY PRESS, 199.

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved

Flow equations To simulate the flow, the Navier-Stokes system that includes continuity and momentum equations is solved Smulaton of nose generaton and propagaton caused by the turbulent flow around bluff bodes Zamotn Krll e-mal: krart@gmal.com, cq: 958886 Summary Accurate predctons of nose generaton and spread n turbulent

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS

STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Blucher Mechancal Engneerng Proceedngs May 0, vol., num. www.proceedngs.blucher.com.br/evento/0wccm STUDY ON TWO PHASE FLOW IN MICRO CHANNEL BASED ON EXPERI- MENTS AND NUMERICAL EXAMINATIONS Takahko Kurahash,

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump

Wall Pressure Fluctuations and Flow Induced Noise in a Turbulent Boundary Layer over a Bump Proceedngs of the rd Internatonal Conference on Vortex Flows and Vortex Models (ICVFM005) Yokohama, JAPAN, November 1 -, 005 Wall Pressure Fluctuatons and Flow Induced Nose n a Turbulent Boundary Layer

More information

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method

A large scale tsunami run-up simulation and numerical evaluation of fluid force during tsunami by using a particle method A large scale tsunam run-up smulaton and numercal evaluaton of flud force durng tsunam by usng a partcle method *Mtsuteru Asa 1), Shoch Tanabe 2) and Masaharu Isshk 3) 1), 2) Department of Cvl Engneerng,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.

Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia. APPLICATION OF FFOWC WILLIAM AND HAWKING EQUATION TO OUND RADIATION BY VIBRATING OLID OBJECT IN A VICOU FLUID: INCONITENCIE AND THE CORRECT OLUTION. Alex Znovev Department of Mechancal Engneerng, Unversty

More information

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA

Analysis of Unsteady Aerodynamics of a Car Model with Radiator in Dynamic Pitching Motion using LS-DYNA Analyss of Unsteady Aerodynamcs of a Car Model wth Radator n Dynamc Ptchng Moton usng LS-DYNA Yusuke Nakae 1, Jro Takamtsu 1, Hrosh Tanaka 1, Tsuyosh Yasuk 1 1 Toyota Motor Corporaton 1 Introducton Recently,

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube

A Numerical Study of Heat Transfer and Fluid Flow past Single Tube A Numercal Study of Heat ransfer and Flud Flow past Sngle ube ZEINAB SAYED ABDEL-REHIM Mechancal Engneerng Natonal Research Center El-Bohos Street, Dokk, Gza EGYP abdelrehmz@yahoo.com Abstract: - A numercal

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG

Application of the Adjoint Method for Vehicle Aerodynamic Optimization. Dr. Thomas Blacha, Audi AG Applcaton of the Adjont Method for Vehcle Aerodynamc Optmzaton Dr. Thomas Blacha, Aud AG GoFun, Braunschweg 22.3.2017 2 AUDI AG, Dr. Thomas Blacha, Applcaton of the Adjont Method for Vehcle Aerodynamc

More information

LOCALISATION OF FLOW-INDUCED NOISE SOURCE GENERATED AT THE AEOLIAN TONE USING HYBRID CFD-BEM AND TIME-REVERSAL METHOD

LOCALISATION OF FLOW-INDUCED NOISE SOURCE GENERATED AT THE AEOLIAN TONE USING HYBRID CFD-BEM AND TIME-REVERSAL METHOD LOCALISATION OF FLOW-INDUCED NOISE SOURCE GENERATED AT THE AEOLIAN TONE USING HYBRID CFD-BEM AND TIME-REVERSAL METHOD Abstract Paul Croaker 1, Akhlesh Mman, Con J. Doolan 1 and Ncole Kessssoglou 1 1 School

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY

AERODYNAMICS I LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY LECTURE 6 AERODYNAMICS OF A WING FUNDAMENTALS OF THE LIFTING-LINE THEORY The Bot-Savart Law The velocty nduced by the sngular vortex lne wth the crculaton can be determned by means of the Bot- Savart formula

More information

Aerodynamic Sound Radiated from Longitudinal and Transverse Vortex Systems Generated around the Leading Edge of Delta Wings

Aerodynamic Sound Radiated from Longitudinal and Transverse Vortex Systems Generated around the Leading Edge of Delta Wings Open Journal of Flud Dynamcs, 016, 6, 101-118 Publshed Onlne June 016 n ScRes. http://www.scrp.org/ournal/ofd http://dx.do.org/10.436/ofd.016.6009 Aerodynamc Sound Radated from Longtudnal and Transverse

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Characteristics of sound radiation by turbulent flow over a hydrofoil and a bare-hull SUBOFF

Characteristics of sound radiation by turbulent flow over a hydrofoil and a bare-hull SUBOFF Paper Number 105, Proceedngs of ACOUSTICS 011 Characterstcs of sound radaton by turbulent flow over a hydrofol and a bare-hull SUBOFF L Chen and Ian MacGllvray Martme Platform Dvson, Defence Scence and

More information

A Comparative Investigation into Aerodynamic Performances of Two Set Finned Bodies with Circular and Non Circular Cross Sections

A Comparative Investigation into Aerodynamic Performances of Two Set Finned Bodies with Circular and Non Circular Cross Sections A Comparatve Investgaton nto Aerodynamc Performances of Two Set Fnned Bodes wth Crcular and Non Crcular Cross Sectons MAHMOUD MANI and SHADI MAHJOOB Aerospace Engneerng Department Amrkabr Unversty of Technology

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Survey of applications of discrete vortex method in civil engineering

Survey of applications of discrete vortex method in civil engineering Budownctwo Archtektura 5 (2009) 29-38 Survey of applcatons of dscrete vortex method n cvl engneerng Tomasz Nowck Lubln Unversty of Technology, Faculty of Cvl Engneerng and Archtecture, Department of Structural

More information

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER.

THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. THE NEAR-WALL INFLUENCE ON THE FLOW AROUND A SINGLE SQUARE CYLINDER. Campregher, Rubens Faculty of Mechancal Engneerng, FEMEC Federal Unversty of Uberlânda, UFU 38400-902 Uberlânda - Brazl campregher@mecanca.ufu.br

More information

2 MODELS A typcal hgh-sded artculated lorry, whch was nvestgated extensvely by Baker and hs colleagues n wnd tunnels and later used n the dynamc analy

2 MODELS A typcal hgh-sded artculated lorry, whch was nvestgated extensvely by Baker and hs colleagues n wnd tunnels and later used n the dynamc analy The Seventh Internatonal Colloquum on Bluff Body Aerodynamcs and Applcatons (BBAA7) Shangha, Chna; September 2-6, 2012 Determnaton of aerodynamc characterstcs of a vehcle mmerged n the wake of brdge tower

More information

Indeterminate pin-jointed frames (trusses)

Indeterminate pin-jointed frames (trusses) Indetermnate pn-jonted frames (trusses) Calculaton of member forces usng force method I. Statcal determnacy. The degree of freedom of any truss can be derved as: w= k d a =, where k s the number of all

More information

Tensor Smooth Length for SPH Modelling of High Speed Impact

Tensor Smooth Length for SPH Modelling of High Speed Impact Tensor Smooth Length for SPH Modellng of Hgh Speed Impact Roman Cherepanov and Alexander Gerasmov Insttute of Appled mathematcs and mechancs, Tomsk State Unversty 634050, Lenna av. 36, Tomsk, Russa RCherepanov82@gmal.com,Ger@npmm.tsu.ru

More information

Finite Element Modelling of truss/cable structures

Finite Element Modelling of truss/cable structures Pet Schreurs Endhoven Unversty of echnology Department of Mechancal Engneerng Materals echnology November 3, 214 Fnte Element Modellng of truss/cable structures 1 Fnte Element Analyss of prestressed structures

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

Large Eddy Simulation of Airfoil Self-Noise Using OpenFOAM

Large Eddy Simulation of Airfoil Self-Noise Using OpenFOAM Page of Arcraft Engneerng and Aerospace Technology raft Engneerng and Aerospace Technolog Large Eddy Smulaton of Arfol Self-Nose Usng OpenFOAM Abstract Purpose The purpose of ths paper s to nvestgate arfol

More information

Numerical Analysis of Heat Transfer and Pressure Drop in a Channel Equipped with Triangular Bodies in Side-By-Side Arrangement

Numerical Analysis of Heat Transfer and Pressure Drop in a Channel Equipped with Triangular Bodies in Side-By-Side Arrangement mercal Analyss of Heat Transfer and Pressure Drop n a Channel Equpped wth Trangular Bodes n Sde-By-Sde Arrangement E. Manay Department of Mechancal Engneerng, Faculty of Engneerng, Bayburt Unversty, Bayburt,

More information

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests

Simulated Power of the Discrete Cramér-von Mises Goodness-of-Fit Tests Smulated of the Cramér-von Mses Goodness-of-Ft Tests Steele, M., Chaselng, J. and 3 Hurst, C. School of Mathematcal and Physcal Scences, James Cook Unversty, Australan School of Envronmental Studes, Grffth

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

A Cartesian-grid integrated-rbf method for viscoelastic flows

A Cartesian-grid integrated-rbf method for viscoelastic flows Home Search Collectons Journals About Contact us My IOPscence A Cartesan-grd ntegrated-rbf method for vscoelastc flows Ths artcle has been downloaded from IOPscence. Please scroll down to see the full

More information

Finite Wings Steady, incompressible flow

Finite Wings Steady, incompressible flow Steady, ncompressble flow Geometrc propertes of a wng - Fnte thckness much smaller than the span and the chord - Defnton of wng geometry: a) Planform (varaton of chord and sweep angle) b) Secton/Arfol

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Simulation of Flow Pattern in Open Channels with Sudden Expansions

Simulation of Flow Pattern in Open Channels with Sudden Expansions Research Journal of Appled Scences, Engneerng and Technology 4(19): 3852-3857, 2012 ISSN: 2040-7467 Maxwell Scentfc Organzaton, 2012 Submtted: May 11, 2012 Accepted: June 01, 2012 Publshed: October 01,

More information

in a horizontal wellbore in a heavy oil reservoir

in a horizontal wellbore in a heavy oil reservoir 498 n a horzontal wellbore n a heavy ol reservor L Mngzhong, Wang Ypng and Wang Weyang Abstract: A novel model for dynamc temperature dstrbuton n heavy ol reservors s derved from and axal dfference equatons

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Pressure Measurements Laboratory

Pressure Measurements Laboratory Lab # Pressure Measurements Laboratory Objectves:. To get hands-on experences on how to make pressure (surface pressure, statc pressure and total pressure nsde flow) measurements usng conventonal pressuremeasurng

More information

Constitutive Modelling of Superplastic AA-5083

Constitutive Modelling of Superplastic AA-5083 TECHNISCHE MECHANIK, 3, -5, (01, 1-6 submtted: September 19, 011 Consttutve Modellng of Superplastc AA-5083 G. Gulano In ths study a fast procedure for determnng the constants of superplastc 5083 Al alloy

More information

Aero Acoustic Noise Analysis of a Locomotive Cooling System Ducts and Structure Optimization

Aero Acoustic Noise Analysis of a Locomotive Cooling System Ducts and Structure Optimization Internatonal Journal of Engneerng and Technology Innovaton, vol. 5, no. 3, 015, pp. 178-188 Aero Acoustc Nose Analyss of a Locomotve Coolng System Ducts and Structure Optmzaton Shan-Shan L 1,*, Mng L 1,,

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

Flow Induced Vibration

Flow Induced Vibration Flow Induced Vbraton Project Progress Report Date: 16 th November, 2005 Submtted by Subhrajt Bhattacharya Roll no.: 02ME101 Done under the gudance of Prof. Anrvan Dasgupta Department of Mechancal Engneerng,

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD)

INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) INTERROGATING THE FLOW BEHAVIOUR IN A NOVEL MAGNETIC DESICCANT VENTILATION SYSTEM USING COMPUTATIONAL FLUID DYNAMICS (CFD) Auwal Dodo*, Valente Hernandez-Perez, Je Zhu and Saffa Rffat Faculty of Engneerng,

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS

DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS Munch, Germany, 26-30 th June 2016 1 DESIGN OPTIMIZATION OF CFRP RECTANGULAR BOX SUBJECTED TO ARBITRARY LOADINGS Q.T. Guo 1*, Z.Y. L 1, T. Ohor 1 and J. Takahash 1 1 Department of Systems Innovaton, School

More information

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems

A new integrated-rbf-based domain-embedding scheme for solving fluid-flow problems Home Search Collectons Journals About Contact us My IOPscence A new ntegrated-rbf-based doman-embeddng scheme for solvng flud-flow problems Ths artcle has been downloaded from IOPscence. Please scroll

More information

Simulation of 2D Elastic Bodies with Randomly Distributed Circular Inclusions Using the BEM

Simulation of 2D Elastic Bodies with Randomly Distributed Circular Inclusions Using the BEM Smulaton of 2D Elastc Bodes wth Randomly Dstrbuted Crcular Inclusons Usng the BEM Zhenhan Yao, Fanzhong Kong 2, Xaopng Zheng Department of Engneerng Mechancs 2 State Key Lab of Automotve Safety and Energy

More information

Computation of drag and flow noise along wavy wall in turbulent flow

Computation of drag and flow noise along wavy wall in turbulent flow roceedngs of 0 th Internatonal Congress on Acoustcs, ICA 010 3-7 August 010, ydney, Australa Computaton of drag and flow nose along wavy wall n turbulent flow Huaxn Zhang (1), Kunyu Meng (1) and Yongln

More information

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrcal Engneerng 6 Volodymyr KONOVAL* Roman PRYTULA** PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY Ths paper provdes a

More information

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO

FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO ISTP-,, PRAGUE TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FORCED CONVECTION HEAT TRANSFER FROM A RECTANGULAR CYLINDER: EFFECT OF ASPECT RATIO Mohammad Rahnama*, Seyed-Mad Hasheman*, Mousa Farhad**

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

LATTICE BOLTZMANN SIMULATION OF FLOW OVER A CIRCULAR CYLINDER AT MODERATE REYNOLDS NUMBERS

LATTICE BOLTZMANN SIMULATION OF FLOW OVER A CIRCULAR CYLINDER AT MODERATE REYNOLDS NUMBERS THERMAL SCIENCE: Year 014, Vol. 18, No. 4, pp. 135-146 135 LATTICE BOLTZMANN SIMULATION OF FLOW OVER A CIRCULAR CYLINDER AT MODERATE REYNOLDS NUMBERS by Dharmaraj ARUMUGA PERUMAL a*, Gundavarapu V. S.

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD)

Calculation of Aerodynamic Characteristics of NACA 2415, 23012, Airfoils Using Computational Fluid Dynamics (CFD) Calculaton of Aerodynamc Characterstcs of NACA 2415, 23012, 23015 Arfols Usng Computatonal Flud Dynamcs (CFD) Hmanshu Parashar Abstract A method of solvng the flow over arfols of Natonal Advsory Commttee

More information

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves

An Experimental and Numerical Study on Pressure Drop Coefficient of Ball Valves A. Ozdomar, K. Turgut Gursel, Y. Pekbey, B. Celkag / Internatonal Energy Journal 8 (2007) An Expermental and Numercal Study on Pressure Drop Coeffcent of Ball Valves www.serd.at.ac.th/rerc A. Ozdamar*

More information

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models

Handout: Large Eddy Simulation I. Introduction to Subgrid-Scale (SGS) Models Handout: Large Eddy mulaton I 058:68 Turbulent flows G. Constantnescu Introducton to ubgrd-cale (G) Models G tresses should depend on: Local large-scale feld or Past hstory of local flud (va PDE) Not all

More information

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features

Analysis of the Magnetomotive Force of a Three-Phase Winding with Concentrated Coils and Different Symmetry Features Analyss of the Magnetomotve Force of a Three-Phase Wndng wth Concentrated Cols and Dfferent Symmetry Features Deter Gerlng Unversty of Federal Defense Munch, Neubberg, 85579, Germany Emal: Deter.Gerlng@unbw.de

More information

Corresponding author: Tsubasa Okaze,

Corresponding author: Tsubasa Okaze, Academc Artcle Journal of Heat Island Insttute Internatonal Vol. - (7) Large-Eddy Smulaton of on-isothermal Flow around a Buldng Usng Artfcally Generated Inflow Turbulent Fluctuatons of Wnd Velocty and

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion Assessment of Ste Amplfcaton Effect from Input Energy Spectra of Strong Ground Moton M.S. Gong & L.L Xe Key Laboratory of Earthquake Engneerng and Engneerng Vbraton,Insttute of Engneerng Mechancs, CEA,

More information

Solution of the Navier-Stokes Equations

Solution of the Navier-Stokes Equations Numercal Flud Mechancs Fall 2011 Lecture 25 REVIEW Lecture 24: Soluton of the Naver-Stokes Equatons Dscretzaton of the convectve and vscous terms Dscretzaton of the pressure term Conservaton prncples Momentum

More information

Simulation of Turbulent Flow Using FEM

Simulation of Turbulent Flow Using FEM Internatonal Journal of Engneerng and Technology Volume 2 No. 8, August, 2012 Smulaton of Turbulent Flow Usng FEM Sabah Tamm College of Computng, AlGhurar Unversty, Duba, Unted Arab Emrates. ABSTRACT An

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES

Numerical Studies on Flow Features past a Backward Facing Sharp Edge Step Introducing Hybrid RANS-LES ISSN NO : 49-7455 Numercal Studes on Flow Features past a Backward Facng Sharp Edge Step Introducng Hybrd RANS-LES Abstract Dr. Nrmal Kumar Kund Assocate Professor, Department of Producton Engneerng Veer

More information

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate

Consideration of 2D Unsteady Boundary Layer Over Oscillating Flat Plate Proceedngs of the th WSEAS Internatonal Conference on Flud Mechancs and Aerodynamcs, Elounda, Greece, August -, (pp-) Consderaton of D Unsteady Boundary Layer Over Oscllatng Flat Plate N.M. NOURI, H.R.

More information

Color Rendering Uncertainty

Color Rendering Uncertainty Australan Journal of Basc and Appled Scences 4(10): 4601-4608 010 ISSN 1991-8178 Color Renderng Uncertanty 1 A.el Bally M.M. El-Ganany 3 A. Al-amel 1 Physcs Department Photometry department- NIS Abstract:

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH

DETERMINATION OF UNCERTAINTY ASSOCIATED WITH QUANTIZATION ERRORS USING THE BAYESIAN APPROACH Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata Proceedngs, XVII IMEKO World Congress, June 7, 3, Dubrovn, Croata TC XVII IMEKO World Congress Metrology n the 3rd Mllennum June 7, 3,

More information

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices

Amplification and Relaxation of Electron Spin Polarization in Semiconductor Devices Amplfcaton and Relaxaton of Electron Spn Polarzaton n Semconductor Devces Yury V. Pershn and Vladmr Prvman Center for Quantum Devce Technology, Clarkson Unversty, Potsdam, New York 13699-570, USA Spn Relaxaton

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

Uncertainty as the Overlap of Alternate Conditional Distributions

Uncertainty as the Overlap of Alternate Conditional Distributions Uncertanty as the Overlap of Alternate Condtonal Dstrbutons Olena Babak and Clayton V. Deutsch Centre for Computatonal Geostatstcs Department of Cvl & Envronmental Engneerng Unversty of Alberta An mportant

More information

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method

Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method Proceedngs of the 3th WSEAS Internatonal Conference on APPLIED MATHEMATICS (MATH'8) Numercal Smulaton of Ld-Drven Cavty Flow Usng the Lattce Boltzmann Method M.A. MUSSA, S. ABDULLAH *, C.S. NOR AZWADI

More information

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Vibrating Beam

GEO-SLOPE International Ltd, Calgary, Alberta, Canada   Vibrating Beam GEO-SLOPE Internatonal Ltd, Calgary, Alberta, Canada www.geo-slope.com Introducton Vbratng Beam Ths example looks at the dynamc response of a cantlever beam n response to a cyclc force at the free end.

More information

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon

Computational investigation of the external excitation frequency effect on liquid sloshing phenomenon Computatonal nvestgaton of the external exctaton frequency effect on lqud sloshng phenomenon Abdallah Bouabd *, Zed Drss, Laboratory of Electro-Mechanc Systems (LASEM) Natonal School of Engneers of Sfax

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures

Analytical Gradient Evaluation of Cost Functions in. General Field Solvers: A Novel Approach for. Optimization of Microwave Structures IMS 2 Workshop Analytcal Gradent Evaluaton of Cost Functons n General Feld Solvers: A Novel Approach for Optmzaton of Mcrowave Structures P. Harscher, S. Amar* and R. Vahldeck and J. Bornemann* Swss Federal

More information

Journal of Fluid Science and Technology

Journal of Fluid Science and Technology Journal of Flud Scence and Technology Numercal Smulaton of Incompressble Flows around a Fsh Model at Low Reynolds Number Usng Seamless Vrtual Boundary Method * Hdetosh NISHIDA ** and Kyohe TAJIRI ** **Department

More information

Modeling acoustic transducer surface waves by Transmission Line Matrix method

Modeling acoustic transducer surface waves by Transmission Line Matrix method Modelng acoustc transducer surface waves by Transmsson Lne Matrx method Andreas Wlde Fraunhofer Insttut für Integrerte Schaltungen, Außenstelle EAS Peter-Chrstan Eccardt Semens AG, CT MS, München Wllam

More information