One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects

Size: px
Start display at page:

Download "One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects"

Transcription

1 ISSL One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects Earth imagers captured during Earth re-encounter 67P/Churyumov Gerasimenko comet *Ryu Funase, Takaya Inamori, Satoshi Ikari, Naoya Ozaki, Shintaro Nakajima, Kaito Ariu, Hiroyuki Koizumi (Univ. of Tokyo), Shingo Kameda (Rikkyo Univ.), 1 Atsushi Tomiki, Yuta Kobayashi, Taichi Ito, Yasuhiro Kawakatsu (JAXA)

2 Small spacecraft development at Univ. of Tokyo XI-V (2005): 1kg XI-IV (2003): 1kg for tech. demo. The first CubeSat Still operational (>9yrs) Still operational (>12yrs) PRISM (2009): 8kg for remote sensing (20m GSD) Still operational (>6yrs) Nano-JASMINE: 33kg for Astrometry (space science mission) Awaiting launch PROCYON(2014): 65kg The first interplanetary micro-spacecraft 60kg micro-sats for remote sensing (6m GSD) Hodoyoshi-1 Hodoyoshi-3 and Hodoyoshi-4 (2014) 2

3 Beginning of PROCYON mission Rideshare interplanetary launch opportunity with Hayabusa-2 was announced. Joint mission proposal by U of Tokyo and JAXA was approved (small sat experiences + deep space exploration experiences) How small auxiliary payloads are mounted on the rocket Hayabusa2 PAF Micro satellites can be installed here JAXA Support structure to implement micro satellites 3

4 Trajectory plan to flyby asteroid 2000 DP107 12/03/2014 Launch 12/03/2015 Earth swingby (Sun-Earth fixed rotational frame) 2016/05/12 Asteroid flyby What is the asteroid 2000 DP107? Binary asteroid (asteroid with satellite ) PHA (Potentially Hazardous Asteroid) 4

5 Real-time Line-of-sight image-feedback control to track asteroid direction Rotate +Z +X +Y 1-axis Rotatable Telescope (for Optical Navigation and flyby observation) Observable Star Magnitude: 12 Surface resolution: Rotational speed: <55[deg/s] 5

6 Mission of PROCYON 3. Asteroid flyby (Jan or later) SUN 2. Earth swingby (Dec. 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Primary mission Demonstration of a micro-spacecraft bus system for deep space exploration (including propulsion, deep space communication and orbit determination system) Secondary (advanced) missions GaN-based high efficiency SSPA Demo of a novel DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) Deep space maneuver to perform Earth swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [Scientific observation mission] Wide-view observation of geocorona (ultra-violet emission from hydrogen atmosphere) with Lyman alpha imager from a vantage point outside of the Earth s geocorona distribution 6

7 External View of PROCYON SAP HGA (25dBi) LGA (CMD) RCS (Xe cold gas) 1.5 m 1.5 m LGA (TLM) +Y +Z +X RCS (Xe cold gas) RCS (Xe cold gas) Telescope MGA(14dBi) 0.55 m Ion thruster (Xe) Star Tracker Geocorona Imager (LAICA) RCS (Xe cold gas) +Y +Z LGA (CMD) LGA (TLM) RCS (Xe cold gas) +X 7

8 Actual outlook of PROCYON (SAP stowed) (SAP deployed) 8

9 Internal configuration 0.55 m 9

10 One-year development schedule Year Month Schedule Launch approval Start of S/C Development Conceptual study & System design (05/2013~) EM: Engineering Model STM: Structure and Thermal Model FM: Flight Model EM/STM test FM (component)fabrication Thermal Vacuum test Vibration/Shock test Table sat test FM integration & test I/F test Ion thruster test Thermal Vacuum test Vibration test Separation shock test Very small team (20~30 staffs and students at one place) enabled quick decision making for quick development. Do not try to optimize the design. Find a feasible solution. S/C Delivery Launch (Dec. 3) 10

11 Deep space flight results 11

12 0.12 Primary mission results Demonstration of micro-spacecraft bus system for deep space exploration (requires 2~3 months) Unloading maneuver Norm of the angular momentum/nms SUN 366±3 μn T. coefficient: Doppler shift/mm s -1 Launch Ion beam current/ma (Dec. 3, 2014, together with Hayabusa-2) Power generation/management (>240W) Thermal design to accommodate wide range of Solar distance (0.9~1.5AU) and power consumption mode (electric prop. on/off, 137W/105W)) Attitude control (3-axis, 0.01deg stability) Deep space communication & navigation from ~60,000,000 km Earth distance Deep space micro propulsion system RCS for attitude control/momentum management (8 thrusters) Ion propulsion system for trajectory control (1 axis, Isp=1000s, thrust>300un) 12

13 Secondary (advanced) mission results 3. Asteroid flyby (Jan or later) SUN 2. Earth swingby (end of 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed Completed GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Demonstration of a novel DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) to improve conventional DDOR orbit determination accuracy Deep space maneuver for Earth swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Wide-view observation of geocorona with Lyα imager from a vantage point outside of the Earth s geocorona distribution 13

14 Secondary (advanced) mission results 3. Asteroid flyby (Jan or later) TCM (Trajectory Correction Maneuver) experiment using RCS to a virtual target Guidance Accuracy will not be improved by TCM4: ~ 90[km]@3σ on B-plane, which SUNsimulated the final stage of the Earth swing-by. 2. Earth swingby (end of 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Completed Demonstration of a novel DDOR (Delta Achievement of deep space maneuver by the Differential One-way Range) orbit ion thruster (Transition of the closest approach determination method ( Chirp DDOR ) to distance to Earth projected on the B-plane) improve conventional DDOR orbit determination accuracy <100km Deep accuracy space maneuver (3σ) was for achieved, Earth swing-by and which trajectory satisfied change the requirement to target an for asteroid flyby 2000 Optical DP107 navigation flyby guidance and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Wide-view observation of geocorona with Lyα imager from a vantage point outside of the Earth s geocorona distribution 14

15 Secondary (advanced) mission results 3. Asteroid flyby (Jan or later) SUN 2. Earth swingby (end of 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed Completed GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Demonstration of a novel DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) to Several improve stars conventional darker than 12th DDOR magnitude orbit were successfully determination detected accuracy by the telescope, which satisfied the requirement for the optical navigation Deep space and guidance maneuver to for an Earth asteroid. swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Wide-view observation of geocorona with Lyα imager from a vantage point outside of the Earth s geocorona distribution 15

16 Secondary (advanced) mission results 3. Asteroid flyby (Jan or later) SUN 2. Earth swingby (end of 2015) PROCYON 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed Completed Attitude maneuver profile to simulate the motion of an asteroid. Distance: km GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Demonstration of a novel Earth DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) to improve conventional DDOR orbit determination accuracy Deep space maneuver for Earth swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Autonomous Wide-view observation Earth tracking of geocorona error angle with was Lyα <0.4deg imager from in this a particular vantage point environment, outside of which the satisfied Earth s geocorona the accuracy distribution requirement when the flyby altitude is a dozen kilometers. 16

17 恒星 ISSL Secondary (advanced) mission results Paper under review ~400,000 km 3. Asteroid flyby Geocoronal emission (in Rayleigh) on Jan 9, 2015 Kameda et (Jan. al., in 2016 prep. or later) Apollo 16 [Carruthers et al., 1976] SUN 2. Earth swingby (end of 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed Completed 67P/Churyumov Gerasimenko comet Completed GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Demonstration of a novel DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) to improve conventional DDOR orbit determination accuracy Deep space maneuver for Earth swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Wide-view observation of geocorona with Lyα imager from a vantage point outside of the Earth s geocorona distribution Hydrogen emission around 67P/Churyumov Gerasimenko comet was observed on Sep. 13, This comet is the destination of the European Space Agency's Rosetta mission. 17

18 Secondary (advanced) mission results 3. Asteroid flyby (Jan or later) SUN 2. Earth swingby (end of 2015) 1. Launch (Dec. 3, 2014 together with Hayabusa-2) Completed Completed Completed GaN-based SSPA (Solid-State Power Amplifier) with the world s highest RF efficiency (>30%) Demonstration of a novel DDOR (Delta Differential One-way Range) orbit determination method ( Chirp DDOR ) to improve conventional DDOR orbit determination accuracy Deep space maneuver for Earth swing-by and trajectory change to target an asteroid flyby Optical navigation and guidance to an asteroid Automatic Line-of-sight image-feedback control to track asteroid during close fast flyby [scientific observation mission] Wide-view observation of geocorona with Lyα imager from a vantage point outside of the Earth s geocorona distribution 18

19 Summary of the flight results Demonstration of deep space bus system success! Scientific mission (geocorona observation) success! All the mission were successful except for: long-time deep space maneuver by the ion thruster actual asteroid flyby Within the very limited development time and budget, we could demonstrated the capability of this class of spacecraft to perform deep space mission by itself and it can be a useful tool of deep space exploration. 19

20 Future prospects 20

21 Possible deep space missions by small sats Hayabusa/MINERVA( JAXA) InSight/MarCO( NASA/JPL-Caltech) PROCYON Nano-sat (1~10~20kg) Example of appropriate mission type: Mother-ship/daughter-ship mission Focused mission where Limited function/performance is/should be admitted (by limiting the scope of the mission and/or limiting the environment where the spacecraft should work (work only on-site ) Micro-sat (~50kg) Example of appropriate mission type: Precursor to a larger mission (Human planetary exploration, asteroid mining, etc) which requires high performance High comm. speed High power generation High propulsive capability High obs. performance/large aperture, 21 etc

22 Possibility of international collaboration Co-development of a single spacecraft Each country provide component(s) in which it has an advantage over others, and a country is responsible for the spacecraft integration e.g.) Japan has a solid expertise on: Miniature and high-performance deep space transponder Highly efficient SSPA (solid state power amplifier) Other bus component (especially for micro-sats) A single mission by mother-ship and daughter-ship provided by different countries e.g.) Mars satellite exploration with a mothership from Japan and CubeSats from other countries e.g.) Europa/Enceladus exploration with a mothership (for remote sensing) from US and CubeSats (for multiple low-altitude flyby observation of a plume?) from other countries Sharing of deep space launch opportunities Maximize the science return from limited number of deep space launch opportunities from limited countries (US, Europe, Japan, etc.) Explore and exploit every launch opportunity over the world to maximize science return as a whole science community e.g.) rideshare, piggyback (mothership/daughtership) Do not miss any chance to ride! 22

23 EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) onboard SLS EM-1 in 2018 Mission to Earth Moon Lagrange Point by University of Tokyo and JAXA

24 Summary ISSL Univ. of Tokyo and JAXA successfully developed the world s first 50kg-class micro-spacecraft PROCYON at very low-cost within very short time (~1year). PROCYON s one-year deep space flight was quite successful. Almost all the missions were and we could demonstrate that micro-spacecraft can be a useful tool of deep space exploration. Future prospects of deep space exploration by small sats Micro-satellite with high performance requirement Nano-satellite which is optimized for limited mission scope International collaboration is essential to maximize the outcome of deep space exploration Sharing ideas, components, sub-systems, spacecraft, launch opportunities We would like to contribute to extending our knowledge of the solar system. 24

25 CubeSat (2003,2005) 世界最小 10cm の超小型衛星バス開発 Challenging new space frontier by small satellites, Univ. of Tokyo

One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects

One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects SSC16-III-05 One-year Deep Space Flight Results of the World s First Full-scale 50-kg-class Deep Space Probe PROCYON and Its Future Prospects Ryu Funase, Takaya Inamori, Satoshi Ikari, Naoya Ozaki, Shintaro

More information

Keywords: PROCYON, micro-spacecraft operation, low-thrust. 1. Introduction

Keywords: PROCYON, micro-spacecraft operation, low-thrust. 1. Introduction LOW-THRUST TRAJECTORY DESIGN AND OPERATIONS OF PROCYON, THE FIRST DEEP-SPACE MICRO-SPACECRAFT Stefano Campagnola (1), Naoya Ozaki (2), Yoshihide Sugimoto (3), Chit Hong Yam (3), Hongru Chen (4), Yosuke

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Current Status of Hayabusa2 Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Small Body Assessment Group 19th Meeting, June 14, 2018 Outline of mission flow Launch December

More information

Space Science in JAXA

Space Science in JAXA Space Science in JAXA Planet Earth May 15, 2017 taken by Hayabusa-2 Saku Tsuneta, PhD JAXA Vice President Director General, Institute of Space and Astronautical Science 2017 IAA Planetary Defense Conference,

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage

Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage Future Development Plan of Sample return Capsule evolved on the basis of HAYABUSA SRC heritage Kazuhiko Yamada(JAXA) Contents Back ground Importance of sample return capsule technology Future sample return

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan ,

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan , TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL Takanao Saiki (), Yoji Shirasawa (), Osamu Mori () and Jun ichiro Kawaguchi (4) ()()()(4) Japan Aerospace Exploration Agency,

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Unified Propulsion System to Explore Near-Earth Asteroids by a 50 kg Spacecraft

Unified Propulsion System to Explore Near-Earth Asteroids by a 50 kg Spacecraft SSC14-VI-6 Unified Propulsion System to Explore Near-Earth Asteroids by a 50 kg Spacecraft Hiroyuki KOIZUMI Research Center for Advanced Science and Technology, The University of Tokyo, Japan Faculty of

More information

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration National Aeronautics and Space Administration Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech) EM-1 Secondary Payload

More information

Small and Micro/nano-satellite Possibilities in Space Science and Exploration - Examples from Japan -

Small and Micro/nano-satellite Possibilities in Space Science and Exploration - Examples from Japan - PROCYON 14 Hodoyoshi-1 ハイブリッド 14 ロケット Small and Micro/nano-satellite Possibilities in Space Science and Exploration - Examples from Japan - Shinichi Nakasuka and Ryu Funase University of Tokyo PRISM 09

More information

Gravitational & Planetary Research Program

Gravitational & Planetary Research Program 2012 Gravitational & Planetary Research Program Goals Why? Relativity, Gravitational Waves, Geodesy, Aeronomy Space Technology Education and Training: STEM Team Who? NASA Universities Industry Foreign

More information

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon September 20, 2017 ISAS/JAXA 1 DESTINY + Overview This mission is to acquire the compact deep space explorer technology, fly-by

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken Rosetta Mission Scope and CONOPS ASE 379L Space Systems Engineering Fb February 4, 2008 Group 1: Johnny Sangree Ankita Mh Maheshwarih Kevin Burnett Nimisha Mittal Zach Aitken 1 Need Statement To understand

More information

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist ROSETTA One Comet Rendezvous and two Asteroid Fly-bys Rita Schulz Rosetta Project Scientist Giotto Mission 1986 1P/Halley DS-1 Mission 2001 19P/Borrelly Stardust Mission 2004 81P/ Wild 2 Deep Impact Mission

More information

Nano-JASMINE project

Nano-JASMINE project Nano-JASMINE project NAOJ Y. Kobayashi Overview nj project Plan of talk Aim of nj project Historic facts Collaboration with University of Tokyo Telescope and CCD Observation along great circle Cosmic radiation

More information

Orbital Dynamics and Impact Probability Analysis

Orbital Dynamics and Impact Probability Analysis Orbital Dynamics and Impact Probability Analysis (ISAS/JAXA) 1 Overview This presentation mainly focuses on a following point regarding planetary protection. - How to prove that a mission satisfies the

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

Mission Design Options for Solar-C Plan-A

Mission Design Options for Solar-C Plan-A Solar-C Science Definition Meeting Nov. 18, 2008, ISAS Mission Design Options for Solar-C Plan-A Y. Kawakatsu (JAXA) M. Morimoto (JAXA) J. A. Atchison (Cornell U.) J. Kawaguchi (JAXA) 1 Introduction 2

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail

Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_43-Pk_50, 2014 Original Paper Mission Analysis of Sample Return from Jovian Trojan Asteroid by Solar Power Sail By Jun MATSUMOTO 1), Ryu FUNASE

More information

Attitude Determination and Control

Attitude Determination and Control Attitude Determination and Control Dan Hegel Director, Advanced Development hegel@bluecanyontech.com 1 Dan Hegel - Intro Director of Advanced Development at Blue Canyon Technologies Advanced mission concepts

More information

NASA s Planetary Science Program Status

NASA s Planetary Science Program Status NASA s Planetary Science Program Status Presentation to VEXAG James L. Green Director, Planetary Science Division October 28, 2009 1 Outline MSL status Announcements of Opportunity R&A International Agreements

More information

EQUULEUS Mission Analysis: Design of the Transfer Phase

EQUULEUS Mission Analysis: Design of the Transfer Phase EQUULEUS Mission Analysis: Design of the Transfer Phase By Kenta OSHIMA, 1) Stefano CAMPAGNOLA, 2) Chit Hong YAM, 3) Yuki KAYAMA, 4) Yasuhiro KAWAKATSU, 5) Naoya OZAKI, 6) Quentin VERSPIEREN, 6) Kota KAKIHARA,

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids -

Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids - Hayabusa and Hayabusa2 - Challenges for Sample Return from Asteroids - 14th BroadSky Workshop : Opening Up Ways to Deep Space Cleveland, Ohio, USA October 18, 2016 Makoto Yoshikawa (JAXA) Lunar and Planetary

More information

Toward Venus orbit insertion of Akatsuki

Toward Venus orbit insertion of Akatsuki Toward Venus orbit insertion of Akatsuki Takeshi Imamura (JAXA, Japan) Lightning and Airglow Camera Mid-IR Camera UV Imager Ultra-Stable Oscillator 1µm Camera 2µm Camera Development and launch Objective:

More information

Nano-JASMINE: A Small Infrared Astrometry Satellite

Nano-JASMINE: A Small Infrared Astrometry Satellite SSC07-VI-4 Nano-JASMINE: A Small Infrared Astrometry Satellite 21 st Annual AIAA/USU Conference on Small Satellites 14th/August/2007 Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako,

More information

Astrodynamics of Moving Asteroids

Astrodynamics of Moving Asteroids Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture

More information

The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission. Hannah Kerner Flight Software Lead

The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission. Hannah Kerner Flight Software Lead The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission Hannah Kerner Flight Software Lead Mission overview Selected by NASA for SIMPLEx program in November 2015 to fly a 6U cubesat carrying a planetary

More information

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions

Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Agile Maneuvers for Near Earth Object (NEO) Fly-by Missions Vaios Lappas 1, Bong Wie 2 and Jozef van der Ha 3 1 Surrey Space Centre, University of Surrey, GU2 7XH, United Kingdom, E-mail: v.lappas@surrey.ac.uk

More information

Shally Saraf, Stanford University

Shally Saraf, Stanford University LAser GRavitational-wave ANtenna in GEocentric Orbit Shally Saraf, Stanford University for the LAGRANGE team Background LAser GRavitational-wave ANtenna in GEocentric Orbit was proposed originally as a

More information

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Dan Mazanek Senior Space Systems Engineer NASA Langley Research Center Virginia Space Grant Consortium

More information

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada) August 10 th, 2016 30 th AIAA/USU

More information

Mitigation of Restrictions in Planetary Missions by using Interplanetary Parking Orbits and Aeroassist

Mitigation of Restrictions in Planetary Missions by using Interplanetary Parking Orbits and Aeroassist Mitigation of Restrictions in Planetary Missions by using Interplanetary Parking Orbits and Aeroassist Naoko Ogawa, Yuya Mimasu, Kazuhisa Fujita, Hiroshi Takeuchi 3, Keita Tanaka 4, Shinichiro Narita and

More information

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission Geoffrey A. Landis NASA Glenn Research Center COMPASS Team at NASA Glenn: Steve Oleson, Melissa McGuire, Aloysius Hepp, James

More information

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system Gary Quinsac, PhD student at PSL Supervisor: Benoît Mosser Co-supervisors: Boris Segret, Christophe Koppel icubesat,

More information

Presentation to SBAG January 2016

Presentation to SBAG January 2016 Presentation to SBAG January 2016 Julie Castillo-Rogez (JPL/Caltech/NASA) Les Johnson (Marshall Space Flight Center/NASA) And the NEAScout Team Edit as appropriate AES EM-1 Secondary Payload Overview HEOMD

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Operation status for the asteroid explorer, Hayabusa2

Operation status for the asteroid explorer, Hayabusa2 Operation status for the asteroid explorer, Hayabusa2 October 23, 2018 JAXA Hayabusa2 Project Regarding Hayabusa2: Contents Today Report on TD1-R1-A TD1-R3 operation plan TD1-R1-A Touchdown 1 rehearsal

More information

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by PRELIMINAJ3.:( SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI Prepared by Space Applications Corporation 6/8/92.. 1 SCOPE 1.1 IDENTIFICATION 1.2 OVERVIEW This

More information

Expanding Science with SmallSats/CubeSats

Expanding Science with SmallSats/CubeSats National Aeronautics and Space Administration Expanding Science with SmallSats/CubeSats Outer Planets Analysis Group John D. Baker 2/2/2016 2016, Government Sponsorship Acknowledged National Aeronautics

More information

Expanding opportunities for lunar gravity capture

Expanding opportunities for lunar gravity capture Expanding opportunities for lunar gravity capture Keita Tanaka 1, Mutsuko Morimoto 2, Michihiro Matsumoto 1, Junichiro Kawaguchi 3, 1 The University of Tokyo, Japan, 2 JSPEC/JAXA, Japan, 3 ISAS/JAXA, Japan,

More information

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying Kieran A. Carroll, Gedex Systems Inc. Henry Spencer, SP Systems Robert E. Zee, Space Flight Laboratory CASI ASTRO 2016 30 th Annual

More information

Stanford, Space Gravity Research Group

Stanford, Space Gravity Research Group Stanford, Space Gravity Research Group John W. Conklin, Sasha Buchman, and Robert Byer Gravitational science Earth observation: Geodesy, aeronomy Gravity-waves 1 Space Gravity Technology Development Drag-free

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the The Discovery Program's prime objective is to enhance our understanding of the Solar System by exploring the planets, their moons and small bodies such as comets and asteroids. Another important objective

More information

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT Chikako Hirose (), Nobuaki Ishii (), Yasuhiro Kawakatsu (), Chiaki Ukai (), and Hiroshi Terada () () JAXA, 3-- Yoshinodai

More information

483 Innovation Jam. Interplanetary Small Satellite Missions. JPL-Inspired Brainstorming Session February 13, 2012

483 Innovation Jam. Interplanetary Small Satellite Missions. JPL-Inspired Brainstorming Session February 13, 2012 483 Innovation Jam Interplanetary Small Satellite Missions JPL-Inspired Session February 13, 2012 Credit for Innovation Jam Concepts: John Ziemer, James Smith, Andy Klesh Photo Credit: Stellar Cauldrons,

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Toward Venus orbit insertion of Akatsuki

Toward Venus orbit insertion of Akatsuki Toward Venus orbit insertion of Akatsuki Takeshi Imamura (JAXA, Japan) Lightning and Airglow Camera Mid-IR Camera UV Imager Ultra-Stable Oscillator 1µm Camera 2µm Camera Development and launch Objective:

More information

Escape Trajectories from Sun Earth Distant Retrograde Orbits

Escape Trajectories from Sun Earth Distant Retrograde Orbits Trans. JSASS Aerospace Tech. Japan Vol. 4, No. ists30, pp. Pd_67-Pd_75, 06 Escape Trajectories from Sun Earth Distant Retrograde Orbits By Yusue OKI ) and Junichiro KAWAGUCHI ) ) Department of Aeronautics

More information

PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS*

PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS* . AIAA-98-4393 PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS* Paul A. Penzo, Associate Fellow AIAA+ Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena,

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Rosetta Optical Navigation

Rosetta Optical Navigation Rosetta Optical Navigation Mathias Lauer ESA / ESOC / Flight Dynamics Page 1 Overview Rosetta: Mission and Spacecraft Asteroid Flybys (Steins): - Scenario - Navigation Strategy - Image Processing - Autonomous

More information

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan

Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan Toshinori Kuwahara*, Yoshihiro Tomioka, Yuta Tanabe, Masato Fukuyama, Yuji Sakamoto, Kazuya Yoshida, Tohoku University, Japan The 3 rd Nano-Satellite Symposium Micro/Nano Satellite & Debris Issues December

More information

Development of Orbit Analysis System for Spaceguard

Development of Orbit Analysis System for Spaceguard Development of Orbit Analysis System for Spaceguard Makoto Yoshikawa, Japan Aerospace Exploration Agency (JAXA) 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-8510, Japan yoshikawa.makoto@jaxa.jp Tomohiro

More information

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin Low Cost Helicon Propulsion System for CubeSat future mission scenarios T4i - University of Padova D.Pavarin Centro di Ateneo Studi e Attività Spaziali University of Padova Padova, Italy Technology for

More information

Trajectory Design for the JAXA Moon Nano-Lander OMOTENASHI

Trajectory Design for the JAXA Moon Nano-Lander OMOTENASHI Trajectory Design for the JAXA Moon Nano-Lander OMOTENASHI Javier Hernando-Ayuso, Yusuke Ozawa The University of Tokyo 7-3- Hongo, Bunkyo-ku, Tokyo 3-8656, Japan; +8-42-336-2439 javier.hernando@ac.jaxa.jp

More information

SOLAR-C Mission Option-A (Plan-A)

SOLAR-C Mission Option-A (Plan-A) SOLAR-C Mission Option-A (Plan-A) H. Hara(NAOJ) JAXA SOLAR-C WG 2010 Oct 10 3 rd SOLAR-C Science Definition Meeting Interim Report SOLAR-C Concept Two options are under study: Option-A (so-called Plan-A):

More information

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis European Space Agency Agence Spatiale Européenne directorate of operations and infrastructure ground systems engineering department mission analysis office MAO Working Paper No. 483 Issue 1, Rev. 0 Solar

More information

Mission Trajectory Design to a Nearby Asteroid

Mission Trajectory Design to a Nearby Asteroid Mission Trajectory Design to a Nearby Asteroid A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree

More information

Operation status of the asteroid explorer, Hayabusa2

Operation status of the asteroid explorer, Hayabusa2 Operation status of the asteroid explorer, Hayabusa2 November 8, 2018 JAXA Hayabusa2 Project Regarding Hayabusa2 Agenda Report on TD1-R3 operation Report on BOX-C operation Description of conjunction operations

More information

Where you can put your asteroid

Where you can put your asteroid Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

MarCO: Early Operations of the First CubeSats to Mars

MarCO: Early Operations of the First CubeSats to Mars MarCO: Early Operations of the First CubeSats to Mars SSC18-WKIX-04 Andrew Klesh, Brian Clement, Cody Colley, John Essmiller, Daniel Forgette, Joel Krajewski, Anne Marinan, Tomas Martin-Mur, Joel Steinkraus,

More information

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying The Space Congress Proceedings 2016 (44th) The Journey: Further Exploration for Universal Opportunities May 25th, 10:45 AM Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion,

More information

Enabling Low Cost Planetary Missions Through Rideshare Opportuni;es

Enabling Low Cost Planetary Missions Through Rideshare Opportuni;es Enabling Low Cost Planetary Missions Through Rideshare Opportuni;es J. J. Lang, J. D. Baker, T. P. McElrath, T. Moreno, J. S. Snyder / California InsCtute of Technology June 20, 2013 A Low Cost Approach

More information

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency

AKATSUKI s Second Journey to Venus. 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency AKATSUKI s Second Journey to Venus 7 October 2015 Chikako Hirose Japan Aerospace Exploration Agency My STK usage history (2005-2009) JAXA conjunction assessment system JAXA CA system was developed in 2007

More information

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury

ESA UNCLASSIFIED For Official Use. BepiColombo à Exploring Mercury BepiColombo à Exploring Mercury ESA / JAXA BepiColombo Mercury Mercury has always been something of a puzzle for planetary scientists. Its close position to the Sun means it is very difficult to observe.

More information

Evaluation of Mother-Daughter Architectures for Asteroid Belt Exploration

Evaluation of Mother-Daughter Architectures for Asteroid Belt Exploration Evaluation of Mother-Daughter Architectures for Asteroid Belt Exploration Leonard D. Vance, 1 Space and Terrestrial Robotic Exploration Laboratory, University of Arizona, Tucson Arizona, 85721 USA Jekan

More information

Solar & Electric Sailing Overview

Solar & Electric Sailing Overview Solar & Electric Sailing Overview KISS Technology Development Workshop (May 15-18, 2018) NASA Image NASA Image Jared Dervan NASA/MSFC Acknowledgments Les Johnson (MSFC Project Formulation Office) Bruce

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari

Electric Propulsion Survey: outlook on present and near future technologies / perspectives. by Ing. Giovanni Matticari Electric Propulsion Survey: outlook on present and near future technologies / perspectives by Ing. Giovanni Matticari Electric Propulsion: a concrete reality on many S/C GOCE ARTEMIS ARTEMIS SMART-1 EP

More information

ORBIT DETERMINATION DEMONSTRATION FOR AKATSUKI (PLANET-C) MISSION

ORBIT DETERMINATION DEMONSTRATION FOR AKATSUKI (PLANET-C) MISSION ORBIT DETERMINATION DEMONSTRATION FOR AKATSUKI (PLANET-C) MISSION Tsutomu Ichikawa (1), Nobuaki Ishii (2), Hiroshi Takeuchi (2),Makoto Yoshikawa (2), Takaji Kato (2),Sho Taniguchi (3) Chiaki Aoshima (3),Tomoko

More information

Collectible Projectosats

Collectible Projectosats Collectible Projectosats Darin Ragozzine Harvard University 03-05- 04 California Institute of Technology NASA Institute for Advanced Concepts Student Visions of the Future Program Advisor: Dr. Sarah Stewart

More information

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018

Payloads. Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 Payloads Andrew J. Ball Short Course on Small Satellites, IPPW-15 Boulder, CO, 9 June 2018 1 Outline Biography Natural Sciences (mostly Physics ) Bachelor degree (U. of Cambridge) M.Sc. in Spacecraft Technology

More information

NASA Planetary Science Programs

NASA Planetary Science Programs NASA Planetary Science Programs James L. Green NASA, Planetary Science Division February 19, 2015 Presentation at OPAG 1 Outline Mission events Passed FY15 Budget elements President s FY16 Budget Discovery

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

NEW HORIZONS PLUTO APPROACH NAVIGATION

NEW HORIZONS PLUTO APPROACH NAVIGATION AAS 04-136 NEW HORIZONS PLUTO APPROACH NAVIGATION James K. Miller, Dale R. Stanbridge, and Bobby G. Williams The navigation of the New Horizons spacecraft during approach to Pluto and its satellite Charon

More information

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon The two NWO spacecraft will orbit about the libration point created by the Sun and Earth/Moon barycenter at the far side

More information

Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost

Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost CubeSat Workshop 2011 August 6-7 Logan, Utah Valles Marineris Interplanetary CubeSats: Opening the Solar System to a Broad Community at Lower Cost Robert Staehle* Diana Blaney Hamid Hemmati Martin Lo Pantazis

More information

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France BIRDY T Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France M. Agnan ESEP - Odysseus Space Ltd., Taiwan J.J. Miau - NCKU, Taiwan G. Quinsac - LESIA/Paris observatory, France P. Rosenblatt

More information

Hayabusa's Adventure around a Tiny Asteroid Itokawa

Hayabusa's Adventure around a Tiny Asteroid Itokawa Hayabusa's Adventure around a Tiny Asteroid Itokawa COSPAR Capacity Building Workshop on Planetary Science July 23 - Aug. 3, 2007 Montevideo, Uruguay M. Yoshikawa, A. Fujiwara, J. Kawaguchi (JAXA) Hayabusa

More information

Kurt Lindstrom: Overview of New Horizons. Hal Weaver: Overview of the Science. Glen Fountain: Overview of the Mission

Kurt Lindstrom: Overview of New Horizons. Hal Weaver: Overview of the Science. Glen Fountain: Overview of the Mission Kurt Lindstrom: Overview of New Horizons Hal Weaver: Overview of the Science Glen Fountain: Overview of the Mission Kurt Lindstrom: Overview of the New Horizons DEIS Kenneth Kumor: Overview of the NEPA

More information

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions

Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Miniaturised Asteroid Remote Geophysical Observer (M-ARGO): A stand-alone deep space CubeSat system for lowcost science and exploration missions Prepared by R. Walker (1), D. Koschny, C. Bramanti & ESA

More information

SpW Application from JAXA

SpW Application from JAXA SpW Application from JAXA 18/May/2006 SpaceWire Working Group Meeting 6 Tetsuo YOSHIMITSU (ISAS/JAXA) The MINERVA rover primary investigator & A man involved in SpaceWire Masaharu NOMACHI (Osaka University)

More information

The Science Scenario of the SELENE-2 Mission

The Science Scenario of the SELENE-2 Mission The Science Scenario of the SELENE-2 Mission Manabu Kato, Kohtaro Matsumoto, Tatsuaki Okada, Satoshi Tanaka, and Science Working Group for Post- SELENE Project Japan Aerospace Exploration Agency ISAS &

More information

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury BepiColombo Project and MPO Status Comprehensive Explora1on of Planet Mercury Joe Zender BepiColombo Deputy PS, ESA/ESTEC BepiColombo Previously: Ø Proba2 Science Coordinator, until 12/2013 Ø ProbaV, Project

More information

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview Mission Overview OPAG Meeting November 8 th, 2006 Ryan Anderson & Daniel Calvo EAGLE: Study Goals Develop a set of science goals for a flagship mission to Enceladus Investigate mission architectures that

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS

DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS DEFLECTING HAZARDOUS ASTEROIDS FROM COLLISION WITH THE EARTH BY USING SMALL ASTEROIDS N. Eismont (1), M. Boyarsky (1), A. Ledkov (1), B.Shustov (2), R. Nazirov (1), D. Dunham (3) and K. Fedyaev (1) (1)

More information