Lesson 14: Van der Pol Circuit and ode23s

Size: px
Start display at page:

Download "Lesson 14: Van der Pol Circuit and ode23s"

Transcription

1 Lesson 4: Van der Pol Circuit and ode3s 4. Applied Problem. A series LRC circuit when coupled via mutual inductance with a triode circuit can generate a sequence of pulsing currents that have very rapid rates of changes. Because of the very large derivatives, there can be very strong constraints on the step sizes so that large numbers of time steps are required. Such systems are called stiff and require special numerical methods. The Matlab command odedemo illustrates some stiff differential equations and two stiff solvers called ode3s and ode5s. 4. Differential Equation Model. A series LRC circuit with imposed voltage is modeled by a single second order differential equation for the charge, Q(t), L Q'' + R Q' + /C Q = V(t) and Q() and Q'() are given. The current is defined to be I = Q'. This equation is derived from Kirchhoff's law, which requires the sum of the voltage drops to be equal to the imposed voltage, V(t). The voltage drops are L Q'' for self inductance, R Q' for resistance and /C Q for capacitance. In our problem (see the figure below), I is the current in the left circuit. V(t) = M i' where M is the mutual inductance and i(t) is the current in the triode circuit (the right circuit in the figure below). In the center circuit the voltage drop across the capacitor is /C Q, and it must be equal to the grid voltage, x(t), in the triode. Thus, C x(t) = Q(t) and C x' = Q' = I. The x(t) and i(t) are related by empirical observations so that i = a x - b x 3 where

2 the a and b are constants determined via curve fitting to data. Thus, i' = a x' - b 3x x' and i' = a I/C - b 3(Q/C) I/C. This allows one to write the system in terms of a single second order equation. Moreover, by scaling the time and charge variables, this single equation will have the form, where y and y' are the scaled charge and current and µ is a function of the parameters in the above model, y'' - µ( - y )y' + y =. This is called Van der Pol's equation, and for large µ this is a stiff differential equation. Figure: Van der Pol Circuit

3 3 The above second order differential equation can be equivalently written as a coupled system of two differential equations for y (t) = y(t) and y (t) = y'(t). By definition the derivative of y must be y. The derivative of y is y'' which we can solve for via the second order differential equation. Thus, the equivalent coupled system is y ' = y y ' = µ( - y )y - y with y () = y() and with y () = y'(). Matlab's ode3s and ode5s can be used to solve such systems. As a first step in the study of this system, we consider the steady state solutions, which are defined by both derivatives being set equal to zero so that = y = f (y, y ) and = µ( - y )y - y = f (y, y ). * * The two solutions are given by y = and y =. The Jacobian of [f f ]' is f = f f = * µ y y y y J * * y f y µ ( (y ) ) =. µ The steady state solutions are not stable because the Jacobian, the derivative matrix, evaluated at (,) has positive real eigenvalues, µ/ ± ((µ/) -) /. Moreover, if µ is large, then the time dependent solutions will have large rates of change so that the system is stiff. 4.3 Method of Solution. We will use Matlab's stiff solver called ode3s. This is much more sophisticated than the simple Euler-trapezoid method that was used in the previous lesson. However, its formulation is some what similar to the implicit nature of each time step in the Eulertraperzoid method.

4 4 4.4 Matlab Implementation. The single Van der Pol second order differential equation must be converted, as above, to a system of differential equations for the scaled charge, denoted by the symbol y(), and for the scaled current, denoted by the symbol y(). The m-files for this system are called ypvdpol.m and vdpol.m. In the first calculation we use µ = and the final time should be about ten times µ. The graph is for the scaled charge versus time. The graph for the scaled current has a series of spikes; in the Van der Pol circuit this might be series of flashes if the resistance was a light bulb. function ypvdpol=ypvdpol(t,y) ypvdpol() = y(); ypvdpol() = *(-y()^)*y()-y(); ypvdpol= [ypvdpol() ypvdpol()]'; % your name, your student number, lesson number clear; tf = ; % choose tf about ten times mu yo = [ ]; [t y] = ode3s('ypvdpol',[ tf],yo); plot(t,y(:,)); title('your name, your student number, lesson number') xlabel('time') ylabel('charge') %plot(y(:,),y(:,));

5 .5 your name, your student number, lesson number charge time 5 5 current spikes time

6 6 4.5 Numerical Experiments. In the next calculation we decreased µ from to, and have graphed the output as scaled current versus scaled charge, and as scaled charge and current versus time. Note the derivatives are not as large for the smaller value of µ. 3 van der Pol with mu =. current charge

7 7 3 van der Pol with mu =. charge and current time 4.6 Additional Calculations. Consider the above Van der Pol equation with y() = 3., y'() =., variable µ and using ode3s and ode5s. (a). State the second order differential equation and the equivalent system of differential equations. (b). (c). (d). (e). Modify the ypvdpol.m and vdpop.m files. Execute the vdpol.m file for µ = +*.S. Use ode3s and ode5s. Repeat (c) for µ = 5 +*.S and +*.S. Compare the graphs and number of time steps.

Lesson 15: Oregonator, Chemical Reactions and ode15s

Lesson 15: Oregonator, Chemical Reactions and ode15s Lesson 15: Oregonator, Chemical Reactions and ode15s 15.1 Applied Problem. The chemical reaction with bromous acid, bromide ion and cerium ion exhibits a remarkable chemical attributes, which oscillate

More information

Lesson 13: Rapid Cooling and Euler-trapezoid

Lesson 13: Rapid Cooling and Euler-trapezoid Lesson 13: Rapid Cooling and Euler-trapezoid 13.1 Applied Problem. If an object is being cooled very rapidly, and the model is Newton's law of cooling, then the constant c in u t = c(usur - u) will be

More information

Lesson 13: Rapid Cooling and Euler-trapezoid

Lesson 13: Rapid Cooling and Euler-trapezoid Lesson 3: Rapid Cooling and Euler-trapezoid 3. Applied Problem. If an object is being cooled very rapidly, and the model is Newton's law of cooling, then the constant c in u t = c(usur - u) will be large.

More information

Lesson 9: Predator-Prey and ode45

Lesson 9: Predator-Prey and ode45 Lesson 9: Predator-Prey and ode45 9.1 Applied Problem. In this lesson we will allow for more than one population where they depend on each other. One population could be the predator such as a fox, and

More information

Lesson 11: Mass-Spring, Resonance and ode45

Lesson 11: Mass-Spring, Resonance and ode45 Lesson 11: Mass-Spring, Resonance and ode45 11.1 Applied Problem. Trucks and cars have springs and shock absorbers to make a comfortable and safe ride. Without good shock absorbers, the truck or car will

More information

Falling Mass and Euler Methods

Falling Mass and Euler Methods Lesson 2: Falling Mass and Euler Methods 2.1 Applied Problem. Consider a mass, which is falling through a viscous medium. One example is a falling rock, and a second example is a person in parachute. These

More information

Falling Mass and Improved Euler

Falling Mass and Improved Euler Lesson 3: Falling Mass and Improved Euler 3.1 Applied Problem. Consider a mass which is falling through a viscous medium. One example is a falling rock, and a second example is a person in parachute. These

More information

TUTORIAL: STATE VARIABLES and MATLAB

TUTORIAL: STATE VARIABLES and MATLAB TUTORIAL TUTORIAL: STATE VARIABLES and MATLAB Time-domain analysis of circuits with more than one L and C is difficult because it requires solution of characteristic equations higher than second degree.

More information

NUMERICAL ANALYSIS PROJECT PART I: ORDINARY DIFFERENTIAL EQUATIONS

NUMERICAL ANALYSIS PROJECT PART I: ORDINARY DIFFERENTIAL EQUATIONS NUMERIA ANAYSIS PROJET PART I: ORDINARY DIFFERENTIA EQUATIONS Accademic year 20072008 1 Introduction Professor Eleuterio. F. Toro aboratory of Applied Mathematics Department of ivil and Environmental Engineering

More information

S#ff ODEs and Systems of ODEs

S#ff ODEs and Systems of ODEs S#ff ODEs and Systems of ODEs Popula#on Growth Modeling Let the number of individuals in a given area at time t be. At time the number is so that is the number of individuals that have arrived in the area

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

MATH 100 Introduction to the Profession

MATH 100 Introduction to the Profession MATH 100 Introduction to the Profession Differential Equations in MATLAB Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2012 fasshauer@iit.edu MATH 100 ITP 1 What

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

More information

2 Solving Ordinary Differential Equations Using MATLAB

2 Solving Ordinary Differential Equations Using MATLAB Penn State Erie, The Behrend College School of Engineering E E 383 Signals and Control Lab Spring 2008 Lab 3 System Responses January 31, 2008 Due: February 7, 2008 Number of Lab Periods: 1 1 Objective

More information

Lesson 9: Diffusion of Heat (discrete rod) and ode45

Lesson 9: Diffusion of Heat (discrete rod) and ode45 Lesson 9: Diffusion of Heat (discrete rod) and ode45 9.1 Applied Problem. Consider the temperature in a thin rod such as a wire with electrical current. Assume the ends have a fixed temperature and the

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Lecture 17: Ordinary Differential Equation II. First Order (continued)

Lecture 17: Ordinary Differential Equation II. First Order (continued) Lecture 17: Ordinary Differential Equation II. First Order (continued) 1. Key points Maple commands dsolve dsolve[interactive] dsolve(numeric) 2. Linear first order ODE: y' = q(x) - p(x) y In general,

More information

9. Introduction and Chapter Objectives

9. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 9: Introduction to State Variable Models 9. Introduction and Chapter Objectives In our analysis approach of dynamic systems so far, we have defined variables which describe

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Lesson 4: Population, Taylor and Runge-Kutta Methods

Lesson 4: Population, Taylor and Runge-Kutta Methods Lesson 4: Population, Taylor and Runge-Kutta Methods 4.1 Applied Problem. Consider a single fish population whose size is given by x(t). The change in the size of the fish population over a given time

More information

Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

More information

Dynamic Modeling. For the mechanical translational system shown in Figure 1, determine a set of first order

Dynamic Modeling. For the mechanical translational system shown in Figure 1, determine a set of first order QUESTION 1 For the mechanical translational system shown in, determine a set of first order differential equations describing the system dynamics. Identify the state variables and inputs. y(t) x(t) k m

More information

Lecture 8: Calculus and Differential Equations

Lecture 8: Calculus and Differential Equations Lecture 8: Calculus and Differential Equations Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE201: Computer Applications. See Textbook Chapter 9. Numerical Methods MATLAB provides

More information

Lecture 8: Calculus and Differential Equations

Lecture 8: Calculus and Differential Equations Lecture 8: Calculus and Differential Equations Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE21: Computer Applications. See Textbook Chapter 9. Numerical Methods MATLAB provides

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Differential equations and numerical methods / M.E. Mincsovics

Differential equations and numerical methods / M.E. Mincsovics General information: You can use any help possible when solving the programming tasks. Every correct answer is 5 points. Everybody has a number, you can find it in the first column of the table. Convert

More information

Solving a RLC Circuit using Convolution with DERIVE for Windows

Solving a RLC Circuit using Convolution with DERIVE for Windows Solving a RLC Circuit using Convolution with DERIVE for Windows Michel Beaudin École de technologie supérieure, rue Notre-Dame Ouest Montréal (Québec) Canada, H3C K3 mbeaudin@seg.etsmtl.ca - Introduction

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for solving higher order ODEs and

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MATLAB sessions: Laboratory 4 MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP 2. Use MATLAB solvers for

More information

Symbolic Solution of higher order equations

Symbolic Solution of higher order equations Math 216 - Assignment 4 - Higher Order Equations and Systems of Equations Due: Monday, April 16. Nothing accepted after Tuesday, April 17. This is worth 15 points. 10% points off for being late. You may

More information

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP

MAT 275 Laboratory 4 MATLAB solvers for First-Order IVP MAT 75 Laboratory 4 MATLAB solvers for First-Order IVP In this laboratory session we will learn how to. Use MATLAB solvers for solving scalar IVP. Use MATLAB solvers for solving higher order ODEs and systems

More information

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter.

2. In words, what is electrical current? 3. Try measuring the current at various points of the circuit using an ammeter. PS 12b Lab 1a Fun with Circuits Lab 1a Learning Goal: familiarize students with the concepts of current, voltage, and their measurement. Warm Up: A.) Given a light bulb, a battery, and single copper wire,

More information

Simulation, Transfer Function

Simulation, Transfer Function Max Force (lb) Displacement (in) 1 ME313 Homework #12 Simulation, Transfer Function Last Updated November 17, 214. Repeat the car-crash problem from HW#6. Use the Matlab function lsim with ABCD format

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No.2 - CAPACITOR NETWORK EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No.2 - CAPACITOR NETWORK NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is

More information

Transient Analysis of Electrical Circuits Using Runge- Kutta Method and its Application

Transient Analysis of Electrical Circuits Using Runge- Kutta Method and its Application International Journal of Scientific and Research Publications, Volume 3, Issue 11, November 2013 1 Transient Analysis of Electrical Circuits Using Runge- Kutta Method and its Application Anuj Suhag School

More information

Physics Tutorial - Currents and Circuits

Physics Tutorial - Currents and Circuits Question 1: Ion Channels Physics Tutorial - Currents and Circuits The biochemistry that takes place inside cells depends on various elements that are dissolved in water as ions. The ions enter cells through

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Vector Fields and Solutions to Ordinary Differential Equations using Octave

Vector Fields and Solutions to Ordinary Differential Equations using Octave Vector Fields and Solutions to Ordinary Differential Equations using Andreas Stahel 6th December 29 Contents Vector fields. Vector field for the logistic equation...............................2 Solutions

More information

Definition: A "linear first order ODE" is one that can be put in the "standard form"

Definition: A linear first order ODE is one that can be put in the standard form 18.03 Class 3, Feb 8, 2010 First order linear equations; systems and signals perspective [1] First order linear ODEs [2] Bank Accounts; rate and cumulative total [3] Systems and signals language [4] RC

More information

CHAPTER 6. Inductance, Capacitance, and Mutual Inductance

CHAPTER 6. Inductance, Capacitance, and Mutual Inductance CHAPTER 6 Inductance, Capacitance, and Mutual Inductance 6.1 The Inductor Inductance is symbolized by the letter L, is measured in henrys (H), and is represented graphically as a coiled wire. The inductor

More information

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Lesson 7 Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance Oscillations in an LC Circuit The RLC Circuit Alternating Current Electromagnetic

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery Capacitance The ratio C = Q/V is a conductor s self capacitance Units of capacitance: Coulomb/Volt = Farad A capacitor is made of two conductors with equal but opposite charge Capacitance depends on shape

More information

Laboratory 7: Charging and Discharging a Capacitor Prelab

Laboratory 7: Charging and Discharging a Capacitor Prelab Phys 132L Fall 2018 Laboratory 7: Charging and Discharging a Capacitor Prelab Consider a capacitor with capacitance C connected in series to a resistor with resistance R as shown in Fig. 1. Theory predicts

More information

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar Mathematical Model of Neuron Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar 09-10-2015 Review -- One Basic Circuit By Kirchhoff's Current Law 0 = I C + I R + I L I ext By Kirchhoff s Voltage

More information

BROCK UNIVERSITY. Name: Student #: Page 1 of 8

BROCK UNIVERSITY. Name: Student #: Page 1 of 8 Name: Student #: BROCK UNIVERSITY Page 1 of 8 Mid-term Test 2: March 2010 Number of pages: 8 Course: PHYS 1P22/1P92 Number of students: 125 Examination date: 19 March 2010 Number of hours: 2 Time of Examination:

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A 400 μf capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in 20 s. What current is being used to charge the capacitor?

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

3 The non-linear elements

3 The non-linear elements 3.1 Introduction The inductor and the capacitor are the two important passive circuit elements which have the ability to store and deliver finite amount of energy [49]. In an inductor, the energy is stored

More information

BEHAVIORAL MODELING AND TRANSIENT ANALYSIS WITH ANALOG INSYDES

BEHAVIORAL MODELING AND TRANSIENT ANALYSIS WITH ANALOG INSYDES BEHAVIORAL MODELING AND TRANSIENT ANALYSIS WITH ANALOG INSYDES Thomas Halfmann, Eckhard Hennig, Manfred Thole ITWM Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern, Germany {halfmann, hennig,

More information

APPM 2460 CHAOTIC DYNAMICS

APPM 2460 CHAOTIC DYNAMICS APPM 2460 CHAOTIC DYNAMICS 1. Introduction Today we ll continue our exploration of dynamical systems, focusing in particular upon systems who exhibit a type of strange behavior known as chaos. We will

More information

Differential Equations and Lumped Element Circuits

Differential Equations and Lumped Element Circuits Differential Equations and Lumped Element Circuits 8 Introduction Chapter 8 of the text discusses the numerical solution of ordinary differential equations. Differential equations and in particular linear

More information

AMJAD HASOON Process Control Lec4.

AMJAD HASOON Process Control Lec4. Multiple Inputs Control systems often have more than one input. For example, there can be the input signal indicating the required value of the controlled variable and also an input or inputs due to disturbances

More information

(Refer Slide Time: 00:32)

(Refer Slide Time: 00:32) Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 12 Scilab simulation of Lotka Volterra

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

AMS 27L LAB #8 Winter 2009

AMS 27L LAB #8 Winter 2009 AMS 27L LAB #8 Winter 29 Solving ODE s in Matlab Objectives:. To use Matlab s ODE Solvers 2. To practice using functions and in-line functions Matlab s ODE Suite Matlab offers a suite of ODE solvers including:

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

6.003 (Fall 2007) 17 December Final exam. Name: Please circle your section number:

6.003 (Fall 2007) 17 December Final exam. Name: Please circle your section number: 6.3 (Fall 27) Final exam 7 December 27 Name: Please circle your section number: Section Instructor Time Jeffrey Lang 2 Jeffrey Lang 3 Karen Livescu 4 Sanjoy Mahajan 2 5 Antonio Torralba 6 Qing Hu 2 Partial

More information

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab. Simple circuits 3 hr Identification page Instructions: Print this page and the following ones before your lab session to prepare your lab report. Staple them together with your graphs at the end. If you

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

Electrical Circuits I

Electrical Circuits I Electrical Circuits I This lecture discusses the mathematical modeling of simple electrical linear circuits. When modeling a circuit, one ends up with a set of implicitly formulated algebraic and differential

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

Cyber-Physical Systems Modeling and Simulation of Continuous Systems

Cyber-Physical Systems Modeling and Simulation of Continuous Systems Cyber-Physical Systems Modeling and Simulation of Continuous Systems Matthias Althoff TU München 29. May 2015 Matthias Althoff Modeling and Simulation of Cont. Systems 29. May 2015 1 / 38 Ordinary Differential

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 19: Differential Algebraic Equations

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 19: Differential Algebraic Equations 10.34: Numerical Methods Applied to Chemical Engineering Lecture 19: Differential Algebraic Equations 1 Recap Differential algebraic equations Semi-explicit Fully implicit Simulation via backward difference

More information

[ ] is a vector of size p.

[ ] is a vector of size p. Lecture 11 Copyright by Hongyun Wang, UCSC Recap: General form of explicit Runger-Kutta methods for solving y = F( y, t) k i = hfy n + i1 j =1 c ij k j, t n + d i h, i = 1,, p + p j =1 b j k j A Runge-Kutta

More information

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives

LABORATORY 4 ELECTRIC CIRCUITS I. Objectives LABORATORY 4 ELECTRIC CIRCUITS I Objectives to be able to discuss potential difference and current in a circuit in terms of electric field, work per unit charge and motion of charges to understand that

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (25 points) A man bails out of an airplane at the altitute of 12,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s 2, taking

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

Lecture - 11 Bendixson and Poincare Bendixson Criteria Van der Pol Oscillator

Lecture - 11 Bendixson and Poincare Bendixson Criteria Van der Pol Oscillator Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 11 Bendixson and Poincare Bendixson Criteria

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

Math Assignment 6

Math Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Fall 2013 Section 3.7-1, 5, 10, 17, 19 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.7 - Electrical Circuits 3.7.1 This

More information

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction

Switch. R 5 V Capacitor. ower upply. Voltmete. Goals. Introduction Switch Lab 9. Circuits ower upply Goals + + R 5 V Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

Elementary Differential Equations

Elementary Differential Equations Elementary Differential Equations George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 310 George Voutsadakis (LSSU) Differential Equations January 2014 1 /

More information

Exam 1--PHYS 202--Spring 2013

Exam 1--PHYS 202--Spring 2013 Name: Class: Date: Exam 1--PHYS 202--Spring 2013 Multiple Choice Identify the choice that best completes the statement or answers the question 1 A metallic object holds a charge of 38 10 6 C What total

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see 1.5 1 U(r).5.5 1 4 6 8 1 r Figure 1: Plot for problem

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Lecture 12 Chapter 28 RC Circuits Course website:

Lecture 12 Chapter 28 RC Circuits Course website: Lecture 12 Chapter 28 RC Circuits Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 28: Section 28.9 RC circuits Steady current Time-varying

More information

PES 1120 Spring 2014, Spendier Lecture 35/Page 1

PES 1120 Spring 2014, Spendier Lecture 35/Page 1 PES 0 Spring 04, Spendier Lecture 35/Page Today: chapter 3 - LC circuits We have explored the basic physics of electric and magnetic fields and how energy can be stored in capacitors and inductors. We

More information

Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

More information

2.1 Differential Equations and Solutions. Blerina Xhabli

2.1 Differential Equations and Solutions. Blerina Xhabli 2.1 Math 3331 Differential Equations 2.1 Differential Equations and Solutions Blerina Xhabli Department of Mathematics, University of Houston blerina@math.uh.edu math.uh.edu/ blerina/teaching.html Blerina

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

More information

Ordinary Differential Equations (ODE)

Ordinary Differential Equations (ODE) Ordinary Differential Equations (ODE) Why study Differential Equations? Many physical phenomena are best formulated mathematically in terms of their rate of change. Motion of a swinging pendulum Bungee-jumper

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocwmitedu 00 Dynamics and Control II Spring 00 For information about citing these materials or our Terms of Use, visit: http://ocwmitedu/terms Massachusetts Institute of Technology

More information