Aerodynamics & Flight Mechanics Research Group

Size: px
Start display at page:

Download "Aerodynamics & Flight Mechanics Research Group"

Transcription

1 Aerodynamics & Flight Mechanics Research Group The Induced Velocity of a Vortex Ring Filament S. J. Newman Technical Report AFM-11/3 January 11

2 UNIVERSITY OF SOUTHAMPTON SCHOOL OF ENGINEERING SCIENCES AERODYNAMICS AND FLIGHT MECHANICS RESEARCH GROUP The Induced Velocity of a Vortex Ring Filament by S. J. Newman AFM Report No. AFM 11/3 January 11 School of Engineering Sciences, Aerodynamics and Flight Mechanics Research Group 1

3 COPYRIGHT NOTICE (c) SES University of Southampton All rights reserved. SES authorises you to view and download this document for your personal, non-commercial use. This authorization is not a transfer of title in the document and copies of the document and is subject to the following restrictions: 1) you must retain, on all copies of the document downloaded, all copyright and other proprietary notices contained in the Materials; ) you may not modify the document in any way or reproduce or publicly display, perform, or distribute or otherwise use it for any public or commercial purpose; and 3) you must not transfer the document to any other person unless you give them notice of, and they agree to accept, the obligations arising under these terms and conditions of use. This document, is protected by worldwide copyright laws and treaty provisions.

4 Introduction This report derives the induced velocity of a vortex ring filament using the Biot Savart Law. Biot Savart Law The basic formula for evaluating the induced velocity of a vortex ring is the Biot-Savart law. Figure 1 Figure 1 shows the geometry, the vortex element is positioned at V and the vortex strength is Г. The induced velocity at point P is dq, which is given by: q = r Γ 4r 3 (1.) 3

5 Induced Velocity of a Vortex Ring The vortex ring has radius R, is placed in the XOY plane with the centre at the origin, O. The control point, P, without loss of generality, can be considered as lying in the XOZ plane with coordinates (r,,h). In order to evaluate the overall induced velocity, we need to consider a vortex element at azimuth,. This is shown in Figure. The vortex filament is given by: Figure Γ = Γ sin ψ, cos ψ, Rdψ (.) The vector of the vortex filament location is: V = R cos ψ, sin ψ, (3.) 4

6 The vector of the control point location is: P = r,, h = R x,, h (4.) The vector representing the vortex relative to the control point is given by: r = V P = R cos ψ x, sin ψ, h (5.) Invoking the Biot Savart law, the induced velocity at P due to the vortex filament is given by: dq = ΓR 4r 3 i j k cos ψ sin ψ h sin ψ cos ψ Rdψ (6.) which becomes: dq = ΓR 4r 3 h cos ψ, h sin ψ, 1 x cos ψ Rdψ (7.) The distance between the vortex filament and the control point is given by: r = R cos ψ x + sin ψ + h = R 1 + x + h x cos ψ (8.) Therefore, the overall induced velocity due to the complete ring is: q = Γ 4R h cos ψ, h sin ψ, 1 x cos ψ 1 + x + h x cos ψ 3 dψ (9.) Because the integrand consists of even functions, except the sine, the following conclusions can be made, namely: q y = (1.) 5

7 and q x, q z = Γ 4R h cos ψ, 1 x cos ψ 1 + x + h x cos ψ 3 dψ (11.) Which becomes: q x, q z = Γ R h cos ψ, 1 x cos ψ 1 + x + h x cos ψ 3 dψ (1.) This integral can be evaluated using substitutions and standard results. The first substitution is: ψ = θ dψ = dθ cos ψ = cos θ 1 (13.) Form which (1) becomes: q x, q z = Γ R h cos θ 1, 1 x cos θ + x 1 + x + h + x 4x cos θ 3 dθ (14.) 6

8 The second substitution is given by: θ = φ cos θ = sin φ dθ = dφ (15.) From which we obtain: q x, q z = Γ R h sin φ 1, 1 x sin φ + x 1 + x + h + x 4x sin φ 3 dφ (16.) Which can be rearranged to: q x, q z = Γ R (17) can be simplified to: h sin φ 1, 1 + x x sin φ 1 + x + h 4x sin φ 3 dφ (17.) = q x, q z Γ R 1 + x + h 3 h sin φ 1, 1 + x x sin φ 1 k sin φ 3 dφ (18.) Where: k = 4x 1 + x + h (19.) 7

9 This will become the modulus of elliptic integrals. Elliptic Integrals The standard elliptic integrals are given by: D = K = E = The complementary modulus is defined by: dφ 1 k sin φ 1 k sin φ dφ sin φ dφ 1 k sin φ = K E k (.) The following results will be used in the solution: k = 1 k (1.) dφ 1 k sin φ 3 sin φ dφ 1 k sin φ 3 = = E k K D k (.) 8

10 Final Solution The above results mean that the induced velocity can be expressed in terms of elliptic integrals, namely: q x q z = Γ R k 1 + x + h 3 h K D E 1 + x E x K D (3.) Which with some rearrangement becomes: q x q z = Γ R k 1 + x + h 3 h K E D E x K E D (4.) Generalisation The above analysis can be extended to a general problem by noting that the control point and vortex ring centre will define the XOZ plane. The two velocity components, q x & q z, can then be obtained using the above results. These can then be expressed in terms of an arbitrary axes system by resolution. 9

11 Special Case qz at Ring Centre To scale the circulation, we can use the velocity at the ring centre normal to the ring plane. If we denote this to q z, we have the following simplifications: k = (5.) From which the elliptic integrals become: K = E = (6.) D = 4 Whence the centre velocity becomes: q z = Γ R = Γ R (7. ) Which simplifies to: q z = Γ R (8. ) From which the induced velocity of the vortex ring in terms of the centre velocity is goven by: q x q = q z z k 1 + x + h 3 h K E D E x K E D (9.) 1

12 11

Aerodynamics & Flight Mechanics Research Group

Aerodynamics & Flight Mechanics Research Group Aerodynamics & Flight Mechanics Research Group 2D Potential Flow Modelling in MATLAB S. J. Newman Technical Report AFM-11/14 January 2011 UNIVERSITY OF SOUTHAMPTON SCHOOL OF ENGINEERING SCIENCES AERODYNAMICS

More information

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines.

Given a stream function for a cylinder in a uniform flow with circulation: a) Sketch the flow pattern in terms of streamlines. Question Given a stream function for a cylinder in a uniform flow with circulation: R Γ r ψ = U r sinθ + ln r π R a) Sketch the flow pattern in terms of streamlines. b) Derive an expression for the angular

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

Complex functions in the theory of 2D flow

Complex functions in the theory of 2D flow Complex functions in the theory of D flow Martin Scholtz Institute of Theoretical Physics Charles University in Prague scholtz@utf.mff.cuni.cz Faculty of Transportation Sciences Czech Technical University

More information

Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17)

Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17) Problems (F/M): Part 2 - Solutions (16 pages; 29/4/17) (11) Show that n ( n r=0 r ) = 2n Solution Method 1: Consider (1 + 1) n Method 2: Pascal's triangle The sum of each row is twice the sum of the previous

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Evaluation of the Magnetic Fields and Mutual Inductance between Circular Coils Arbitrarily Positioned in Space

Evaluation of the Magnetic Fields and Mutual Inductance between Circular Coils Arbitrarily Positioned in Space valuation of the Magnetic Fields and Mutual Inductance between Circular Coils Arbitrarily Positioned in Space Ao Anele, Y Hamam, L Chassagne, J Linares, Y Alayli, Karim Djouani To cite this version: Ao

More information

* * MATHEMATICS (MEI) 4764 Mechanics 4 ADVANCED GCE. Thursday 11 June 2009 Morning. Duration: 1 hour 30 minutes. Turn over

* * MATHEMATICS (MEI) 4764 Mechanics 4 ADVANCED GCE. Thursday 11 June 2009 Morning. Duration: 1 hour 30 minutes. Turn over ADVANCED GCE MATHEMATICS (MEI) 4764 Mechanics 4 Candidates answer on the Answer Booklet OCR Supplied Materials: 8 page Answer Booklet Graph paper MEI Examination Formulae and Tables (MF2) Other Materials

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information

2011 Maths. Advanced Higher. Finalised Marking Instructions

2011 Maths. Advanced Higher. Finalised Marking Instructions 0 Maths Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 0 The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis.

More information

2018 Mathematics. Advanced Higher. Finalised Marking Instructions

2018 Mathematics. Advanced Higher. Finalised Marking Instructions National Qualifications 08 08 Mathematics Advanced Higher Finalised Marking Instructions Scottish Qualifications Authority 08 The information in this publication may be reproduced to support SQA qualifications

More information

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane Exam-style practice: Paper 1 1 a First we find y and d x. y t t ( = + y = t t + 1 1 y t t t t = + + 1. x= t+ t = 1+ t. We now find the limits in terms of t. x= t = x=.75= t+ t t t +.75= 1± 1+ 15 t = We

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

X100/701 MATHEMATICS ADVANCED HIGHER. Read carefully

X100/701 MATHEMATICS ADVANCED HIGHER. Read carefully X/7 N A T I O N A L Q U A L I F I C A T I O N S 9 T H U R S D A Y, M A Y. P M. P M MATHEMATICS ADVANCED HIGHER Read carefully. Calculators may be used in this paper.. Candidates should answer all questions.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature5677 An experimental test of non-local realism Simon Gröblacher, 1, Tomasz Paterek, 3, 4 Rainer Kaltenbaek, 1 Časlav Brukner, 1, Marek Żukowski,3, 1 Markus Aspelmeyer, 1, and Anton Zeilinger

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Lecture 23: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Up until now, we have been discussing electrostatics, which deals with physics

More information

( ) = 9φ 1, ( ) = 4φ 2.

( ) = 9φ 1, ( ) = 4φ 2. Chemistry 46 Dr Jean M Standard Homework Problem Set 6 Solutions The Hermitian operator A ˆ is associated with the physical observable A Two of the eigenfunctions of A ˆ are and These eigenfunctions are

More information

Version 1.0. Level 2 Certificate in Further Mathematics Practice Paper Set 1. Paper /2. Mark Scheme

Version 1.0. Level 2 Certificate in Further Mathematics Practice Paper Set 1. Paper /2. Mark Scheme Version 1.0 Level 2 Certificate in Further Mathematics Practice Paper Set 1 Paper 2 8360/2 Mark Scheme Mark Schemes Principal Examiners have prepared these mark schemes for practice papers. These mark

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4)

Magnetostatics III Magnetic Vector Potential (Griffiths Chapter 5: Section 4) Dr. Alain Brizard Electromagnetic Theory I PY ) Magnetostatics III Magnetic Vector Potential Griffiths Chapter 5: Section ) Vector Potential The magnetic field B was written previously as Br) = Ar), 1)

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A.

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A. Équations canoniques. Application a la recherche de l équilibre des fils flexibles et des courbes brachystochrones, Mem. Acad. Sci de Toulouse (8) 7 (885), 545-570. CANONICAL EQUATIONS Application to the

More information

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16 The Direction of Magnetic Field Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16 The Magnetic Field We introduced electric field to explain-away long-range electric

More information

Magnetostatics and the vector potential

Magnetostatics and the vector potential Magnetostatics and the vector potential December 8, 2015 1 The divergence of the magnetic field Starting with the general form of the Biot-Savart law, B (x 0 ) we take the divergence of both sides with

More information

18.325: Vortex Dynamics

18.325: Vortex Dynamics 8.35: Vortex Dynamics Problem Sheet. Fluid is barotropic which means p = p(. The Euler equation, in presence of a conservative body force, is Du Dt = p χ. This can be written, on use of a vector identity,

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Concepts for Advanced Mathematics (C2) WEDNESDAY 9 JANUARY 2008

Concepts for Advanced Mathematics (C2) WEDNESDAY 9 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4752/01 MATHEMATICS (MEI) Concepts for Advanced Mathematics (C2) WEDNESDAY 9 JANUARY 2008 Additional materials: Answer Booklet (8 pages) MEI Examination Formulae and Tables (MF2)

More information

Supporting Information

Supporting Information Supporting Information A: Calculation of radial distribution functions To get an effective propagator in one dimension, we first transform 1) into spherical coordinates: x a = ρ sin θ cos φ, y = ρ sin

More information

http://orcid.org/0000-0001-8820-8188 N r = 0.88 P x λ P x λ d m = d 1/ m, d m i 1...m ( d i ) 2 = c c i m d β = 1 β = 1.5 β = 2 β = 3 d b = d a d b = 1.0

More information

2016 Mathematics. Advanced Higher. Finalised Marking Instructions

2016 Mathematics. Advanced Higher. Finalised Marking Instructions National Qualifications 06 06 Mathematics Advanced Higher Finalised ing Instructions Scottish Qualifications Authority 06 The information in this publication may be reproduced to support SQA qualifications

More information

Version 1.0. Level 2 Certificate in Further Mathematics Practice Paper Set 2. Paper /2. Mark Scheme

Version 1.0. Level 2 Certificate in Further Mathematics Practice Paper Set 2. Paper /2. Mark Scheme Version 1.0 Level Certificate in Further Mathematics Practice Paper Set Paper 8360/ Mark Scheme Mark Schemes Principal Examiners have prepared these mark schemes for practice papers. These mark schemes

More information

4754A A A * * MATHEMATICS (MEI) Applications of Advanced Mathematics (C4) Paper A ADVANCED GCE. Tuesday 13 January 2009 Morning

4754A A A * * MATHEMATICS (MEI) Applications of Advanced Mathematics (C4) Paper A ADVANCED GCE. Tuesday 13 January 2009 Morning ADVANCED GCE MATHEMATICS (MEI) Applications of Advanced Mathematics (C) Paper A 75A Candidates answer on the Answer Booklet OCR Supplied Materials: 8 page Answer Booklet Graph paper MEI Examination Formulae

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Chapter 6. Quantum Theory of the Hydrogen Atom

Chapter 6. Quantum Theory of the Hydrogen Atom Chapter 6 Quantum Theory of the Hydrogen Atom 1 6.1 Schrodinger s Equation for the Hydrogen Atom Symmetry suggests spherical polar coordinates Fig. 6.1 (a) Spherical polar coordinates. (b) A line of constant

More information

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ Physical Chemistry for Engineers CHEM 4521 Homework: Molecular Structure (1) Consider the cation, HeH +. (a) Write the Hamiltonian for this system (there should be 10 terms). Indicate the physical meaning

More information

GyroRotor program : user manual

GyroRotor program : user manual GyroRotor program : user manual Jean Fourcade January 18, 2016 1 1 Introduction This document is the user manual of the GyroRotor program and will provide you with description of

More information

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW

PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW PERFORMANCE ANALYSIS OF A COAXIAL ROTOR SYSTEM IN HOVER: THREE POINTS OF VIEW Jessica Yana, Omri Rand Graduate student, Professor Technion - Israel Institute of Technology yjessica@tx.technion.ac.il; omri@aerodyne.technion.ac.il;

More information

Preliminary Exam 2018 Solutions to Morning Exam

Preliminary Exam 2018 Solutions to Morning Exam Preliminary Exam 28 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem. Consider the series n 2 (n log n) and n 2 (n(log n)2 ). Show that one converges and one diverges

More information

14. Magnetic Field III

14. Magnetic Field III University of Rhode sland DigitalCommons@UR PHY 204: Elementary Physics Physics Course Materials 2015 14. Magnetic Field Gerhard Müller University of Rhode sland, gmuller@uri.edu Creative Commons License

More information

Engineering Notebook

Engineering Notebook Engineering Notebook miscellaneous problems and solutions compiled by C Bond Vol1 no9 Actuator with zero bend angle Rotary Actuator Equations Given two points at which the track radius and gap skew angle

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. Objectives Find a Taylor or Maclaurin series for a function.

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 2 NOVEMBER 2011

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 2 NOVEMBER 2011 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY NOVEMBER 011 Mark Scheme: Each part of Question 1 is worth four marks which are awarded solely for the correct

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level * 2 2 1 1 9 6 0 6 4 7 * ADDITIONAL MATHEMATICS 4037/22 Paper 2 May/June 2016 2 hours Candidates answer on the Question Paper. No Additional

More information

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r

Calculations of Magnetic Fields from Known Current Distributions. B d B2 r 0I B 2 r Calculations of Magnetic Fields from Known Current Distributions In the absence of magnetic materials this is a relatively simple problem analogous to finding the electric field with known charge distributions.

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

3.6 Applications of Poisson s equation

3.6 Applications of Poisson s equation William J. Parnell: MT3432. Section 3: Green s functions in 2 and 3D 69 3.6 Applications of Poisson s equation The beaut of Green s functions is that the are useful! Let us consider an example here where

More information

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path Cyclotron, final The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path K 1 qbr 2 2m 2 = mv = 2 2 2 When the energy of the ions

More information

Final exam (practice 1) UCLA: Math 32B, Spring 2018

Final exam (practice 1) UCLA: Math 32B, Spring 2018 Instructor: Noah White Date: Final exam (practice 1) UCLA: Math 32B, Spring 218 This exam has 7 questions, for a total of 8 points. Please print your working and answers neatly. Write your solutions in

More information

Probability Density (1)

Probability Density (1) Probability Density (1) Let f(x 1, x 2... x n ) be a probability density for the variables {x 1, x 2... x n }. These variables can always be viewed as coordinates over an abstract space (a manifold ).

More information

Core Mathematics C4 Advanced Level

Core Mathematics C4 Advanced Level Paper Reference(s) 6666 Edexcel GCE Core Mathematics C4 Advanced Level Monday 3 January 006 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included

More information

Wednesday 14 June 2017 Morning Time allowed: 1 hour 30 minutes

Wednesday 14 June 2017 Morning Time allowed: 1 hour 30 minutes Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level MATHEMATICS Unit Pure Core 3 Wednesday 14 June 2017 Morning Time allowed: 1 hour 30

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

, follows from these assumptions.

, follows from these assumptions. Untangling the mechanics and topology in the frictional response of long overhand elastic knots Supplemental Information M.K. Jawed, P. Dieleman, B. Audoly, P. M. Reis S1 Experimental details In this section,

More information

Version 1.0: hij. General Certificate of Education. Mathematics Mechanics 1B. Mark Scheme examination - January series.

Version 1.0: hij. General Certificate of Education. Mathematics Mechanics 1B. Mark Scheme examination - January series. Version 1.0: 0109 hij General Certificate of Education Mathematics 6360 MB Mechanics 1B Mark Scheme 009 examination - January series Final Mark schemes are prepared by the Principal Examiner and considered,

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

A-LEVEL Further Mathematics

A-LEVEL Further Mathematics A-LEVEL Further Mathematics F1 Mark scheme Specimen Version 1.1 Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers.

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

www.onlineexamhelp.com www.onlineexamhelp.com * 031 674 651 3 * UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education ADDITIONAL MATHEMATICS 0606/22

More information

9709 MATHEMATICS. 9709/32 Paper 3 (Pure Mathematics), maximum raw mark 75

9709 MATHEMATICS. 9709/32 Paper 3 (Pure Mathematics), maximum raw mark 75 CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level MARK SCHEME for the March 06 series 9709 MATHEMATICS 9709/3 Paper 3 (Pure Mathematics), maximum raw mark

More information

ISO INTERNATIONAL STANDARD. Geographic information Spatial referencing by coordinates Part 2: Extension for parametric values

ISO INTERNATIONAL STANDARD. Geographic information Spatial referencing by coordinates Part 2: Extension for parametric values INTERNATIONAL STANDARD ISO 19111-2 First edition 2009-08-15 Geographic information Spatial referencing by coordinates Part 2: Extension for parametric values Information géographique Système de références

More information

INTERNATIONAL STANDARD

INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 1209-2 Third edition 2007-05-01 Rigid cellular plastics Determination of flexural properties Part 2: Determination of flexural strength and apparent flexural modulus of elasticity

More information

A-LEVEL Mathematics. Mechanics 5 MM05 Mark scheme June Version/Stage: 1.0: Final

A-LEVEL Mathematics. Mechanics 5 MM05 Mark scheme June Version/Stage: 1.0: Final A-LEVEL Mathematics Mechanics 5 MM05 Mark scheme 6360 June 015 Version/Stage: 1.0: Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by

More information

2008 Mathematics. Standard Grade Credit. Finalised Marking Instructions

2008 Mathematics. Standard Grade Credit. Finalised Marking Instructions 008 Mathematics Standard Grade Credit Finalised Marking Instructions Scottish Qualifications Authority 008 The information in this publication may be reproduced to support SQA qualifications only on a

More information

Theoretical and experimental research of supersonic missile ballistics

Theoretical and experimental research of supersonic missile ballistics BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 1, 015 DOI: 10.1515/bpasts-015-007 Theoretical and experimental research of supersonic missile ballistics B. ZYGMUNT 1, K. MOTYL

More information

Incompressible Flow Over Airfoils

Incompressible Flow Over Airfoils Chapter 7 Incompressible Flow Over Airfoils Aerodynamics of wings: -D sectional characteristics of the airfoil; Finite wing characteristics (How to relate -D characteristics to 3-D characteristics) How

More information

Version 1.0: abc. General Certificate of Education. Mathematics MPC4 Pure Core 4. Mark Scheme examination - January series

Version 1.0: abc. General Certificate of Education. Mathematics MPC4 Pure Core 4. Mark Scheme examination - January series Version.0: 007 abc General Certificate of Education Mathematics 0 MPC Pure Core Mark Scheme 007 examination - January series Mark schemes are prepared by the Principal Examiner and considered, together

More information

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation...

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation... Chapter 3 Vorticity Contents 3.1 Definition.................................. 19 3.2 Physical meaning............................. 19 3.3 Streamfunction and vorticity...................... 21 3.4 The Rankine

More information

Version 1.0. General Certificate of Education (A-level) June 2012 MFP3. Mathematics. (Specification 6360) Further Pure 3.

Version 1.0. General Certificate of Education (A-level) June 2012 MFP3. Mathematics. (Specification 6360) Further Pure 3. Version.0 General Certificate of Education (A-level) June 0 Mathematics MFP (Specification 660) Further Pure Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together with

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *7292744436* ADDITIONAL MATHEMATICS 0606/23 Paper 2 May/June 2017 2 hours Candidates answer on the

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

All that begins... peace be upon you

All that begins... peace be upon you All that begins... peace be upon you Faculty of Mechanical Engineering Department of Thermo Fluids SKMM 2323 Mechanics of Fluids 2 «An excerpt (mostly) from White (2011)» ibn Abdullah May 2017 Outline

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

Mark Scheme Summer 2009

Mark Scheme Summer 2009 Mark Summer 009 GCE GCE Mathematics (6668/0) Edecel is one of the leading eamining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic,

More information

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: Final

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: Final A-LEVEL Mathematics Further Pure MFP Mark scheme 660 June 04 Version/Stage: Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel

More information

MATHEMATICS 4723 Core Mathematics 3

MATHEMATICS 4723 Core Mathematics 3 ADVANCED GCE MATHEMATICS 4723 Core Mathematics 3 QUESTION PAPER Candidates answer on the printed answer book. OCR supplied materials: Printed answer book 4723 List of Formulae (MF1) Other materials required:

More information

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem

49. Green s Theorem. The following table will help you plan your calculation accordingly. C is a simple closed loop 0 Use Green s Theorem 49. Green s Theorem Let F(x, y) = M(x, y), N(x, y) be a vector field in, and suppose is a path that starts and ends at the same point such that it does not cross itself. Such a path is called a simple

More information

Further Concepts for Advanced Mathematics (FP1) FRIDAY 11 JANUARY 2008

Further Concepts for Advanced Mathematics (FP1) FRIDAY 11 JANUARY 2008 ADVANCED SUBSIDIARY GCE 4755/0 MATHEMATICS (MEI) Further Concepts for Advanced Mathematics (FP) FRIDAY JANUARY 008 Additional materials: Answer Booklet (8 pages) Graph paper MEI Examination Formulae and

More information

Mathematics (Modular) 43055/2H (Specification B) Module 5

Mathematics (Modular) 43055/2H (Specification B) Module 5 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier June 0 Mathematics (Modular) 43055/H

More information

11.1 Introduction Galilean Coordinate Transformations

11.1 Introduction Galilean Coordinate Transformations 11.1 Introduction In order to describe physical events that occur in space and time such as the motion of bodies, we introduced a coordinate system. Its spatial and temporal coordinates can now specify

More information

Further Linear Elasticity

Further Linear Elasticity Torsion of cylindrical bodies Further Linear Elasticity Problem Sheet # 1. Consider a cylindrical body of length L, the ends of which are subjected to distributions of tractions that are statically equivalent

More information

ISO INTERNATIONAL STANDARD. Geographic information Metadata Part 2: Extensions for imagery and gridded data

ISO INTERNATIONAL STANDARD. Geographic information Metadata Part 2: Extensions for imagery and gridded data INTERNATIONAL STANDARD ISO 19115-2 First edition 2009-02-15 Geographic information Metadata Part 2: Extensions for imagery and gridded data Information géographique Métadonnées Partie 2: Extensions pour

More information

ISO Representation of results of particle size analysis Adjustment of an experimental curve to a reference model

ISO Representation of results of particle size analysis Adjustment of an experimental curve to a reference model INTERNATIONAL STANDARD ISO 976-3 First edition 008-07-01 Representation of results of particle size analysis Part 3: Adjustment of an experimental curve to a reference model Représentation de données obtenues

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

A-LEVEL Mathematics. MPC4 Pure Core 4 Mark scheme June Version: 1.0 Final

A-LEVEL Mathematics. MPC4 Pure Core 4 Mark scheme June Version: 1.0 Final A-LEVEL Mathematics MPC4 Pure Core 4 Mark scheme 660 June 06 Version:.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of

More information

Electric Fields and Continuous Charge Distributions Challenge Problem Solutions

Electric Fields and Continuous Charge Distributions Challenge Problem Solutions Problem 1: Electric Fields and Continuous Charge Distributions Challenge Problem Solutions Two thin, semi-infinite rods lie in the same plane They make an angle of 45º with each other and they are joined

More information

Unit 3 Maths Methods

Unit 3 Maths Methods Unit Maths Methods succeeding in the vce, 017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure that

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M = 3 p p+ 4 = p + 4 p+ 6 1 ( )( ) ( )( ) ( ) Completes the square to show p + 4p+ 6= p+ + M1.a Concludes that

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

A-LEVEL Mathematics. Paper 1 Mark scheme. Specimen. Version 1.2

A-LEVEL Mathematics. Paper 1 Mark scheme. Specimen. Version 1.2 A-LEVEL Mathematics Paper Mark scheme Specimen Version. Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This

More information

Grade 12 Pre-Calculus Mathematics Achievement Test. Booklet 1

Grade 12 Pre-Calculus Mathematics Achievement Test. Booklet 1 Grade 12 Pre-Calculus Mathematics Achievement Test Booklet 1 January 2019 Manitoba Education and Training Cataloguing in Publication Data Grade 12 pre-calculus mathematics achievement test. Booklet 1.

More information

Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines Journal of Physics: Conference Series OPEN ACCESS Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines To cite this article: J B de Vaal et al 4 J. Phys.:

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *054681477* ADDITIONAL MATHEMATICS 407/11 Paper 1 May/June 017 hours Candidates answer on the Question Paper. No Additional Materials are required.

More information