Estimating Accuracy in Classical Molecular Simulation

Size: px
Start display at page:

Download "Estimating Accuracy in Classical Molecular Simulation"

Transcription

1 Estimating Accuracy in Classical Molecular Simulation University of Illinois Urbana-Champaign Department of Computer Science Institute for Mathematics and its Applications July 2007

2 Acknowledgements Ben Leimkuhler (Edinburgh) Brian Laird (Kansas) Ruslan Davidchack (Leicester) Nana Arizumi (Illinois) S. Bond and B. Leimkuhler Acta Numerica 16, 2007.

3 Motivation Computation of Averages 1.7 Instantaneous Temperature time

4 Motivation Computation of Averages # Trials Instantaneous Temperature

5 Motivation Convergence of Averages Temperature Inverse Stepsize (1/dt)

6 Motivation Divergence of Trajectories norm deviation time

7 Goal What is the error in an average from a MD trajectory? Error = A numerical A exact Any estimate must account for two factors: Error Statistical Error + Truncation Error Asymptotic Bound: Error C 1 1 t + C 2 t p Talk will focus on truncation error. Paper on statistical error: E. Cancès, F. Castella, P. Chartier, E. Faou, C. Le Bris, F. Legoll, G. Turinici, 04, 05.

8 System of Equations Newton s Equations: Force = mass acceleration q = p/m and ṗ = U(q) q = position, m = mass, p = momenta First Order System ż = F (z), where F : R n R n Exact Solution Map z (t) = Φ t (t 0, z 0 )

9 Ergodic Time Average: 1 t A time = lim A (z (τ)) dτ t t 0 Ensemble Average: A ensemble = Ergodicity Ω A time = A ensemble A (z) ρ (z) dz (a.e.)

10 Liouville Equation Continuity Equation for the Probability Density: Generalized Liouville Equation: ρ t + (ρ F ) = 0 or Dρ Dt + ρ F = 0 D ln ρ Dt = F

11 Example: Nosé-Hoover Nosé-Hoover Vector Field Invariant Distribution ρ exp dq dt dp dt dξ dt { 1 k B T = M 1 p = U (q) ξ µ p = p T M 1 p gk B T ( )} 1 2 pt M 1 p + U (q) + ξ2 2µ

12 Error Analysis First Order System ż = F (z) Forward Error: Is the numerical trajectory close to the exact trajectory? z t (t) z (t) C t p Backward Error: Is the numerical trajectory actually an exact trajectory, but for a different problem? Method of Modified Equations F t (z) F (z) C t p

13 Error Analysis Ergodicity: Exact trajectories are sensitive (chaotic) to perturbations in the initial conditions Large Forward Error. Statistics: Thermodynamic properties (averages) are not a function of the details of the initial conditions Small Backward Error.

14 Backward Error Analysis: Modified Equations Given a pth-order numerical method, Ψ, we can always construct a modified vector field, F t, such that the numerical method provides a qth-order approximation to the flow of the modified system. If the numerical method and vector field are time-reversible (symplectic/hamiltonian), the modified vector field will be time-reversible (symplectic/hamiltonian). Unfortunately, even if the vector field is analytic, the modified vector field does not converge as q. Fortunately, it is still useful as a truncated series.

15 Big Picture Flow Map Vector Field Ensemble Φ t Ψ t F F t ρ ρ t

16 Example: Verlet Hamiltonian Verlet Splitting H (q, p) = 1 2 pt M 1 p + U (q) p n+1/2 = p n t 2 U (qn ) q n+1 = q n + tm 1 p n+1/2 p n+1 = p n+1/2 t 2 U ( q n+1) H 1 = 1 2 pt M 1 p, H 2 = U (q)

17 Example: Verlet Strang Splitting exp ( tl) = exp Modified Equations ( exp tl [r] t Solve for L [r] t ( ) ( ) t t 2 L 2 exp ( tl 1 ) exp 2 L 2 + O [ t 3] L 1 = M 1 p q ) = exp L = L 1 + L 2 L 2 = q U (q) p ( ) ( ) t t 2 L 2 exp ( tl 1 ) exp 2 L 2 + O [ t r+1] using Baker-Campbell-Hausdorff formula

18 Example: Verlet Original Hamiltonian: Modified Hamiltonian: H 2, t (q, p) = H (q, p) + t2 12 H (q, p) = 1 2 pt M 1 p + U (q) Verlet conserves H 2, t to 4th order accuracy! ( p T M 1 U M 1 p 1 ) 2 UT M 1 U

19 Example: Generalized Leapfrog Generalized Leapfrog p n+1/2 = p n t 2 qh (q n, p n+1/2) q n+1/2 = q n + t 2 ph (q n, p n+1/2) p n+1 = p n+1/2 t 2 qh q n+1 = q n+1/2 + t 2 ph Generalized Leapfrog Modified Hamiltonian: H t = H + t2 24 (q n+1, p n+1/2) (q n+1, p n+1/2) ( 2Hqj q k H pj H pk + 2H qj p k H pj H qk H pj p k H qj H qk )

20 Liouville Equation for Modified Vector Field Modified Equations dz dt = F t (z) where F t = F + t p G Modified Liouville Equation Weighting factor D Dt ρ t = ρ t F t ω t := ρ t /ρ, assuming ρ, ρ t > 0 implies D Dt ln (ω t) = t p ( G + G ln ρ)

21 Averages Truncation Error Estimate A Num A Exact A (q, p) ρ t dγ A (q, p) ρ dγ Γ Γ A Num 1/ω t Num A/ω t Num 1/ω t Num Reweighted Averages A Exact = A/ω t Num 1/ω t Num + O [ t r ]

22 Example: Nosé-Poincaré Hamiltonian: ( 1 H (q, p, s, π s ) = s 2 s 2 pt M 1 p ) + U (q) + π2 s 2µ + g k T ln s E 0 Nosé-Poincaré Modified Hamiltonian: H t = H NP + t2 12 s ( πs µ s pt M 1 U 1 2 UT M 1 U + 1 s 2 pt M 1 U M 1 p 1 ( 1 2 µ s 2 pt M 1 p ) 2 g k T + 2 g k T π2 s µ 2 )

23 Example: Modified marginal distribution: ρ t (q, p) dp dq = 1 δ [ ] H t (q, s, p, p s ) E 0 d p dq dps ds, C s p s = 1 [ ( )] s H N HN 0 + t 2 G d p dq dp s ds. C s p s δ Change of variables, integrating ρ = 1 e N f η 0 C gk BT + h 2 p s η G(q, 1 eη, p, p s ) dp s. η=η 0 η 0 = 1 ( ) H(q, p) + p2 s g k B T 2 µ + h2 G(q, e η 0, p, p s ) HN 0, More mathematical manipulations { [ ρ = ρ c C exp t2 2p j p k U qj q k ( ) Uq 2 j 1 p 2 2 ]} j gk B T, 24k B T m j m k m j µ m j j j j,k

24 Example: Weighting Factor: { t 2 ω t exp 24 k B T Reweighted Averages: [ 2p T M 1 U (q) M 1 p U (q) T M 1 U (q) 1 µ A Exact A/ω t Num 1/ω t Num ( ) ]} 2 p T M 1 p g k B T Hybrid Monte Carlo: J. Izaguirre and S. Hampton, J. Comput. Phys. 200, E. Akhmatskaya and S. Reich, LNCSE 49, Time correlation functions: R. D. Skeel, Preprint, 2007.

25 Numerical Experiment: System: 256 Particle Gas Lennard-Jones Potential T = 1.5ɛ/k, ρ = 0.95r 3 0, t = 20r 0 m/ɛ Method: Nosé-Poincaré (Symplectic, Time-Reversible) t = 0.012r 0 m/ɛ to r0 m/ɛ Reference: Bond, Laird, and Leimkuhler J. Comput. Phys S. Bond and B. Leimkuhler Acta Numerica 16, 2007.

26 Numerical Experiment: Extended Energy Conservation:

27 Numerical Experiment: Improved Estimator 1.52 Standard Reweighted 1.51 Temperature Inverse Stepsize (1/dt)

28 Numerical Experiment: Improved Estimator Error Standard 2nd Order Reference Reweighted 4th Order Reference 10 3 Error in Temperature Inverse Stepsize (1/dt)

29 Future Directions: Further testing with more systems and averages Extensions to reduce computational cost Other ensembles and numerical methods

30 Stabilizing Hard Sphere Algorithms: 10 0 PSA CVA PCVA MCVA Deviation in Energy Time S. Bond and B. Leimkuhler, SIAM J. Sci. Comput, 2007, In press.

GSHMC: An efficient Markov chain Monte Carlo sampling method. Sebastian Reich in collaboration with Elena Akhmatskaya (Fujitsu Laboratories Europe)

GSHMC: An efficient Markov chain Monte Carlo sampling method. Sebastian Reich in collaboration with Elena Akhmatskaya (Fujitsu Laboratories Europe) GSHMC: An efficient Markov chain Monte Carlo sampling method Sebastian Reich in collaboration with Elena Akhmatskaya (Fujitsu Laboratories Europe) 1. Motivation In the first lecture, we started from a

More information

Analysis of MD Results Using Statistical Mechanics Methods. Molecular Modeling

Analysis of MD Results Using Statistical Mechanics Methods. Molecular Modeling Analysis of MD Results Using Statistical Mechanics Methods Ioan Kosztin eckman Institute University of Illinois at Urbana-Champaign Molecular Modeling. Model building. Molecular Dynamics Simulation 3.

More information

A Conjecture about Molecular Dynamics

A Conjecture about Molecular Dynamics A Conjecture about Molecular Dynamics P. F. Tupper June 12, 2007 Abstract An open problem in numerical analysis is to explain why molecular dynamics works. The difficulty is that numerical trajectories

More information

Nosé-Hoover Thermostats

Nosé-Hoover Thermostats Nosé- Nosé- Texas A & M, UT Austin, St. Olaf College October 29, 2013 Physical Model Nosé- q Figure: Simple Oscillator p Physical Model Continued Heat Bath T p Nosé- q Figure: Simple Oscillator in a heat

More information

Ernst Hairer 1, Robert I. McLachlan 2 and Robert D. Skeel 3

Ernst Hairer 1, Robert I. McLachlan 2 and Robert D. Skeel 3 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI IMADA METHOD, Ernst Hairer 1,

More information

Boltzmann-Gibbs Preserving Langevin Integrators

Boltzmann-Gibbs Preserving Langevin Integrators Boltzmann-Gibbs Preserving Langevin Integrators Nawaf Bou-Rabee Applied and Comp. Math., Caltech INI Workshop on Markov-Chain Monte-Carlo Methods March 28, 2008 4000 atom cluster simulation Governing Equations

More information

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations Chapter 1 and Beam Accelerator Physics Group, Journal Club November 9, 2010 and Beam NSLS-II Brookhaven National Laboratory 1.1 (70) Big Picture for Numerical Accelerator Physics and Beam For single particle

More information

Under evolution for a small time δt the area A(t) = q p evolves into an area

Under evolution for a small time δt the area A(t) = q p evolves into an area Physics 106a, Caltech 6 November, 2018 Lecture 11: Hamiltonian Mechanics II Towards statistical mechanics Phase space volumes are conserved by Hamiltonian dynamics We can use many nearby initial conditions

More information

Geometric Numerical Integration

Geometric Numerical Integration Geometric Numerical Integration (Ernst Hairer, TU München, winter 2009/10) Development of numerical ordinary differential equations Nonstiff differential equations (since about 1850), see [4, 2, 1] Adams

More information

Enabling constant pressure hybrid Monte Carlo simulations using the GROMACS molecular simulation package

Enabling constant pressure hybrid Monte Carlo simulations using the GROMACS molecular simulation package Enabling constant pressure hybrid Monte Carlo simulations using the GROMACS molecular simulation package Mario Fernández Pendás MSBMS Group Supervised by Bruno Escribano and Elena Akhmatskaya BCAM 18 October

More information

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems Ben Leimkuhler University of Edinburgh Funding: NAIS (EPSRC) & NWO MIGSEE

More information

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning

Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning Thermostatic Controls for Noisy Gradient Systems and Applications to Machine Learning Ben Leimkuhler University of Edinburgh Joint work with C. Matthews (Chicago), G. Stoltz (ENPC-Paris), M. Tretyakov

More information

III. Kinetic Theory of Gases

III. Kinetic Theory of Gases III. Kinetic Theory of Gases III.A General Definitions Kinetic theory studies the macroscopic properties of large numbers of particles, starting from their (classical) equations of motion. Thermodynamics

More information

Molecular Dynamics Lecture 3

Molecular Dynamics Lecture 3 Molecular Dynamics Lecture 3 Ben Leimkuhler the problem of the timestep in MD constraints - SHAKE/RATTLE multiple timestepping stochastic methods for holonomic constraints stochastic multiple timestepping

More information

Introduction to Hamiltonian Monte Carlo Method

Introduction to Hamiltonian Monte Carlo Method Introduction to Hamiltonian Monte Carlo Method Mingwei Tang Department of Statistics University of Washington mingwt@uw.edu November 14, 2017 1 Hamiltonian System Notation: q R d : position vector, p R

More information

Parallel-in-time integrators for Hamiltonian systems

Parallel-in-time integrators for Hamiltonian systems Parallel-in-time integrators for Hamiltonian systems Claude Le Bris ENPC and INRIA Visiting Professor, The University of Chicago joint work with X. Dai (Paris 6 and Chinese Academy of Sciences), F. Legoll

More information

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh Algorithms for Ensemble Control B Leimkuhler University of Edinburgh Model Reduction Across Disciplines Leicester 2014 (Stochastic) Ensemble Control extended ODE/SDE system design target ensemble SDE invariant

More information

A PROJECTIVE THERMOSTATTING DYNAMICS TECHNIQUE

A PROJECTIVE THERMOSTATTING DYNAMICS TECHNIQUE A PROJECTIVE THERMOSTATTING DYNAMICS TECHNIQUE ZHIDONG JIA AND BENEDICT J. LEIMKUHLER Abstract. A dynamical framework is developed with several variations for modeling multiple timescale molecular dynamics

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 7 Beyond Atoms: Simulating Molecules David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu Review Fundamentals units, properties, statistical

More information

THE Hamilton equations of motion constitute a system

THE Hamilton equations of motion constitute a system Proceedings of the World Congress on Engineering 0 Vol I WCE 0, July 4-6, 0, London, U.K. Systematic Improvement of Splitting Methods for the Hamilton Equations Asif Mushtaq, Anne Kværnø, and Kåre Olaussen

More information

Declaration. I, Derrick Beckedahl, declare that

Declaration. I, Derrick Beckedahl, declare that Abstract In this dissertation we reformulate the configurational temperature Nosè-Hoover thermostat proposed by Braga and Travis (C. Braga and K.P. Travis, 005), using the antisymmetric matrix formalism

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Molecular Dynamics at Constant Pressure: Allowing the System to Control Volume Fluctuations via a Shell Particle

Molecular Dynamics at Constant Pressure: Allowing the System to Control Volume Fluctuations via a Shell Particle Entropy 2013, 15, 3941-3969; doi:10.3390/e15093941 Review OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Molecular Dynamics at Constant Pressure: Allowing the System to Control Volume

More information

Approach to Thermal Equilibrium in Biomolecular

Approach to Thermal Equilibrium in Biomolecular Approach to Thermal Equilibrium in Biomolecular Simulation Eric Barth 1, Ben Leimkuhler 2, and Chris Sweet 2 1 Department of Mathematics Kalamazoo College Kalamazoo, Michigan, USA 49006 2 Centre for Mathematical

More information

Computing ergodic limits for SDEs

Computing ergodic limits for SDEs Computing ergodic limits for SDEs M.V. Tretyakov School of Mathematical Sciences, University of Nottingham, UK Talk at the workshop Stochastic numerical algorithms, multiscale modelling and high-dimensional

More information

Symplectic integration. Yichao Jing

Symplectic integration. Yichao Jing Yichao Jing Hamiltonian & symplecticness Outline Numerical integrator and symplectic integration Application to accelerator beam dynamics Accuracy and integration order Hamiltonian dynamics In accelerator,

More information

9.3: Separable Equations

9.3: Separable Equations 9.3: Separable Equations An equation is separable if one can move terms so that each side of the equation only contains 1 variable. Consider the 1st order equation = F (x, y). dx When F (x, y) = f (x)g(y),

More information

A GENTLE STOCHASTIC THERMOSTAT FOR MOLECULAR DYNAMICS

A GENTLE STOCHASTIC THERMOSTAT FOR MOLECULAR DYNAMICS A GENTLE STOCHASTIC THERMOSTAT FOR MOLECULAR DYNAMICS BEN LEIMKUHLER, EMAD NOORIZADEH, AND FLORIAN THEIL Abstract. We discuss a dynamical technique for sampling the canonical measure in molecular dynamics.

More information

Nanoscale simulation lectures Statistical Mechanics

Nanoscale simulation lectures Statistical Mechanics Nanoscale simulation lectures 2008 Lectures: Thursdays 4 to 6 PM Course contents: - Thermodynamics and statistical mechanics - Structure and scattering - Mean-field approaches - Inhomogeneous systems -

More information

Improving Boundary Conditions in Time- Domain Self-Force Calculations

Improving Boundary Conditions in Time- Domain Self-Force Calculations Improving Boundary Conditions in Time- Domain Self-Force Calculations Carlos F. Sopuerta Institute of Space Sciences National Spanish Research Council Work in Collaboration with Anil Zenginoğlu (Caltech)

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014 Ab initio molecular dynamics Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy Bangalore, 04 September 2014 What is MD? 1) Liquid 4) Dye/TiO2/electrolyte 2) Liquids 3) Solvated protein 5) Solid to liquid

More information

Two recent works on molecular systems out of equilibrium

Two recent works on molecular systems out of equilibrium Two recent works on molecular systems out of equilibrium Frédéric Legoll ENPC and INRIA joint work with M. Dobson, T. Lelièvre, G. Stoltz (ENPC and INRIA), A. Iacobucci and S. Olla (Dauphine). CECAM workshop:

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 15 Consider Hamilton s equations in the form I. CLASSICAL LINEAR RESPONSE THEORY q i = H p i ṗ i = H q i We noted early in the course that an ensemble

More information

Canonical transformations (Lecture 4)

Canonical transformations (Lecture 4) Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture Molecular Dynamics Simulation David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu MD of hard disks intuitive Review and Preview collision

More information

Chapter 4 Molecular Dynamics and Other Dynamics

Chapter 4 Molecular Dynamics and Other Dynamics Chapter 4 Molecular Dynamics and Other Dynamics Molecular dynamics is a method in which the motion of each individual atom or molecule is computed according to Newton s second law. It usually involves

More information

Numerical Simulations of N Point Vortices on Bounded Domains

Numerical Simulations of N Point Vortices on Bounded Domains Cornell University Mathematics Department Senior Thesis Numerical Simulations of N Point Vortices on Bounded Domains Author: Sy Yeu Chou Bachelor of Arts May 2014, Cornell University Thesis Advisor: Robert

More information

Ernst Hairer 1,RobertI.McLachlan 2 and Robert D. Skeel 3

Ernst Hairer 1,RobertI.McLachlan 2 and Robert D. Skeel 3 ESAIM: M2AN 43 (2009) 631 644 DOI: 10.1051/m2an/2009019 ESAIM: Mathematical Modelling and Numerical Analysis www.esaim-m2an.org ON ENERGY CONSERVATION OF THE SIMPLIFIED TAKAHASHI-IMADA METHOD, Ernst Hairer

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

From Physical Modelling to Big Data Analytics: Examples and Challenges

From Physical Modelling to Big Data Analytics: Examples and Challenges From Physical Modelling to Big Data Analytics: Examples and Challenges Ben Leimkuhler University of Edinburgh EPSRC/NSF ERC ATI Summit on Big Data in the Physical Sciences Outline Part I: Challenges Ideas

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

1 Phase Spaces and the Liouville Equation

1 Phase Spaces and the Liouville Equation Phase Spaces and the Liouville Equation emphasize the change of language from deterministic to probablistic description. Under the dynamics: ½ m vi = F i ẋ i = v i with initial data given. What is the

More information

Constant Pressure Langevin Dynamics: Theory and Application to the Study of Phase Behaviour in Core-Softened Systems.

Constant Pressure Langevin Dynamics: Theory and Application to the Study of Phase Behaviour in Core-Softened Systems. Constant Pressure Langevin Dynamics: Theory and Application to the Study of Phase Behaviour in Core-Softened Systems. David Quigley A thesis submitted for the degree of Doctor of Philosophy University

More information

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows Plenary talk on the conference Stochastic and Analytic Methods in Mathematical Physics, Yerevan, Armenia,

More information

Numerical methods in molecular dynamics and multiscale problems

Numerical methods in molecular dynamics and multiscale problems Numerical methods in molecular dynamics and multiscale problems Two examples T. Lelièvre CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA Horizon Maths December 2012 Introduction The aim

More information

Energy and Forces in DFT

Energy and Forces in DFT Energy and Forces in DFT Total Energy as a function of nuclear positions {R} E tot ({R}) = E DF T ({R}) + E II ({R}) (1) where E DF T ({R}) = DFT energy calculated for the ground-state density charge-density

More information

arxiv: v2 [physics.comp-ph] 24 Apr 2013

arxiv: v2 [physics.comp-ph] 24 Apr 2013 Robust and efficient configurational molecular sampling via Langevin Dynamics Benedict Leimkuhler and Charles Matthews School of Mathematics and Maxwell Institute of Mathematical Sciences, James Clerk

More information

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t)

Runga-Kutta Schemes. Exact evolution over a small time step: Expand both sides in a small time increment: d(δt) F (x(t + δt),t+ δt) Ft + FF x ( t) Runga-Kutta Schemes Exact evolution over a small time step: x(t + t) =x(t)+ t 0 d(δt) F (x(t + δt),t+ δt) Expand both sides in a small time increment: x(t + t) =x(t)+x (t) t + 1 2 x (t)( t) 2 + 1 6 x (t)+

More information

A Brief Introduction to Statistical Mechanics

A Brief Introduction to Statistical Mechanics A Brief Introduction to Statistical Mechanics E. J. Maginn, J. K. Shah Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA Monte Carlo Workshop Universidade

More information

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle Short-Ranged Central and Tensor Correlations in Nuclear Many-Body Systems Reaction Theory for Nuclei far from Stability @ INT Seattle September 6-, Hans Feldmeier, Thomas Neff, Robert Roth Contents Motivation

More information

Introduction to model potential Molecular Dynamics A3hourcourseatICTP

Introduction to model potential Molecular Dynamics A3hourcourseatICTP Introduction to model potential Molecular Dynamics A3hourcourseatICTP Alessandro Mattoni 1 1 Istituto Officina dei Materiali CNR-IOM Unità di Cagliari SLACS ICTP School on numerical methods for energy,

More information

Dynamics and Time Integration. Computer Graphics CMU /15-662, Fall 2016

Dynamics and Time Integration. Computer Graphics CMU /15-662, Fall 2016 Dynamics and Time Integration Computer Graphics CMU 15-462/15-662, Fall 2016 Last Quiz: IK (and demo) Last few classes Keyframing and motion capture - Q: what can one NOT do with these techniques? The

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 2: Basic tools and concepts Nonlinear Single-Particle Dynamics in High Energy Accelerators This course consists of eight lectures: 1.

More information

Polynomial Filtered Hybrid Monte Carlo

Polynomial Filtered Hybrid Monte Carlo Polynomial Filtered Hybrid Monte Carlo Waseem Kamleh and Michael J. Peardon CSSM & U NIVERSITY OF A DELAIDE QCDNA VII, July 4th 6th, 2012 Introduction Generating large, light quark dynamical gauge field

More information

Meshless Methods in Conformation Dynamics

Meshless Methods in Conformation Dynamics Meshless Methods in Conformation Dynamics Dissertation am Fachbereich Mathematik und Informatik der Freien Universität Berlin zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften

More information

Lecture 8 Phase Space, Part 2. 1 Surfaces of section. MATH-GA Mechanics

Lecture 8 Phase Space, Part 2. 1 Surfaces of section. MATH-GA Mechanics Lecture 8 Phase Space, Part 2 MATH-GA 2710.001 Mechanics 1 Surfaces of section Thus far, we have highlighted the value of phase portraits, and seen that valuable information can be extracted by looking

More information

ADAPTIVE TWO-STAGE INTEGRATORS FOR SAMPLING ALGORITHMS BASED ON HAMILTONIAN DYNAMICS

ADAPTIVE TWO-STAGE INTEGRATORS FOR SAMPLING ALGORITHMS BASED ON HAMILTONIAN DYNAMICS ADAPTIVE TWO-STAGE INTEGRATORS FOR SAMPLING ALGORITHMS BASED ON HAMILTONIAN DYNAMICS E. Akhmatskaya a,c, M. Fernández-Pendás a, T. Radivojević a, J. M. Sanz-Serna b a Basque Center for Applied Mathematics

More information

HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

More information

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College)

Stochastic Particle Dynamics for Unresolved Degrees of Freedom. Sebastian Reich in collaborative work with Colin Cotter (Imperial College) Stochastic Particle Dynamics for Unresolved Degrees of Freedom Sebastian Reich in collaborative work with Colin Cotter (Imperial College) 1. The Motivation Classical molecular dynamics (MD) as well as

More information

Javier Junquera. Statistical mechanics

Javier Junquera. Statistical mechanics Javier Junquera Statistical mechanics From the microscopic to the macroscopic level: the realm of statistical mechanics Computer simulations Thermodynamic state Generates information at the microscopic

More information

Temperature and Pressure Controls

Temperature and Pressure Controls Ensembles Temperature and Pressure Controls 1. (E, V, N) microcanonical (constant energy) 2. (T, V, N) canonical, constant volume 3. (T, P N) constant pressure 4. (T, V, µ) grand canonical #2, 3 or 4 are

More information

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics c Hans C. Andersen October 1, 2009 While we know that in principle

More information

Course Okt 28, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. Personen. Hinweis. Rationale

Course Okt 28, Statistische Mechanik plus. Course Hartmut Ruhl, LMU, Munich. Personen. Hinweis. Rationale Okt 28, 2016 ASC, room A239, phone 089-21804210, email hartmut.ruhl@lmu.de. Patrick Böhl, ASC, room A205, phone 089-21804640, email patrick.boehl@physik.uni-muenchen.de. Das folgende Material ist nicht

More information

ANSWERS TO PROBLEM SET 1

ANSWERS TO PROBLEM SET 1 CHM1485: Molecular Dynamics and Chemical Dynamics in Liquids ANSWERS TO PROBLEM SET 1 1 Properties of the Liouville Operator a. Give the equations of motion in terms of the Hamiltonian. Show that they

More information

From quantum to classical statistical mechanics. Polyatomic ideal gas.

From quantum to classical statistical mechanics. Polyatomic ideal gas. From quantum to classical statistical mechanics. Polyatomic ideal gas. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 5, Statistical Thermodynamics, MC260P105,

More information

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) January 26, 2016 90/441 Lecture outline We will discuss the Hamiltonian flow in the phase space. This flow represents a time dependent

More information

Euler-Lagrange Cohomology, Discrete Versions and Applications

Euler-Lagrange Cohomology, Discrete Versions and Applications November, 2002 Euler-Lagrange Cohomology, Discrete Versions and Applications Han-Ying Guo In collaboration with J.Z. Pan, S.K. Wang, S.Y. Wu, K. Wu and B. Zhou et al. Contents 1 Introduction 2 2 ELCGs

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Mix & Match Hamiltonian Monte Carlo

Mix & Match Hamiltonian Monte Carlo Mix & Match Hamiltonian Monte Carlo Elena Akhmatskaya,2 and Tijana Radivojević BCAM - Basque Center for Applied Mathematics, Bilbao, Spain 2 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain MCMSki

More information

THEWAY in which time evolution acts on observables may be rephrased in

THEWAY in which time evolution acts on observables may be rephrased in Appendix F Implementing evolution F.1 Koopmania THEWAY in which time evolution acts on observables may be rephrased in the language of functional analysis, by introducing the Koopman operator, whose action

More information

A (short) practical introduction to kinetic theory and thermodynamic properties of gases through molecular dynamics

A (short) practical introduction to kinetic theory and thermodynamic properties of gases through molecular dynamics A (short) practical introduction to kinetic theory and thermodynamic properties of gases through molecular dynamics Miguel A. Caro mcaroba@gmail.com March 28, 2018 Contents 1 Preface 3 2 Review of thermodynamics

More information

Ordinary Differential Equations (ODEs) Background. Video 17

Ordinary Differential Equations (ODEs) Background. Video 17 Ordinary Differential Equations (ODEs) Background Video 17 Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign In this video you will learn... 1 What ODEs are

More information

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion

Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Physics 115/242 The leapfrog method and other symplectic algorithms for integrating Newton s laws of motion Peter Young (Dated: April 17, 23) I. INTRODUCTION One frequently obtains detailed dynamical information

More information

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics Rate Theory (overview) macroscopic view (phenomenological) rate of reactions experiments thermodynamics Van t Hoff & Arrhenius equation microscopic view (atomistic) statistical mechanics transition state

More information

Macroscopic time evolution and MaxEnt inference for closed systems with Hamiltonian dynamics. Abstract

Macroscopic time evolution and MaxEnt inference for closed systems with Hamiltonian dynamics. Abstract acroscopic time evolution and axent inference for closed systems with Hamiltonian dynamics Domagoj Kuić, Paško Županović, and Davor Juretić University of Split, Faculty of Science, N. Tesle 12, 21000 Split,

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS

IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Approved for public release; distribution is unlimited IMPACTS OF SIGMA COORDINATES ON THE EULER AND NAVIER-STOKES EQUATIONS USING CONTINUOUS/DISCONTINUOUS GALERKIN METHODS Sean L. Gibbons Captain, United

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Density Functional Modeling of Nanocrystalline Materials

Density Functional Modeling of Nanocrystalline Materials Density Functional Modeling of Nanocrystalline Materials A new approach for modeling atomic scale properties in materials Peter Stefanovic Supervisor: Nikolas Provatas 70 / Part 1-7 February 007 Density

More information

IMPLICIT MASS-MATRIX PENALIZATION OF HAMILTONIAN DYNAMICS WITH APPLICATION TO EXACT SAMPLING OF STIFF SYSTEMS

IMPLICIT MASS-MATRIX PENALIZATION OF HAMILTONIAN DYNAMICS WITH APPLICATION TO EXACT SAMPLING OF STIFF SYSTEMS IMPLICIT MASS-MATRIX PENALIZATION OF HAMILTONIAN DYNAMICS WITH APPLICATION TO EXACT SAMPLING OF STIFF SYSTEMS PETR PLECHÁČ AND MATHIAS ROUSSET Résumé. An implicit mass-matrix penalization (IMMP) of Hamiltonian

More information

An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics

An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics An ergodic sampling scheme for constrained Hamiltonian systems with applications to molecular dynamics Carsten Hartmann Institut für Mathematik, Freie Universität Berlin Arnimallee 6, 14195 Berlin, Germany

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

arxiv: v1 [physics.plasm-ph] 15 Sep 2013

arxiv: v1 [physics.plasm-ph] 15 Sep 2013 Symplectic Integration of Magnetic Systems arxiv:309.373v [physics.plasm-ph] 5 Sep 03 Abstract Stephen D. Webb Tech-X Corporation, 56 Arapahoe Ave., Boulder, CO 80303 Dependable numerical results from

More information

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets George A. Hagedorn Happy 60 th birthday, Mr. Fritz! Abstract. Although real, normalized Gaussian wave packets minimize the product

More information

in order to insure that the Liouville equation for f(?; t) is still valid. These equations of motion will give rise to a distribution function f(?; t)

in order to insure that the Liouville equation for f(?; t) is still valid. These equations of motion will give rise to a distribution function f(?; t) G25.2651: Statistical Mechanics Notes for Lecture 21 Consider Hamilton's equations in the form I. CLASSICAL LINEAR RESPONSE THEORY _q i = @H @p i _p i =? @H @q i We noted early in the course that an ensemble

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Liouville integrability of Hamiltonian systems and spacetime symmetry

Liouville integrability of Hamiltonian systems and spacetime symmetry Seminar, Kobe U., April 22, 2015 Liouville integrability of Hamiltonian systems and spacetime symmetry Tsuyoshi Houri with D. Kubiznak (Perimeter Inst.), C. Warnick (Warwick U.) Y. Yasui (OCU Setsunan

More information

Information and Physics Landauer Principle and Beyond

Information and Physics Landauer Principle and Beyond Information and Physics Landauer Principle and Beyond Ryoichi Kawai Department of Physics University of Alabama at Birmingham Maxwell Demon Lerner, 975 Landauer principle Ralf Landauer (929-999) Computational

More information

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects Monte Carlo Methods Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects Lecture 1 2 Lecture 1&2 3 Lecture 1&3 4 Different Ensembles Ensemble ame Constant (Imposed) VT Canonical,V,T P PT

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations

Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations D. D. Holm Solutions to M3-4A16 Assessed Problems # 3 15 Dec 2010 1 Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations Vector notation for differential basis elements:

More information

Aspects of nonautonomous molecular dynamics

Aspects of nonautonomous molecular dynamics Aspects of nonautonomous molecular dynamics IMA, University of Minnesota, Minneapolis January 28, 2007 Michel Cuendet Swiss Institute of Bioinformatics, Lausanne, Switzerland Introduction to the Jarzynski

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Introduction to Malliavin calculus and its applications Lecture 3: Clark-Ocone formula David Nualart Department of Mathematics Kansas University University of Wyoming Summer School 214 David Nualart

More information

Pendulum with a vibrating base

Pendulum with a vibrating base Pendulum with a vibrating base Chennai, March 14, 2006 1 1 Fast perturbations- rapidly oscillating perturbations We consider perturbations of a Hamiltonian perturbed by rapid oscillations. Later we apply

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Modified Equations for Variational Integrators

Modified Equations for Variational Integrators Modified Equations for Variational Integrators Mats Vermeeren Technische Universität Berlin Groningen December 18, 2018 Mats Vermeeren (TU Berlin) Modified equations for variational integrators December

More information