Worksheet #06 Conservation of Mechanical Energy

Size: px
Start display at page:

Download "Worksheet #06 Conservation of Mechanical Energy"

Transcription

1 Worksheet #06 1. James Bond (90.0 kg), outfitted with perfectly matching skis and skiware, is at the top of a steep slope that a secret spy like him can easily handle. He lets himself go from rest and smoothly slides down the 15.0 m-high hill. A big parking lot lies at the bottom of the hill. Since the parking area has been cleared of snow, the friction between the ground and the skis brings our hero to a halt at point D, located at a distance d = 12.0 m from point C. The descent can be considered frictionless. Take the potential energy to be zero at the bottom of the slope. (a) What is the mechanical energy of James Bond at points A and D? (b) Determine the speed of Bond at position B abd C. (c) What is the work done by friction in the parking lot? (d) Find the magnitude of the average friction force in part (1c). 1

2 Worksheet #06 2. An object of mass m = 3.00 kg is released from rest at a height of h = 5.00 m on an inclined ramp which makes an angle θ = 10.0 with the horizontal. At the foot of the ramp and after a horizontal surface of length d = 13.0 m is the tip of a spring of force constant k = 4000 N/m (see figure). The object slides down the ramp and into the spring, compressing it a distance x before coming momentarily to rest. Find x and describe what happens to the object after it comes to rest (a) if all surfaces are frictionless. (b) If the coefficient of kinetic friction µ k between the horizontal surface and the object is

3 Worksheet #06 3. A particle of mass m = 2.0 kg moves in a region of space with the following potential energy function P E(J) x(m) (a) Find the work done on the particle when the particle moves from x = 4 m to x = 5 m. (b) Assume the particle is initially at x = 11 m and has a velocity v 0 = 2 5 m/s in the positive x direction. Find the total mechanical energy of the particle. (c) Where is the speed of the particle minimum and maximum? 3

4 Worksheet #06 (d) Describe qualitatively the motion of the particle. (e) Now imagine that the total mechanical energy of the particle is E = 40 J. Describe the motion of the particle. Where is the speed of the particle maximum/minimum? Determine these speeds. 4

5 Solution for Worksheet #06 1. James Bond (90.0 kg), outfitted with perfectly matching skis and skiware, is at the top of a steep slope that a secret spy like him can easily handle. He lets himself go from rest and smoothly slides down the 15.0 m-high hill. A big parking lot lies at the bottom of the hill. Since the parking area has been cleared of snow, the friction between the ground and the skis brings our hero to a halt at point D, located at a distance d = 12.0 m from point C. The descent can be considered frictionless. Take the potential energy to be zero at the bottom of the slope. (a) What is the mechanical energy of James Bond at points A and D? Answer: E A = mgh A = (90.0 kg) ( 9.80 m/s 2) (15.0 m) = J (1) E D = 0 At rest; At zero height! (2) (b) Determine the speed of Bond at position B abd C. Answer: Using conservation of energy: E A = E B mgh = mg h mv2 B v B = E A = E C mgh = 1 2 mv2 C v C = gh = (9.80 m/s 2 ) (15.0 m) = 12.1 m/s (3) 2gh = 2 ( 9.80 m/s 2) (15.0 m) = 17.1 m/s (4) (c) What is the work done by friction in the parking lot? Answer: Using conservation of energy (where the difference in energy between points A and D is what is lost due to friction along the path.) E D E A = W f C D W f C D = J = J (5) (d) Find the magnitude of the average friction force in part (1c). Answer: From the definition of work: C D W f = f k d f k = W f C D J = d 12.0 m = 1100 N (6) 1

6 Solution for Worksheet #06 2. An object of mass m = 3.00 kg is released from rest at a height of h = 5.00 m on an inclined ramp which makes an angle θ = 10.0 with the horizontal. At the foot of the ramp and after a horizontal surface of length d = 13.0 m is the tip of a spring of force constant k = 4000 N/m (see figure). The object slides down the ramp and into the spring, compressing it a distance x before coming momentarily to rest. Find x and describe what happens to the object after it comes to rest (a) if all surfaces are frictionless. Answer: Initially, all energy is gravitational potential energy. When the object fully compresses the spring at the bottom of the incline, all the energy stored in the spring as potential energy (the object comes momentarily to rest). So E initial = E final mgh = 1 2mgh 2 kx2 x = = 2 (3.00 kg) (9.80 m/s2 ) (5.00 m) = m (7) k 4000 N/m After the object has completely compressed the spring, the spring will start to convert its potential energy back to kinetic (pushing the object). The object then leaves the spring with maximum kinetic energy 1 2 mv2 = 1 2 kx2. Then the object will climb the incline back reaching its original height! (b) If the coefficient of kinetic friction µ k between the horizontal surface and the object is Answer: When friction is present, the final energy will be less than initial energy by the magnitude of work lost to friction. When the spring is compressed by a distance x, the object has traveled on the horizontal surface for a a distance of (d + x). Using the conservation of energy theorem: E initial + W f = E final mgh µ k mg (d + x) = 1 2 kx2 x 2 + 2µ kmg x 2mg k k (h µ kd) = 0 (8) x 2 + ( m) x m 2 = 0 (9) The last equation is quadratic in x. The positive root is: x = m The object looses energy in its way back also. If it makes it to the incline with excess kinetic energy, it will climb to a height less than its initial value. To calculate the final height the object reaches, we need to calculate the total energy lost to friction in both ways. Then using conservation of energy: W f = 2µ k mg (x + d) (10) E initial + W f = E final mgh 2µ k mg (x + d) = mgh final h final = h 2µ k (x + d) = m!!! (11) But the height can not be negative. This means the object will loose all its energy and stop before it makes it back to the bottom of the incline! 2

7 Solution for Worksheet #06 3. A particle of mass m = 2.0 kg moves in a region of space with the following potential energy function. 60 P E(J) E for part e E for parts b, c and d x(m) (a) Find the work done on the particle when the particle moves from x = 4 m to x = 5 m. Answer: W = P E = [P E (4 m) P E (5 m)] = [20 J ( 10 J)] = 30 J (b) Assume the particle is initially at x = 11 m and has a velocity v 0 = 2 5 m/s in the positive x direction. Find the total mechanical energy of the particle. Answer: Initial potential energy (at x = 11 m) is P E = 0 J. Initial kinetic energy: KE = 1 2 mv2 = 1 2 (2.0 kg) ( 2 5 m/s ) 2 = 20 J Mechanical energy: E = KE + P E = 20 J. The mechanical energy in these conditions is the red horizontal line in the figure. (c) Where is the speed of the particle minimum and maximum? Answer: The speed and the kinetic energy are minimum (maximum) whenever the potential energy is maximum (minimum)...within the region allowed by the mechanical energy. This last part means that in our case the particle will move between x = 7 m and x = 12 m only. So the maximum speed happens at 10 m: KE = E P E (10 m) = 20 J ( 20 J) = 40 J but KE = 1 2K 2 (40 J) 2 mv2 v = m = 2.0 kg = 6.3 m/s And the minimum speed happens at the two turn-around points where the speed is zero, x = 7 m and x = 12 m. (d) Describe qualitatively the motion of the particle. Answer: The particle oscillates between x = 7 m and x = 12 m. The particle has zero speed at the turn around points and is subject to a force that pulls it toward the minimum 3

8 Solution for Worksheet #06 at x = 10 m. So the particle speeds up as it moves from the turn around point to the minimum and then slows down as it travels from the minimum to the other turn around point. (e) Now imagine that the total mechanical energy of the particle is E = 40 J. Describe the motion of the particle. Where is the speed of the particle maximum/minimum? Determine these speeds. Answer: Now the system oscillates between x = 1 m and x = 12.5 m, but the oscillations are more complex than before, because there are two Potential Energy minima. If the particle begins at x = 1 m, for instance, it will speed up until x = 3 m, slow down from there to x = 6 m, speed up again from x = 6 m to x = 10 m, and then slow down and come momentarily to a stop at x = 1 m. It then begins moving in the negative x direction in a similar way. The speed of the particle is maximum at the lowest minimum of the potential energy function, i.e. at x = 10 m. There, KE = E P E (10 m) = 40 J ( 20 J) = 60 J but KE = 1 2K 2 (60 J) 2 mv2 v = m = 2.0 kg = 7.7 m/s The minimum speed happens at the two turn-around points, x = 1 m and x = 12.5 m, where potential energy is equal to total energy and, hence, kinetic energy and the speed is zero. 4

Energy diagrams. 1. A particle of mass m = 2 kg moves in a region of space with the following potential energy function.

Energy diagrams. 1. A particle of mass m = 2 kg moves in a region of space with the following potential energy function. Energy diagrams 1. A particle of mass m = 2 kg moves in a region of space with the following potential energy function. 60 40 20 U (J) 0 20 40 60 0 2 4 6 8 10 12 x (m) a. The force at x = 2 m is (positive/negative/zero).

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Worksheet #05 Kinetic Energy-Work Theorem

Worksheet #05 Kinetic Energy-Work Theorem Physics Summer 08 Worksheet #05 June. 8, 08. A 0-kg crate is pulled 5 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.0 m/s. (a) Draw

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7.

Old Exams Questions Ch. 8 T072 Q2.: Q5. Q7. Old Exams Questions Ch. 8 T072 Q2.: A ball slides without friction around a loop-the-loop (see Fig 2). A ball is released, from rest, at a height h from the left side of the loop of radius R. What is the

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

AP Physics. Chapters 7 & 8 Review

AP Physics. Chapters 7 & 8 Review AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with

More information

Physics Courseware Physics I Energy Conservation

Physics Courseware Physics I Energy Conservation d Work work = Fd cos F Kinetic energy linear motion K. E. = mv Gravitational potential energy P. E. = mgh Physics Courseware Physics I Energy Conservation Problem.- A block is released from position A

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 8

PHYS Summer Professor Caillault Homework Solutions. Chapter 8 PHYS 1111 - Summer 007 - Professor Caillault Homework Solutions Chapter 8 5. Picture the Problem The physical situation is depicted at right. for the Strategy Use W sp = 1 k x i x f work done by the spring.

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Energy Name: Lab Partner: Section: 7.1 Purpose In this experiment, energy and work will be explored. The relationship between total energy, kinetic energy and potential energy will be observed.

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J.

grav mgr, where r is the radius of the bowl and grav W mgr kg 9.8 m s m J. Phys 0 Homework 9 Solutions 3. (a) The force of ity is constant, so the work it does is given by W F d, where F is the force and d is the displacement. The force is vertically downward and has magnitude

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

Chapter 8. Potential Energy and Energy Conservation

Chapter 8. Potential Energy and Energy Conservation Chapter 8. Potential Energy and Energy Conservation Introduction In Ch 7 Work- Energy theorem. We learnt that total work done on an object translates to change in it s Kinetic Energy In Ch 8 we will consider

More information

How does the total energy of the cart change as it goes down the inclined plane?

How does the total energy of the cart change as it goes down the inclined plane? Experiment 6 Conservation of Energy and the Work-Energy Theorem In this experiment you will explore the principle of conservation of mechanical energy. You will see that gravitational energy can be converted

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always Section 5.1 Friction Static and Kinetic Friction Friction is an electromagnetic phenomenon: molecular attraction between surfaces Extreme example: Gecko foot Two kinds of friction: Static Friction: a force

More information

Lesson 40: Conservation of Energy

Lesson 40: Conservation of Energy Lesson 40: Conservation of Energy A large number of questions you will do involve the total mechanical energy of a system. As pointed out earlier, the mechanical energy is just the total of all types of

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Another Method to get a Sine Wave. X = A cos θ V = Acc =

Another Method to get a Sine Wave. X = A cos θ V = Acc = LAST NAME FIRST NAME DATE PER CJ Wave Assignment 10.3 Energy & Simple Harmonic Motion Conceptual Questions 3, 4, 6, 7, 9 page 313 6, 7, 33, 34 page 314-316 Tracing the movement of the mass on the end of

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Mechanics & Properties of Matter 5: Energy and Power

Mechanics & Properties of Matter 5: Energy and Power Mechanics & Properties of Matter 5: Energy and Power Energy and Power AIM This unit re-introduces the formulae for calculating work done, potential energy, kinetic energy and power. The principle that

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics

Mechanical Energy I. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Mechanical Energy I Mr. Alex Rawson Physics 1. One of the two Olympic weightlifting events is called the Clean and Jerk, shown below. As of Athens 2004, the record for Clean and

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Physics 23 Notes Chapter 6 Part Two

Physics 23 Notes Chapter 6 Part Two Physics 23 Notes Chapter 6 Part Two Dr. Alward Conservation of Energy Object moves freely upward under the influence of Earth only. Its acceleration is a = -g. v 2 = vo 2 + 2ax = vo 2-2g (h-ho) = vo 2-2gh

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Design a Rollercoaster

Design a Rollercoaster Design a Rollercoaster This activity has focussed on understanding circular motion, applying these principles to the design of a simple rollercoaster. I hope you have enjoyed this activity. Here is my

More information

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song

March 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F

More information

Multiple-Choice questions

Multiple-Choice questions AP Physics I Work and Energy Multiple-Choice questions 1. A force F is at an angle θ above the horizontal and is used to pull a heavy suitcase of weight mg a distance d along a level floor at constant

More information

Unit-1. Force & Motion. Solutions 1.6 Energy & Motion page a) W 1. = F.x = 1. = F.cos60!.2x =F.x W 2. b) = W 2 = 2. 2.m.v 1.

Unit-1. Force & Motion. Solutions 1.6 Energy & Motion page a) W 1. = F.x = 1. = F.cos60!.2x =F.x W 2. b) = W 2 = 2. 2.m.v 1. page - 76 1. Two objects K and L are stationary over frictionless horizontal surfaces. They are pulled as shown in the figure. The work done on object K when it reaches point A is W 1 and the work done

More information

Potential Energy. Serway 7.6, 7.7;

Potential Energy. Serway 7.6, 7.7; Potential Energy Conservative and non-conservative forces Gravitational and elastic potential energy Mechanical Energy Serway 7.6, 7.7; 8.1 8.2 Practice problems: Serway chapter 7, problems 41, 43 chapter

More information

Physics 180A Test Points

Physics 180A Test Points Physics 180A Test 2-120 Points Name 1) Describe each situation and fill in the blanks to the diagram below. There are 4 situations and 8 blanks. (12 pts) 2) A crate slides up an inclined ramp and then

More information

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J AP Physics-B Energy And Its Conservation Introduction: Energy is a term that most of us take for granted and use quite freely. We assume we know what we are talking about when speaking of energy. In truth,

More information

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)]

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Physics 17 Part F Potential Energy U = mgh Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Re-written: ½ mv 2 + mgh = ½ mvo 2 + mgho Ko

More information

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same

11th Grade. Review for General Exam-3. decreases. smaller than. remains the same 1. An object is thrown horizontally with a speed of v from point M and hits point E on the vertical wall after t seconds as shown in the figure. (Ignore air friction.). Two objects M and S are thrown as

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Potential energy and conservation of energy

Potential energy and conservation of energy Chapter 8 Potential energy and conservation of energy Copyright 8.1_2 Potential Energy and Work Potential energy U is energy that can be associated with the configuration (arrangement) of a system of objects

More information

ΣE before ± W = ΣE after

ΣE before ± W = ΣE after The Law of Conservation of Energy The Law of Conservation of Energy states: Energy is never created nor destroyed just transformed into other forms of energy. OR ΣE before = ΣE after Yet if energy is added

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

the spring is compressed and x is the compression

the spring is compressed and x is the compression Lecture 4 Spring problem and conservation of mechanical energy Hooke's Law The restoring force exerted by the spring is directly proportional to its displacement. The restoring force acts in a direction

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 6 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

Slide 1 / 76. Work & Energy Multiple Choice Problems

Slide 1 / 76. Work & Energy Multiple Choice Problems Slide 1 / 76 Work & Energy Multiple Choice Problems Slide 2 / 76 1 A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Physics 2514 Lecture 34

Physics 2514 Lecture 34 Physics 2514 Lecture 34 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/13 Information Information needed for the exam Exam will be in the same format as the practice

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Review for Exam 2 S 2019

Review for Exam 2 S 2019 Review for Exam 2 S 2019 R1. Work W = F.d (in N m =Joules = J If we know the angle between vectors, q F.d = F d cos q F = (1, 2, 3) F =sqrt(1+4+9)=~4 d = (4, 5, 6) d =sqrt(16+25+36)~9 q=10; W=F d cos(60)

More information

Physics 218 Honors Exam 3 Solutions

Physics 218 Honors Exam 3 Solutions Physics 8 Honors Exam 3 Solutions. You want to set a can of soda on an incline without it toppling over. The empty can has a mass of 00 g, the contents of a full can have a mass of 400 g. In order to stabilize

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1 Physics 2111 Unit 7 Today s Concepts: Work & Kinetic Energy Power Mechanics Lecture 7, Slide 1 Work-Kinetic Energy Theorem The work done by force F as it acts on an object that moves between positions

More information

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo

LECTURE 10- EXAMPLE PROBLEMS. Chapter 6-8 Professor Noronha-Hostler Professor Montalvo LECTURE 10- EXAMPLE PROBLEMS Chapter 6-8 Professor Noronha-Hostler Professor Montalvo TEST!!!!!!!!! Thursday November 15, 2018 9:40 11:00 PM Classes on Friday Nov. 16th NO CLASSES week of Thanksgiving

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Work and Potential Energy

Work and Potential Energy Work and Potential Energy One general type of energy is potential energy, U. It is the energy that can be associated with the configuration (or arrangement) of a system of objects that exert forces on

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

Answer the following questions. Please, SHOW ALL YOUR WORK:

Answer the following questions. Please, SHOW ALL YOUR WORK: Introduction In this lab you will use conservation of mechanical energy to predict the motion of objects in situations that are difficult to analyze with force concepts. Prelab Activity Read sections 5.3,

More information

PHYS 154 Practice Test 3 Spring 2018

PHYS 154 Practice Test 3 Spring 2018 The actual test contains 1 multiple choice questions and 2 problems. However, for extra exercise, this practice test includes 4 problems. Questions: N.B. Make sure that you justify your answers explicitly

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Module 14: Application of the Principle of Conservation of Energy

Module 14: Application of the Principle of Conservation of Energy Module 14: Application of the Principle of Conservation of Energy In the preceding chapter we consider closed systems!e system = 0 in which the only interactions on the constituents of a system were due

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

Name Student ID Phys121 Win2011

Name Student ID Phys121 Win2011 (1) (3 pts) The airplane in the figure below is travelling at a constant speed and at a fixed altitude with its engines providing forward thrust. Which of the free-body diagrams below best represents the

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information