MECHANICAL (TOTAL) ENERGY

Size: px
Start display at page:

Download "MECHANICAL (TOTAL) ENERGY"

Transcription

1 DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray

2 POTENTIAL ENERGY Stored energy An object that has the potential to move Ex: a rock on the edge of a cliff, or an arrow ready to fire on a bent bow Symbol: U Two types: gravitational potential (U g ) and elastic potential energy (U s )

3 MECHANICAL (TOTAL) ENERGY Mechanical energy the sum of potential (elastic and gravitational) and kinetic energy for an object; also measured in Joules ME or E = KE + U g + U s

4 GRAVITATIONAL POTENTIAL ENERGY The stored energy of an object due to its position relative to a gravitational source U = mgh m=mass g=9.8 m/s 2 h=height above zero *Potential energy is measured relative to a position we call zero height is measured above this point

5 EXAMPLE 1: A 2 KG TEXTBOOK IS HELD 0.5 M ABOVE A TABLE TOP. A. HOW MUCH POTENTIAL ENERGY DOES THE BOOK HAVE RELATIVE TO THE TABLE TOP? B. IF THE TABLE IS 0.7 M HIGH, HOW MUCH POTENTIAL ENERGY DOES THE BOOK HAVE RELATIVE TO EARTH S SURFACE? C. IF THE RADIUS OF EARTH IS 6.37 X 10 6 M, WHAT IS THE POTENTIAL ENERGY OF THE BOOK RELATIVE TO THE CENTER OF EARTH?

6 ELASTIC POTENTIAL ENERGY Potential energy due to a stretched or compressed spring (elastic object) U s = 1 2 kx2 where k is a constant that tells you how elastic something is called the spring constant or force constant. k is measured in N/m x is the distance the spring is stretched or compressed measured in meters.

7 EXAMPLE 2: A SPRING WITH A SPRING CONSTANT OF 3.5 N/M HAS A RELAXED LENGTH OF 0.2M. WHEN IT IS STRETCHED TO A LENGTH OF 0.3M, A. HOW MUCH FORCE DOES THE SPRING EXERT? B. HOW MUCH ELASTIC POTENTIAL ENERGY DOES IT HAVE?

8 LAW OF CONSERVATION OF ENERGY In an isolated system, the total energy of the system remains constant. - Work done by Gravitational and Elastic forces cause energy to transform from kinetic to potential or vice versa - Work done by other forces (applied or friction) cause energy to be transferred from one object to another

9 SOME IMPORTANT DEFINITIONS: Conservative force a force that converts potential energy into kinetic energy (or vice versa) of an object, but doesn t change the overall mechanical energy. - Gravitational force - Elastic force (from a spring or other elastic object) Non-conservative force a force that adds or takes away total mechanical energy from the object. (Mechanical energy is NOT conserved). - Applied force - Friction (converts mechanical energy into thermal energy, object will lose energy)

10 LAW OF CONSERVATION OF ENERGY IN EQUATION FORM W NC = ME ME F = W NC + ME i KE f + U g,f +U s,f =W NC +KE i +U g,i +U s,i 1 2 mv f 2 + mgh f kx f 2 = W NC mv i 2 + mgh i kx i 2

11 CONSERVATIVE FORCES U g is being converted into KE In Equation form: KE = U g where U g : KE = U s where U s : U s is being converted into KE In Equation form: U s i + KE i = U s f + KE f U gi + KE i = U gf + KE f

12 NON-CONSERVATIVE FORCES The applied force from the bat does work on the ball, increasing its kinetic and gravitational potential energy. In equation form: W bat = ME where ME:+ KE f + U gf = KE i + U gi + W bat The friction force from the road does negative work on the car, decreasing its kinetic energy. In equation form: W fric = ME KE f = KE i W fric where ME:-

13 EXAMPLE 3 SITUATIONS For each example below, state if the mechanical energy IS or IS NOT conserved. State which forms of energy are increasing or decreasing Write an equation that represents the initial and final forms of energies.

14 EXAMPLE 3 SITUATIONS Energy IS conserved Ug is decreasing, KE is increasing U gi + KEi = Ug f + KEf Energy IS NOT conserved KE is increasing W NC = KEf

15 Initial forms of Energy Outside Work (nonconservative only) LOL CHARTS Final forms of Energy KE U g U s KE U g U s Bar graph sketch for types of energy before the interaction Arrow drawn into the circle if positive work is done by applied force Arrow drawn out of the circle if negative work is done by applied force or friction Bar graph sketch for types of energy after the interaction ME i + W NC = ME f

16 Initial forms of Energy Outside Work (nonconservative only) LOL CHARTS Final forms of Energy KE U g U s KE U g U s Bar graph sketch for types of energy before the interaction Arrow drawn into the circle if positive work is done by applied force Arrow drawn out of the circle if negative work is done by applied force or friction Bar graph sketch for types of energy after the interaction ME i + W NC = ME f

17 EXAMPLE LOL CHART A toy car initially is released from rest at the top of a grassy hill. It experiences friction as it rolls to the bottom of the hill. Initial forms of Energy Outside Work (nonconservative only) Final forms of Energy KE U g U s KE U g U s U g,i W fric = KE f

18 EXAMPLE LOL CHART A toy car initially is released from rest at the top of a grassy hill. It experiences friction as it rolls to the bottom of the hill. Initial forms of Energy Outside Work (nonconservative only) Final forms of Energy KE U g U s KE U g U s U g,i W fric = KE f

19 EXAMPLE 4: THE HIGHEST HILL OF A ROLLER COASTER IS 25 M TALL, FOR WHICH FRICTION IS NEGLIGIBLE. IF THE ROLLER COASTER AND PASSENGERS HAS A MASS OF 15,000 KG AND STARTS FROM REST AT THE TOP OF THE HILL. a.how fast is it moving when it gets to the bottom of the hill? b.the next hill is only 15 m tall. What is the speed of the roller coaster at the top of this hill?

20 Initial forms of Energy Outside Work (nonconservative only) LOL CHART FOR A Final forms of Energy KE U g U s KE U g U s Bar graph sketch for types of energy before the interaction Arrow drawn into the circle if positive work is done by applied force Arrow drawn out of the circle if negative work is done by applied force or friction Bar graph sketch for types of energy after the interaction U g,i + 0 = KE f

21 Initial forms of Energy Outside Work (nonconservative only) LOL CHART FOR B Final forms of Energy KE U g U s KE U g U s U g,i + 0 = KE f + U g,f

22 EXAMPLE 4 SOLUTION A. Initially: All energy is gravitational potential (U gi =mgh i ) mgh i =1/2 mv f 2 At the bottom of the first hill: All energy is kinetic since h=0 (KE f =1/2 mv f2 ) No applied or friction forces, so energy is conserved: ME i =ME f v f = 2gh i = 2 9.8m s 2 25m = 22.1 m/s B. Initially, ME i =U g =mgh i At the top of the second hill: Energy is kinetic and grav. potential (ME f =1/2 mv f2 +mgh f ) mgh i =1/2 mv f2 +mgh f v f = 2gh i 2gh f = 2 9.8m s 2 (25m 15m) = 14 m/s

23 EXAMPLE 5: A 10KG MASS COMPRESSES A SPRING (K=80 N/M) A DISTANCE OF 0.8M FROM ITS EQUILIBRIUM POSITION. IT IS RELEASED FROM REST AND SLIDES UP A FRICTIONLESS CURVED HILL AS SHOWN BELOW. a. How fast is the mass traveling when it loses contact with the spring? b. How high does the mass travel up the hill before it stops moving?

24 Initial forms of Energy Outside Work (nonconservative only) LOL CHART FOR A Final forms of Energy KE U g U s KE U g U s U s,i + 0 = KE f

25 Initial forms of Energy Outside Work (nonconservative only) LOL CHART FOR B Final forms of Energy KE U g U s KE U g U s U s,i + 0 = U g,f

26 EXAMPLE 5 SOLUTION A. Initially: energy is elastic potential only (ME i =1/2kx i2 ) At the end: spring isn t stretched, so energy is kinetic only (ME f =1/2mv f2 ) No friction or applied forces, so ME is conserved (ME i =ME f ) 1 kx 2 i 2 = 1 mv 2 f 2 v 2 f = kx i m 2 v f = kx i 2 80N = m (0.8m)2 m 10kg = 2.26m/s B. At the end, energy is gravitational potential only (U g =mgh f ) 1 2 kx i 2 = mgh f h f = =.5 80N m (0.8m)2 mg 10kg 9.8m/s kx i 2 =.261m

27 EXAMPLE 6: A 10.0 kg crate is pulled up a rough incline with an initial speed of 1.5 m/s. The pulling force is N parallel to the incline, which makes an angle of 15.0 with the horizontal. Assuming the coefficient of kinetic friction is 0.40 and the crate is pulled a distance of 7.5 m, find the following: a. The work done by the Earth s gravity on the crate. b. The work done by the force of friction on the crate. c. The work done by the puller on the crate. d. The change in kinetic energy of the crate. e. The speed of the crate after it is pulled 7.5 m.

28 Initial forms of Energy Outside Work (nonconservative only) LOL CHART Final forms of Energy KE U g U s KE U g U s KE i + W app W fric = KE f + U g,f

29 EXAMPLE 6 SOLUTION 15 C. W app =Fdcosθ where θ=0 W app =F a d W app =100N*7.5m=750J D. Since there are non-conservative forces, the total mechanical energy will change. We need to write an equation with energy: ME f = W NC + ME i U g,i + KE f = W app + W f + KE i KE f KE i = W app + W f U g,i = 750J + 284J 190J Change in kinetic energy=276j A. W g =-mg h Find h: sin 15 = h 7.5m h=1.94m W g =-10kg*9.8m/s2*1.94m= -190J B. W f =F k dcosθ where θ= 180 W f =-F k d Find F k : F k =µ k F N on a ramp, F N =mgcosθ F k =0.4*10kg*9.8m/s2*cos 15 = 37.9N W f =-37.9N*7.5m=-284J

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy ***

2 possibilities. 2.) Work is done and... 1.) Work is done and... *** The function of work is to change energy *** Work-Energy Theorem and Energy Conservation *** The function of work is to change energy *** 2 possibilities 1.) Work is done and... or 2.) Work is done and... 1 EX: A 100 N box is 10 m above the ground

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Slide 1 / 76. Work & Energy Multiple Choice Problems

Slide 1 / 76. Work & Energy Multiple Choice Problems Slide 1 / 76 Work & Energy Multiple Choice Problems Slide 2 / 76 1 A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket. Ch 11 ENERGY and its CONSERVATION 11.1 The Many Forms of Energy work causes a change in the energy of a system W = KE (an increase or decrease in KE) work energy theorem object + work object work increase

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall Physics 231 Topic 5: Energy and Work Alex Brown October 2, 2015 MSU Physics 231 Fall 2015 1 What s up? (Friday Sept 26) 1) The correction exam is now open. The exam grades will be sent out after that on

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m.

(b) The mechanical energy would be 20% of the results of part (a), so (0 20)(920 m) 180 m. PH Chapter 7 Solutions 7.4. IDENTIFY: The energy from the food goes into the increased gravitational potential energy of the hiker. We must convert food calories to joules. SET P: The change in gravitational

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)]

Potential Energy. Uo = mgh. Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Physics 17 Part F Potential Energy U = mgh Apply the Work-Kinetic Energy Theorem: F = - mg x = - (h - ho) ΔK = W = Fx ½ mv 2 - ½ mvo 2 = (-mg ) [- (ho - h)] Re-written: ½ mv 2 + mgh = ½ mvo 2 + mgho Ko

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy Potential Energy & Conservation of Energy Level : Physics I Teacher : Kim Work and Change in Energy If we rearrange the Work-Kinetic Energy theorem as follows K i +Fcosφ d = K f => Fcosφ d = K f - K i

More information

Conservation of Energy Review

Conservation of Energy Review onservation of Energy Review Name: ate: 1. An electrostatic force exists between two +3.20 10 19 -coulomb point charges separated by a distance of 0.030 meter. As the distance between the two point charges

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Energy Storage and Transfer Model: Review Sheet

Energy Storage and Transfer Model: Review Sheet Name Energy Storage and Transfer Model: Review Sheet Date Pd 1. A softball (m = 180 g) traveling at 22.3 m/s moves a fielder's glove backward 25 cm when the ball is caught. a. Construct an energy bar graph

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2 1 NAME PERIOD PHYSICS GUIDESHEET ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT CLASS OVERHEAD NOTES (5 pts/page) (Plus 5 pts/page for sample questions)

More information

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics.

Work Energy Review. 1. Base your answer to the following question on the information and diagram below and on your knowledge of physics. Name: ate: 1. ase your answer to the following question on the information and diagram below and on your knowledge of physics. student pushes a box, weighing 50. newtons, 6.0 meters up an incline at a

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

- Conservation of Energy Notes Teacher Key -

- Conservation of Energy Notes Teacher Key - NAME: DATE: PERIOD: PHYSICS - Conservation of Energy Notes Teacher Key - - Is Energy Conserved? - Determine the max height that a 5kg cannonball will reach if fired vertically with an initial velocity

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Potential Energy & Conservation of Energy Physics

Potential Energy & Conservation of Energy Physics Potential Energy & Conservation of Energy Physics Work and Change in Energy If we rearrange the Work-Kinetic Energy theorem as follows Ki +Fcosφ d = Kf => Fcosφ d = Kf - Ki => Fcosφ d = K => Ki + ΣΣW =

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000

Slide 2 / 76. Slide 1 / 76. Slide 3 / 76. Slide 4 / 76. Slide 6 / 76. Slide 5 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000 Slide 1 / 76 Slide 2 / 76 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports car from 30 m/s to

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ.

Slide 1 / 76. Slide 2 / 76. Slide 3 / 76. Work & Energy Multiple Choice Problems A 1,800 B 5,000 E 300,000. A Fdcos θ - μ mgd B Fdcos θ. Slide 1 / 76 Work & nergy Multiple hoice Problems 1 driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate the sports

More information

AP Physics C. Momentum. Free Response Problems

AP Physics C. Momentum. Free Response Problems AP Physics C Momentum Free Response Problems 1. A bullet of mass m moves at a velocity v 0 and collides with a stationary block of mass M and length L. The bullet emerges from the block with a velocity

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want 8.38 (a) The mass moves down distance.0 m + x. Choose y = 0 at its lower point. K i + U gi + U si + E = K f + U gf + U sf 0 + mgy i + 0 + 0 = 0 + 0 + kx (.50 kg)9.80 m/s (.0 m + x) = (30 N/m) x 0 = (60

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

This chapter covers all kinds of problems having to do with work in physics terms. Work

This chapter covers all kinds of problems having to do with work in physics terms. Work Chapter 7 Working the Physics Way In This Chapter Understanding work Working with net force Calculating kinetic energy Handling potential energy Relating kinetic energy to work This chapter covers all

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus)

AP Physics C. Work and Energy. Free-Response Problems. (Without Calculus) AP Physics C Work and Energy Free-Response Problems (Without Calculus) 1. A block with a mass m =10 kg is released from rest and slides a distance d = 5 m down a frictionless plane inclined at an angle

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits?

Honor Physics Final Exam Review. What is the difference between series, parallel, and combination circuits? Name Period Date Honor Physics Final Exam Review Circuits You should be able to: Calculate the total (net) resistance of a circuit. Calculate current in individual resistors and the total circuit current.

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

Physics Chapter 5. Work and Energy

Physics Chapter 5. Work and Energy Physics Chapter 5 Work and Energy Work Work - (if force is constant) is the product of the force exerted on an object and the distance the object moves in the direction of the force. W = F d Work is a

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Physics 110 Homework Solutions Week #5

Physics 110 Homework Solutions Week #5 Physics 110 Homework Solutions Week #5 Wednesday, October 7, 009 Chapter 5 5.1 C 5. A 5.8 B 5.34. A crate on a ramp a) x F N 15 F 30 o mg Along the x-axis we that F net = ma = Fcos15 mgsin30 = 500 cos15

More information

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc.

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc. Chapter 8 Conservation of Energy Units of Chapter 8 Conservative and Nonconservative Forces Potential Energy Mechanical Energy and Its Conservation Problem Solving Using Conservation of Mechanical Energy

More information

Work and Potential Energy

Work and Potential Energy Work and Potential Energy One general type of energy is potential energy, U. It is the energy that can be associated with the configuration (or arrangement) of a system of objects that exert forces on

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Physics 23 Notes Chapter 6 Part Two

Physics 23 Notes Chapter 6 Part Two Physics 23 Notes Chapter 6 Part Two Dr. Alward Conservation of Energy Object moves freely upward under the influence of Earth only. Its acceleration is a = -g. v 2 = vo 2 + 2ax = vo 2-2g (h-ho) = vo 2-2gh

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Department of Natural Sciences Clayton College & State University. Physics 1111 Quiz 5. a. Calculate the work done by each force on the crate.

Department of Natural Sciences Clayton College & State University. Physics 1111 Quiz 5. a. Calculate the work done by each force on the crate. Clayton College & State University October, 00 Physics 1111 Quiz 5 Name SOLUTION A crate of 50.0 kg mass containing a new lab instrument is dragged by enthusiastic physics students a distance of 30.0 m

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Physics 1 Second Midterm Exam (AM) 2/25/2010

Physics 1 Second Midterm Exam (AM) 2/25/2010 Physics Second Midterm Eam (AM) /5/00. (This problem is worth 40 points.) A roller coaster car of m travels around a vertical loop of radius R. There is no friction and no air resistance. At the top of

More information

Work and Kinetic Energy I

Work and Kinetic Energy I Work and Kinetic Energy I Scalar Product The scalar product of any two vectors A and B is a scalar quantity equal to the product of the magnitudes of the two vectors and the cosine of the angle φ between

More information

Physics 11 Chapter 10: Energy and Work

Physics 11 Chapter 10: Energy and Work Physics 11 Chapter 10: Energy and Work It is good to have an end to journey toward; but it is the journey that matters, in the end. Ursula K. Le Guin Nobody made a greater mistake than he who did nothing

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information