Learning Graphical Models

Size: px
Start display at page:

Download "Learning Graphical Models"

Transcription

1 School of omuter Scece Statstcal learg wth basc grahcal models robablstc Grahcal Models -78 Lecture 7 Oct 8 7 Recetor A Recetor B ase ase D ase E Erc g Gee G TF F 6 7 Gee H 8 Readg: J-ha. 56 F-ha. 8 Learg Grahcal Models The goal: Ge set of deedet samles assgmets of radom arables fd the best the most lely? Bayesa etwor both DAG ad Ds E B E B R A R A Structural learg BEARTFFTF BEARTFTTF.. BEARFTTTF E B e b e b e b e b A EB arameter learg Erc g

2 Learg Grahcal Models Scearos: comletely obsered GMs drected udrected artally or uobsered GMs drected udrected a oe research toc Estmato rcles: Mamal lelhood estmato MLE Bayesa estmato Mamal codtoal lelhood Mamal "Marg" We use learg as a ame for the rocess of estmatg the arameters ad some cases the toology of the etwor from data. Erc g 3 Score-based aroach Data ossble structures E B Lear arameters Score struc/aram R A Mamum lelhood 5 M M R E B A Bayesa odtoal lelhood Marg 3 5. Erc g 4

3 Z ML arameter Est. for comletely obsered GMs of ge structure The data: {z z z z } Erc g 5 arameter Learg Assume G s ow ad fed from eert desg from a termedate outcome of terate structure learg Goal: estmate from a dataset of deedet detcally dstrbuted d trag cases D {... }. I geeral each trag case... M s a ector of M alues oe er ode the model ca be comletely obserable.e. eery elemet s ow o mssg alues o hdde arables or artally obserable.e. s.t. s ot obsered. I ths lecture we cosder learg arameters for a sgle ode. Frequetst s. Bayesa estmate Erc g 6 3

4 Bayesa arameter Estmato Bayesas treat the uow arameters as a radom arable whose dstrbuto ca be ferred usg Bayes rule: D D D Ths crucal equato ca be wrtte words: For d data the lelhood s The ror. ecodes our ror owledge about the doma therefore Bayesa estmato has bee crtczed for beg "subecte" emrcal Bayes ft ror from "trag" data Erc g 7 D D d lelhood ror osteror margal lelhood D Frequetst arameter Estmato Two eole wth dfferet rors wll ed u wth dfferet estmates D. Frequetsts dsle ths subectty. Frequetsts th of the arameter as a fed uow costat ot a radom arable. Hece they hae to come u wth dfferet "obecte" estmators ways of comutg from data stead of usg Bayes rule. These estmators hae dfferet roertes such as beg ubased mmum arace etc. A ery oular estmator s the mamum lelhood estmator whch s smle ad has good statstcal roertes. Erc g 8 4

5 Dscusso or ths s the roblem! Bayesas ow t Erc g 9 Mamum Lelhood Estmato The log-lelhood s mootocally related to the lelhood: The Idea uderlyg mamum lelhood estmato MLE: c the settg of arameters most lely to hae geerated the data we saw: arg ma ; D roblem of MLE: Oerfttg: meas that "some of the relatoshs that aear statstcally sgfcat are actually ust ose. It occurs whe the comlety of the statstcal model s too great for the amout of data that you hae" Ofte the MLE oerfts the trag data so t s commo to mamze a regularzed loglelhood stead: ' Isuffcet trag data ca lead to surous estmator e.g. certa ossble alues are ot obsered due to data sarsty so t s commo to smooth the estmated arameter l ; D log D log ML l arg ma l ; D c Erc g 5

6 Eamle: Beroull model Data: We obsered d co tossg: D{ } Reresetato: Bary r.: Model: for for { } How to wrte the lelhood of a sgle obserato? The lelhood of datasetd{ }:... #head #tals Erc g MLE Obecte fucto: h t l ; D log D log log log We eed to mamze ths w.r.t. Tae derates wrt h h l h h h MLE or MLE Frequecy as samle mea Suffcet statstcs The couts h where are suffcet statstcs of data D Erc g 6

7 Beg a ragmatc frequetst Mamum a osteror MA estmato: arg ma D arg ma l ; D Smoothg wth seudo-couts Recall that for Bomal Dstrbuto we hae What f we tossed too few tmes so that we saw zero head? head We hae ML ad we wll redct that the robablty of seeg a head et s zero!!! The rescue: MA head MLE head MLE head head Where ' s ow as the seudo- magary cout log Erc g 3 tal head ' tal ' head But are we stll obecte? Bayesa estmato for Beroull Beta dstrbuto: Γ β ; B Γ Γ β β β β β Whe s dscrete Γ Γ! osteror dstrbuto of : h t β h... t β otce the somorhsm of the osteror to the ror such a ror s called a cougate ror ad β are hyerarameters arameters of the ror ad corresod to the umber of rtual heads/tals seudo couts Erc g 4 7

8 Bayesa estmato for Beroull co'd osteror dstrbuto of :... h t β h Mamum a osteror MA estmato: t β MA arg ma log osteror mea estmato:... Bata arameters ca be uderstood as seudo-couts Bayes ror stregth: Aβ β h t β h D d d A ca be teroerated as the sze of a magary data set from whch we obta the seudo-couts Erc g 5 Effect of ror Stregth Suose we hae a uform ror β/ ad we obsere h 8 t Wea ror A. osteror redcto: h h t 8 '. 5 Strog ror A. osteror redcto: h h t 8 '. 4 Howeer f we hae eough data t washes away the ror. e.g. h t 8. The the estmates uder wea ad strog ror are ad resectely both of whch are close to. Erc g 6 8

9 How estmators should be used? MA s ot Bayesa ee though t uses a ror sce t s a ot estmate. osder redctg the future. A sesble way s to combe redctos based o all ossble alues of weghted by ther osteror robablty ths s what a Bayesa wll do: ew ew ew ew d d d A frequetst wll tycally use a lug- estmator such as ML/MA: or ew ew ML ew ew MA The Bayesa estmate wll collase to MA for cocetrated osteror Erc g 7 Frequetst s. Beyesa Ths s a theologcal war. Adatages of Bayesa aroach: Mathematcally elegat. Wors well whe amout of data s much less tha umber of arameters e.g. oe-shot learg. Easy to do cremetal sequetal learg. a be used for model selecto ma lelhood wll always c the most comle model. Adatages of frequetst aroach: Mathematcally/ comutatoally smler. "obecte" ubased arat to rearameterzato As the two aroaches become the same: D D δ ML Erc g 8 9

10 Smlest GMs: the buldg blocs Desty estmato arametrc ad oarametrc methods Regresso Lear codtoal mture oarametrc lassfcato Geerate ad dscrmate aroach Q σ Y Q Erc g 9 lates A late s a macro that allows subgrahs to be relcated For d echageable data the lelhood s D We ca rereset ths as a Bayes et wth odes. The rules of lates are smle: reeat eery structure a bo a umber of tmes ge by the teger the corer of the bo e.g. udatg the late de arable e.g. as you go. Dulcate eery arrow gog to the late ad eery arrow leag the late by coectg the arrows to each coy of the structure. Erc g

11 Erc g Beroull dstrbuto: Ber Multomal dstrbuto: Mult Multomal dcator arable:. w.. ad ] [ where [...6] [...6] de the dce - face} where { Dscrete Dstrbutos for for Erc g Multomal dstrbuto: Mult out arable: Dscrete Dstrbutos where M!!!!!!!! L L L

12 Erc g 3 Eamle: multomal model Data: We obsered d de rolls -sded: D{5 3} Reresetato: Ut bass ectors: Model: How to wrte the lelhood of a sgle obserato? The lelhood of datasetd{ }: L } th roll the de the de -sde of where {... ad } { where M } { ad w GM: Erc g 4 MLE: costraed otmzato wth Lagrage multlers Obecte fucto: We eed to mamze ths subect to the costra ostraed cost fucto wth a Lagrage multler Tae derates wrt Suffcet statstcs The couts are suffcet statstcs of data D D D log log log ; l λ log l λ λ λ λ l MLE MLE or Frequecy as samle mea L

13 3 Erc g 5 Bayesa estmato: Drchlet dstrbuto: osteror dstrbuto of : otce the somorhsm of the osteror to the ror such a ror s called a cougate ror osteror mea estmato: - - Γ Γ d d D 3 GM: Drchlet arameters ca be uderstood as seudo-couts Erc g 6 More o Drchlet ror: Where s the ormalze costat come from? Itegrato by arts Γ s the gamma fucto: For regers Margal lelhood: osteror closed-form: osteror redcte rate: Γ Γ d d L L L Γ dt e t t! Γ }... { r r r r r r r d }... { Dr }... { d

14 Sequetal Bayesa udatg Start wth Drchlet ror Dr : Obsere ' samles wth suffcet statstcs '. osteror becomes: ' Dr : ' Obsere aother " samles wth suffcet statstcs ". osteror becomes: ' " Dr : ' " So sequetally absorbg data ay order s equalet to batch udate. Erc g 7 Effect of ror Stregth Let be the umber of obsered samles Let A be the umber of "seudo obseratos" ---- the stregth of the ror Let ' /A deote the ror meas The osteror mea s a coe combato of the ror mea ad the MLE: where {... } A A A A A λ ' λ λ A. A MLE Erc g 8 4

15 Herarchcal Bayesa Models are the arameters for the lelhood are the arameters for the ror. We ca hae hyer-hyer-arameters etc. We sto whe the choce of hyer-arameters maes o dfferece to the margal lelhood; tycally mae hyerarameters costats. Where do we get the ror? Itellget guesses Emrcal Bayes Tye-II mamum lelhood comutg ot estmates of : MLE arg ma Erc g 9 Lmtato of Drchlet ror: Erc g 3 5

16 The Logstc ormal ror ~ L Σ Σ γ ~ Σ e γ log γ γ e roblem γ log γ e - Log artto Fucto - ormalzato ostat ro: co-arace structure o: o-cougate we wll dscuss how to sole ths later Erc g 3 Logstc ormal Destes Logstc ormal Erc g 3 6

17 Eamle : uarate-gaussa Data: We obsered d real samles: Model: D{ } / πσ e{ / σ } Log lelhood: l ; D log D log πσ σ GM: 3 MLE: tae derate ad set to zero: l / σ MLE l 4 σ σ σ MLE ML Erc g 33 σ MLE for a multarate-gaussa It ca be show that the MLE for ad Σ s Σ MLE MLE where the scatter matr s T ML ML S T T T ML ML S ML ML M T T M T The suffcet statstcs are Σ ad Σ T. ote that T Σ T may ot be full ra eg. f <D whch case Σ ML s ot ertble Erc g 34 7

18 Bayesa arameter estmato for a Gaussa There are arous reasos to ursue a Bayesa aroach We would le to udate our estmates sequetally oer tme. We may hae ror owledge about the eected magtude of the arameters. The MLE for Σ may ot be full ra f we do t hae eough data. We wll restrct our atteto to cougate rors. We wll cosder arous cases order of creasg comlety: ow σ uow ow uow σ Uow ad σ Erc g 35 Bayesa estmato: uow ow σ ormal ror: Jot robablty: / πτ e{ τ } / / πσ e σ / πτ e{ / τ } GM: 3 osteror: where πσ~ / e{ ~ / σ } ~ ~ / / σ / τ / / σ / τ σ τ ad ~ σ Samle mea σ τ Erc g 36 8

19 Bayesa estmato: uow ow σ / σ / σ / σ / σ / σ / σ ~ σ σ σ The osteror mea s a coe combato of the ror ad the MLE wth weghts roortoal to the relate ose leels. The recso of the osteror /σ s the recso of the ror /σ lus oe cotrbuto of data recso /σ for each obsered data ot. Sequetally udatg the mea.8 uow σ. ow Effect of sgle data ot σ σ σ σ σ σ Uformate ague/ flat ror σ Erc g 37 Other scearos ow uow λ /σ The cougate ror for λ s a Gamma wth shae a ad rate erse scale b The cougate ror for σ s Ierse-Gamma Uow ad uow σ The cougate ror s ormal-ierse-gamma Sem cougate ror Multarate case: The cougate ror s ormal-ierse-wshart Erc g 38 9

20 Summary Learg scearos: Data Obecte fucto Frequetst ad Bayesa Learg sgle-ode GM desty estmato Tycal dscrete dstrbuto Tycal cotuous dstrbuto ougate rors Erc g 39

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Comuter Scece Probablstc rahcal Models Parameter Est. fully observed Bs Erc Xg X X X X Lecture 7 February 5 04 X X 3 X X X 3 X 3 Readg: KF-cha 7 X 4 X 4 Erc Xg @ CMU 005-04 Learg rahcal Models

More information

Parameter Estimation

Parameter Estimation arameter Estmato robabltes Notatoal Coveto Mass dscrete fucto: catal letters Desty cotuous fucto: small letters Vector vs. scalar Scalar: la Vector: bold D: small Hgher dmeso: catal Notes a cotuous state

More information

Machine Learning. Tutorial on Basic Probability. Lecture 2, September 15, 2006

Machine Learning. Tutorial on Basic Probability. Lecture 2, September 15, 2006 Mache Learg -7/5 7/5-78, 78, all 6 Tutoral o asc robablty Erc g f Lecture, Setember 5, 6 Readg: Cha. &, C & Cha 5,6, TM What s ths? Classcal AI ad ML research gored ths heomea The roblem a eamle: you wat

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Nonparametric Density Estimation Intro

Nonparametric Density Estimation Intro Noarametrc Desty Estmato Itro Parze Wdows No-Parametrc Methods Nether robablty dstrbuto or dscrmat fucto s kow Haes qute ofte All we have s labeled data a lot s kow easer salmo bass salmo salmo Estmate

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Part I: Background on the Binomial Distribution

Part I: Background on the Binomial Distribution Part I: Bacgroud o the Bomal Dstrbuto A radom varable s sad to have a Beroull dstrbuto f t taes o the value wth probablt "p" ad the value wth probablt " - p". The umber of "successes" "" depedet Beroull

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suose we have some dea of the rage where arameters should be Should t we formalze such ror owledge hoes that t wll lead

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory Chael Models wth Memory Chael Models wth Memory Hayder radha Electrcal ad Comuter Egeerg Mchga State Uversty I may ractcal etworkg scearos (cludg the Iteret ad wreless etworks), the uderlyg chaels are

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Bayesian belief networks

Bayesian belief networks Lecture 14 ayesa belef etworks los Hauskrecht mlos@cs.ptt.edu 5329 Seott Square Desty estmato Data: D { D1 D2.. D} D x a vector of attrbute values ttrbutes: modeled by radom varables { 1 2 d} wth: otuous

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Grou M D L M Chater 4 No-Parameter Estmato X-Shu Xu @ SDU School of Comuter Scece ad Techology, Shadog Uversty Cotets Itroducto Parze Wdows K-Nearest-Neghbor Estmato Classfcato Techques The Nearest-Neghbor

More information

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration CS 37 Avace Topcs AI Lecture 7 esty estmato Mlos Hauskrecht mlos@cs.ptt.eu 539 Seott Square CS 37 robablstc graphcal moels Amstrato Mterm: A take-home exam week ue o Weesay ovember 5 before the class epes

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Artificial Intelligence Learning of decision trees

Artificial Intelligence Learning of decision trees Artfcal Itellgece Learg of decso trees Peter Atal atal@mt.bme.hu A.I. November 21, 2016 1 Problem: decde whether to wat for a table at a restaurat, based o the followg attrbutes: 1. Alterate: s there a

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suppose we have some dea of the rage where parameters θ should be Should t we formalze such pror owledge hopes that t wll

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Bayesian Classifier. v MAP. argmax v j V P(x 1,x 2,...,x n v j )P(v j ) ,..., x. x) argmax. )P(v j

Bayesian Classifier. v MAP. argmax v j V P(x 1,x 2,...,x n v j )P(v j ) ,..., x. x) argmax. )P(v j Bayesa Classfer f:xv, fte set of alues Istaces xx ca be descrbed as a collecto of features x = (x 1, x 2, x x 2 {0,1} Ge a example, assg t the most probable alue V Bayes Rule: MAP argmax V MAP argmax V

More information

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable.

Section 2 Notes. Elizabeth Stone and Charles Wang. January 15, Expectation and Conditional Expectation of a Random Variable. Secto Notes Elzabeth Stoe ad Charles Wag Jauar 5, 9 Jot, Margal, ad Codtoal Probablt Useful Rules/Propertes. P ( x) P P ( x; ) or R f (x; ) d. P ( xj ) P (x; ) P ( ) 3. P ( x; ) P ( xj ) P ( ) 4. Baes

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

A BAYESIAN APPROACH TO SHRINKAGE ESTIMATORS

A BAYESIAN APPROACH TO SHRINKAGE ESTIMATORS A BAYESIAN APPROACH TO SHRINKAGE ESTIMATORS Fle das Neves RIZZO Crstae Alvarega GAJO Deval Jaques de SOUZA Lucas Motero CHAVES ABSTRACT: Estmators obtaed by shrkg the least squares estmator are becomg

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 3 o BST 63: Statstcal Theory I Ku Zhag, /6/006 Revew for the revous lecture Cocets: radom samle, samle mea, samle varace Theorems: roertes of a radom samle, samle mea, samle varace Examles: how

More information

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates Joural of Moder Appled Statstcal Methods Volume Issue Artcle 8 --03 Comparso of Parameters of Logormal Dstrbuto Based O the Classcal ad Posteror Estmates Raja Sulta Uversty of Kashmr, Sragar, Ida, hamzasulta8@yahoo.com

More information

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01 ECO 745, Homework 6 Le Cabrera. Assume that the followg data come from the lear model: ε ε ~ N, σ,,..., -6. -.5 7. 6.9 -. -. -.9. -..6.4.. -.6 -.7.7 Fd the mamum lkelhood estmates of,, ad σ ε s.6. 4. ε

More information

Statistical modelling and latent variables (2)

Statistical modelling and latent variables (2) Statstcal modellg ad latet varables (2 Mxg latet varables ad parameters statstcal erece Trod Reta (Dvso o statstcs ad surace mathematcs, Departmet o Mathematcs, Uversty o Oslo State spaces We typcally

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

7. Joint Distributions

7. Joint Distributions 7. Jot Dstrbutos Chrs Pech ad Mehra Saham Ma 2017 Ofte ou wll work o problems where there are several radom varables (ofte teractg wth oe aother. We are gog to start to formall look at how those teractos

More information

Pr[X (p + t)n] e D KL(p+t p)n.

Pr[X (p + t)n] e D KL(p+t p)n. Cheroff Bouds Wolfgag Mulzer 1 The Geeral Boud Let P 1,..., m ) ad Q q 1,..., q m ) be two dstrbutos o m elemets,.e.,, q 0, for 1,..., m, ad m 1 m 1 q 1. The Kullback-Lebler dvergece or relatve etroy of

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Bayesian belief networks

Bayesian belief networks Lecture 19 ayesa belef etworks los Hauskrecht mlos@cs.ptt.edu 539 Seott Square Varous ferece tasks: robablstc ferece Dagostc task. from effect to cause eumoa Fever redcto task. from cause to effect Fever

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

Periodic Table of Elements. EE105 - Spring 2007 Microelectronic Devices and Circuits. The Diamond Structure. Electronic Properties of Silicon

Periodic Table of Elements. EE105 - Spring 2007 Microelectronic Devices and Circuits. The Diamond Structure. Electronic Properties of Silicon EE105 - Srg 007 Mcroelectroc Devces ad Crcuts Perodc Table of Elemets Lecture Semcoductor Bascs Electroc Proertes of Slco Slco s Grou IV (atomc umber 14) Atom electroc structure: 1s s 6 3s 3 Crystal electroc

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE

THE ROYAL STATISTICAL SOCIETY 2010 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 2 STATISTICAL INFERENCE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE STATISTICAL INFERENCE The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information