Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Size: px
Start display at page:

Download "Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier"

Transcription

1 arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer

2 Baesa arameter Estmato Suose we have some dea of the rage where arameters should be Should t we formalze such ror owledge hoes that t wll lead to better arameter estmato? Let be a radom varable wth ror dstrbuto Ths s the e dfferece betwee ML ad Baesa arameter estmato Ths e assumto allows us to full elot the formato rovded b the data

3 Baesa arameter Estmato s a radom varable wth ror Ule MLE case, θ s a codtoal dest The trag data D allow us to covert θ to a osteror robablt dest θd. After we observe the data D, usg Baes rule we ca comute the osteror θd But s ot our fal goal, our fal goal s the uow Therefore a better thg to do s to mamze D, ths s as close as we ca come to the uow!

4 uow ow Baesa Estmato: Formula for D From the defto of ot dstrbuto: d D D, d D D D, Usg the defto of codtoal robablt: d D D But,D= sce s comletel secfed b Usg Baes formula, d D D D D

5 Baesa Estmato vs. MLE So rcle D ca be comuted I ractce, t ma be hard to do tegrato aaltcall, ma have to resort to umercal methods D d d Cotrast ths wth the MLE soluto whch reures dfferetato of lelhood to get ˆ Dfferetato s eas ad ca alwas be doe aaltcall

6 Baesa Estmato vs. MLE suort receves from the data D D roosed model wth certa d The above euato mles that f we are less certa about the eact value of θ, we should cosder a weghted average of θ over the ossble values of θ. Cotrast ths wth the MLE soluto whch alwas gves us a sgle model: ˆ

7 Baesa Estmato for Gaussa wth uow m Let m be Nm, σ that s σ s ow, but m s uow ad eeds to be estmated, so θ = m Assume a ror over m : m ~ N m 0, 0 m 0 ecodes some ror owledge about the true mea m, whle measures our ror ucertat. 0 The osteror dstrbuto s: m D D m m m m m 0 'e 0 m 0 ''e m m 0 0

8 Baesa Estmato for Gaussa wth uow m Where factors that do ot deed o μ have bee absorbed to the costats α ad α s a eoet of a uadratc fucto of μ.e. t s a ormal dest. remas ormal for a umber of trag samles. If we wrte m D m D e m m m D m m m ' ' e

9 Baesa Estmato for Gaussa wth uow m the detfg the coeffcets, we get m m ˆ m 0 0 where ˆ m s the samle mea Solvg elctl for ad we obta: 0 m ˆ m m m 0 our best guess after observg samles 0 0 ucertat about the guess, decreases mootocall wth

10 Baesa Estmato for Gaussa wth uow m Each addtoal observato decreases our ucertat about the true value of m. As creases, m D becomes more ad more sharl eaed, aroachg a Drac delta fucto as aroaches ft. Ths behavor s ow as Baesa Learg.

11 Baesa Estmato for Gaussa wth uow m 0 m ˆ m m m I geeral, s a lear combato of a samle mea ad a ror m 0, wth coeffcets that are o-egatve ad sum to. Thus m les somewhere betwee ˆ m ad m0. If 0 0, m ˆ m as If 0 0, our a ror certat that m m0 s so strog that o umber of observatos ca chage our oo. If a ror guess s ver ucerta 0 s large, we tae m ˆ m m ˆ

12 Baesa Estmato for Gaussa wth uow m We stll should comute, ~ e e N d D D m m m m m m m, ~ N D m

13 Baesa Estmato: Eamle for U[0,] Let X be U[0,]. Recall =/ sde [0,], else Suose we assume a U[0,0] ror o good ror to use f we ust ow the rage of but do t ow athg else

14 Baesa Estmato: Eamle for U[0,] We eed to comute D D usg d D D ad D D d Whe comutg MLE of, we had D Thus D 0 for ma{ otherwse c for ma{ 0 otherwse,...,,..., } } D where c s the ormalzg costat,.e. c 0 ma,..., d

15 Baesa Estmato: Eamle for U[0,] We eed to comute D D D c for ma{ 0 otherwse We have cases:. case < ma{,,, }. case > ma{,,, },..., } D c d ma{,... } 0 d D 0 0 D c d c c c 0 costat deedet of

16 Baesa Estmato: Eamle for U[0,] ML ˆ Baes D 3 0 Note that eve after >ma {,,, }, Baes dest s ot zero, whch maes sese curous fact: Baes dest s ot uform,.e. does ot have the fuctoal form that we have assumed!

17 ML vs. Baesa Estmato wth Broad ror Suose s flat ad broad close to uform ror D teds to share f there s a lot of data D D Thus D D wll have the same shar ea as D But b defto, ea of D s the ML estmate ^ The tegral s domated b the ea: ˆ D Dd ˆ Dd ˆ Thus as goes to ft, Baesa estmate wll aroach the dest corresodg to the MLE!

18 ML vs. Baesa Estmato Number of trag data The two methods are euvalet assumg fte umber of trag data ad ror dstrbutos that do ot eclude the true soluto. For small trag data sets, the gve dfferet results most cases. Comutatoal comlet ML uses dfferetal calculus or gradet search for mamzg the lelhood. Baesa estmato reures comle multdmesoal tegrato techues.

19 ML vs. Baesa Estmato Soluto comlet Easer to terret ML solutos.e., must be of the assumed arametrc form. A Baesa estmato soluto mght ot be of the arametrc form assumed. Hard to terret, returs weghted average of models. Broad or asmmetrc θ/d I ths case, the two methods wll gve dfferet solutos. Baesa methods wll elctl elot such formato.

20 ML vs. Baesa Estmato Geeral commets There are strog theoretcal ad methodologcal argumets suortg Baesa estmato. I ractce, ML estmato s smler ad ca lead to comarable erformace.

21 Naïve Baes Classfer

22 Ubased Learg of Baes Classfers s Imractcal Lear Baes classfer b estmatg XY ad Y. AssumeY s boolea ad X s a vector of boolea attrbutes. I ths case, we eed to estmate a set of arameters X Y taes o How ma arameters? ossble values; For a artcular value, ad the ossble values of, we eed comute - deedet arameters. Gve the two ossble values for Y, we must estmate a total of - such arameters. taes o ossble values. Comle model Hgh varace wth lmted data!!!

23 Codtoal Ideedece Defto: X s codtoall deedet of Y gve Z, f the robablt dstrbuto goverg X s deedet of the value of Y, gve the value of Z,, X Y, Z z X Z z Eamle: Thuder Ra, Lghtg Thuder Lghtg Note that geeral Thuder s ot deedet of Ra, but t s gve Lghtg. Euvalet to: X, Y Z X Y, Z Y Z X Z Y Z

24 Dervato of Nave Baes Algorthm Nave Baes algorthm assumes that the attrbutes X,,X are all codtoall deedet of oe aother, gve Y. Ths dramatcall smlfes the reresetato of XY estmatg XY from the trag data. Cosder X=X,X X Y X, X Y X Y X Y For X cotag attrbutes X Y X Y Gve the boolea X ad Y, ow we eed ol arameters to defe XY, whch s dramatc reducto comared to the - arameters f we mae o codtoal deedece assumto.

25 The Naïve Baes Classfer Gve: ror Y codtoall deedet features X, gve the class Y For each X, we have lelhood X Y The robablt that Y wll tae o ts th ossble value, s The Decso rule: Y X Y Y X Y X Y arg ma * Y X Y If assumto holds, NB s otmal classfer!

26 Naïve Baes for the dscrete uts Gve, attrbutes X each tag o J ossble dscrete values ad Y a dscrete varable tag o K ossble values. MLE for Lelhood X Y gve a set of trag eamles D: # D{ X Y } ˆ X Y # D{ Y } where the #D{} oerator returs the umber of elemets the set D that satsf roert. MLE for the ror ˆ Y # D{ Y D } umber of elemets the trag set D

27 NB Eamle Gve, trag data X Y Classf the followg ovel stace : Outloo=su, Tem=cool,Humdt=hgh,Wd=strog

28 NB Eamle arg ma }, { o es NB strog Wd hgh Humdt cool Tem su Outloo / /4 rors : o lates es lates / / strog: Wd e.g. robabltes, Codtoal o lates strog Wd es lates strog Wd es strog es hgh es cool es su es 0.60 o strog o hgh o cool o su o

29 Subtletes of NB classfer Volatg the NB assumto Usuall, features are ot codtoall deedet. Noetheless, NB ofte erforms well, eve whe assumto s volated [Domgos& azza 96] dscuss some codtos for good erformace

30 Subtletes of NB classfer Isuffcet trag data What f ou ever see a trag stace where X =a whe Y=b? X =a Y=b = 0 Thus, o matter what the values X,,X tae: Soluto? Y=b X =a,x,,x = 0

31 Subtletes of NB classfer Isuffcet trag data To avod ths, use a smoothed estmate effectvel adds a umber of addtoal hallucated eamles assumes these hallucated eamles are sread evel over the ossble values of X. Ths smoothed estmate s gve b # D{ X Y ˆ X Y # D{ Y } lj # D{ Y } l ˆ Y D lj l determes the stregth of the smoothg If l= called Lalace smoothg } l The umber of hallucated eamles

32 Nave Baes for Cotuous Iuts Whe the X are cotuous we must choose some other wa to rereset the dstrbutos X Y. Oe commo aroach s to assume that for each ossble dscrete value of Y, the dstrbuto of each cotuous X s Gaussa. I order to tra such a Naïve Baes classfer we must estmate the mea ad stadard devato of each of these Gaussas

33 Nave Baes for Cotuous Iuts MLE for meas where refers to the th trag eamle, ad where δy= s f Y = ad 0 otherwse. Note the role of δ s to select ol those trag eamles for whch Y =. MLE for stadard devato Y X Y m ˆ Y X Y m ˆ ˆ

34 Learg Classf Tet Alcatos: Lear whch ews artcle are of terest Lear to classf web ages b toc. Naïve Baes s amog most effectve algorthms Target cocet Iterestg?: Documet->{+,-} Rereset each documet b vector of words oe attrbute er word osto documet Learg: Use trag eamles to estmate + - doc+ doc-

35 Tet Classfcato-Eamle: Tet Tet Classfcato, or the tas of automatcall assgg sematc categores to atural laguage tet, has become oe of the e methods for orgazg ole formato. Sce had-codg classfcato rules s costl or eve mractcal, most moder aroaches emlo mache learg techues to automatcall lear tet classfers from eamles. The tet cotas 48 words Tet Reresetato a = tet,a = classfcato,. a 48 = eamles The reresetato cotas 48 attrbutes Note: Tet sze ma var, but t wll ot cause a roblem

36 NB codtoal deedece Assumto doc legth doc a w The NB assumto s that the word robabltes for oe tet osto are deedet of the words other ostos, gve the documet classfcato Idcates the th word Eglsh vocabular robablt that word osto s w, gve Clearl ot true: The robablt of word learg ma be greater f the recedg word s mache Necessar, wthout t the umber of robablt terms s rohbtve erforms remarabl well deste the correctess of the assumto

37 Tet Classfcato-Eamle: Tet Tet Classfcato, or the tas of automatcall assgg sematc categores to atural laguage tet, has become oe of the e methods for orgazg ole formato. Sce had-codg classfcato rules s costl or eve mractcal, most moder aroaches emlo mache learg techues to automatcall lear tet classfers from eamles. The tet cotas 48 words Tet Reresetato a = tet,a = classfcato,. a 48 = eamles The reresetato cotas 48 attrbutes Classfcato: * arg ma {, } arg ma {, } a ' tet ' a w... a 48 ' eamles '

38 Estmatg Lelhood Is roblematc because we eed to estmate t for each combato of tet osto, Eglsh word, ad target value: 48*50,000* 5 mllo such terms. Assumto that reduced the umber of terms Bag of Words Model The robablt of ecouterg a secfc word w s deedet of the secfc word osto. a w am w,, m Istead of estmatg we estmate a sgle term Now we have 50,000* dstct terms. a w, a w,... w

39 Estmatg Lelhood The estmate for the lelhood s w Vocabular -the total umber of word ostos all trag eamles whose target value s -the umber tmes word w s foud amog these word ostos. Vocabular -the total umber of dstct words foud wth the trag data.

40

41 Classf_Nave_Baes_TetDoc ostos all word ostos Doc that cota toes foud Vocabular * Retur arg ma v a v {, } ostos

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier

Parametric Density Estimation: Bayesian Estimation. Naïve Bayes Classifier arametrc Dest Estmato: Baesa Estmato. Naïve Baes Classfer Baesa arameter Estmato Suppose we have some dea of the rage where parameters θ should be Should t we formalze such pror owledge hopes that t wll

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Parameter Estimation

Parameter Estimation arameter Estmato robabltes Notatoal Coveto Mass dscrete fucto: catal letters Desty cotuous fucto: small letters Vector vs. scalar Scalar: la Vector: bold D: small Hgher dmeso: catal Notes a cotuous state

More information

Nonparametric Density Estimation Intro

Nonparametric Density Estimation Intro Noarametrc Desty Estmato Itro Parze Wdows No-Parametrc Methods Nether robablty dstrbuto or dscrmat fucto s kow Haes qute ofte All we have s labeled data a lot s kow easer salmo bass salmo salmo Estmate

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have

Lecture 9. Some Useful Discrete Distributions. Some Useful Discrete Distributions. The observations generated by different experiments have NM 7 Lecture 9 Some Useful Dscrete Dstrbutos Some Useful Dscrete Dstrbutos The observatos geerated by dfferet eermets have the same geeral tye of behavor. Cosequetly, radom varables assocated wth these

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Part I: Background on the Binomial Distribution

Part I: Background on the Binomial Distribution Part I: Bacgroud o the Bomal Dstrbuto A radom varable s sad to have a Beroull dstrbuto f t taes o the value wth probablt "p" ad the value wth probablt " - p". The umber of "successes" "" depedet Beroull

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Naïve Bayes MIT Course Notes Cynthia Rudin

Naïve Bayes MIT Course Notes Cynthia Rudin Thaks to Şeyda Ertek Credt: Ng, Mtchell Naïve Bayes MIT 5.097 Course Notes Cytha Rud The Naïve Bayes algorthm comes from a geeratve model. There s a mportat dstcto betwee geeratve ad dscrmatve models.

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

Artificial Intelligence Learning of decision trees

Artificial Intelligence Learning of decision trees Artfcal Itellgece Learg of decso trees Peter Atal atal@mt.bme.hu A.I. November 21, 2016 1 Problem: decde whether to wat for a table at a restaurat, based o the followg attrbutes: 1. Alterate: s there a

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx

Idea is to sample from a different distribution that picks points in important regions of the sample space. Want ( ) ( ) ( ) E f X = f x g x dx Importace Samplg Used for a umber of purposes: Varace reducto Allows for dffcult dstrbutos to be sampled from. Sestvty aalyss Reusg samples to reduce computatoal burde. Idea s to sample from a dfferet

More information

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory

Channel Models with Memory. Channel Models with Memory. Channel Models with Memory. Channel Models with Memory Chael Models wth Memory Chael Models wth Memory Hayder radha Electrcal ad Comuter Egeerg Mchga State Uversty I may ractcal etworkg scearos (cludg the Iteret ad wreless etworks), the uderlyg chaels are

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Chain Rules for Entropy

Chain Rules for Entropy Cha Rules for Etroy The etroy of a collecto of radom varables s the sum of codtoal etroes. Theorem: Let be radom varables havg the mass robablty x x.x. The...... The roof s obtaed by reeatg the alcato

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 4 Non-Parameter Estimation. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Grou M D L M Chater 4 No-Parameter Estmato X-Shu Xu @ SDU School of Comuter Scece ad Techology, Shadog Uversty Cotets Itroducto Parze Wdows K-Nearest-Neghbor Estmato Classfcato Techques The Nearest-Neghbor

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Learning Graphical Models

Learning Graphical Models School of omuter Scece Statstcal learg wth basc grahcal models robablstc Grahcal Models -78 Lecture 7 Oct 8 7 Recetor A Recetor B ase ase D ase E 3 4 5 Erc g Gee G TF F 6 7 Gee H 8 Readg: J-ha. 56 F-ha.

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

Set Theory and Probability

Set Theory and Probability Set Theory ad Probablty Dr. Bob Baley Set Theory We beg wth a toc of dscusso. A set ca be cosdered to be ay collecto of zero or more obects or ettes covered by the toc of dscusso. Examles: hadwrtte umerals

More information

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67.

1. The weight of six Golden Retrievers is 66, 61, 70, 67, 92 and 66 pounds. The weight of six Labrador Retrievers is 54, 60, 72, 78, 84 and 67. Ecoomcs 3 Itroducto to Ecoometrcs Sprg 004 Professor Dobk Name Studet ID Frst Mdterm Exam You must aswer all the questos. The exam s closed book ad closed otes. You may use your calculators but please

More information

Machine Learning. Tutorial on Basic Probability. Lecture 2, September 15, 2006

Machine Learning. Tutorial on Basic Probability. Lecture 2, September 15, 2006 Mache Learg -7/5 7/5-78, 78, all 6 Tutoral o asc robablty Erc g f Lecture, Setember 5, 6 Readg: Cha. &, C & Cha 5,6, TM What s ths? Classcal AI ad ML research gored ths heomea The roblem a eamle: you wat

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uverst Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK.

Random Variate Generation ENM 307 SIMULATION. Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü. Yrd. Doç. Dr. Gürkan ÖZTÜRK. adom Varate Geerato ENM 307 SIMULATION Aadolu Üverstes, Edüstr Mühedslğ Bölümü Yrd. Doç. Dr. Gürka ÖZTÜK 0 adom Varate Geerato adom varate geerato s about procedures for samplg from a varety of wdely-used

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Two Fuzzy Probability Measures

Two Fuzzy Probability Measures Two Fuzzy robablty Measures Zdeěk Karíšek Isttute of Mathematcs Faculty of Mechacal Egeerg Bro Uversty of Techology Techcká 2 66 69 Bro Czech Reublc e-mal: karsek@umfmevutbrcz Karel Slavíček System dmstrato

More information

Simple Linear Regression

Simple Linear Regression Correlato ad Smple Lear Regresso Berl Che Departmet of Computer Scece & Iformato Egeerg Natoal Tawa Normal Uversty Referece:. W. Navd. Statstcs for Egeerg ad Scetsts. Chapter 7 (7.-7.3) & Teachg Materal

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Lecture Notes Forecasting the process of estimating or predicting unknown situations

Lecture Notes Forecasting the process of estimating or predicting unknown situations Lecture Notes. Ecoomc Forecastg. Forecastg the process of estmatg or predctg ukow stuatos Eample usuall ecoomsts predct future ecoomc varables Forecastg apples to a varet of data () tme seres data predctg

More information

Regresso What s a Model? 1. Ofte Descrbe Relatoshp betwee Varables 2. Types - Determstc Models (o radomess) - Probablstc Models (wth radomess) EPI 809/Sprg 2008 9 Determstc Models 1. Hypothesze

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Pr[X (p + t)n] e D KL(p+t p)n.

Pr[X (p + t)n] e D KL(p+t p)n. Cheroff Bouds Wolfgag Mulzer 1 The Geeral Boud Let P 1,..., m ) ad Q q 1,..., q m ) be two dstrbutos o m elemets,.e.,, q 0, for 1,..., m, ad m 1 m 1 q 1. The Kullback-Lebler dvergece or relatve etroy of

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information