Speeding up numerical computations via conformal maps

Size: px
Start display at page:

Download "Speeding up numerical computations via conformal maps"

Transcription

1 Speeding up numerical computations via conformal maps Nick Trefethen, Oxford University Thanks to Nick Hale, Nick Higham and Wynn Tee 1/35

2 SIAM 1997 SIAM 2000 Cambridge /35 Princeton 2005 Bornemann et al., SIAM 2004

3 PERIODIC STRIPS, INFINITE STRIPS, AND ELLIPSES Suppose f is analytic, bounded, and 2 -periodic in the strip S a = {z: -a < Im z < a}. a x Sample f in equally spaced points Error in trigonometric interpolation: O(e a/ x ) Error in trapezoid rule quadrature: O(e 2 a/ x ) (Poisson 1826, Davis 1959) If f is nonperiodic on the whole real line (but integrable): Same results under mild assumptions (sinc interpolation) (Turing 1943, Goodwin 1949, Milne 1953, Martensen 1968, Stenger 1970s) 3/35

4 Now suppose f is analytic and bounded in the ellipse E ρ with foci ±1, ρ = semimajor + semiminor axis lengths > sinh(a) ρ = exp(a) cosh(a) Error in polynomial interpolation in Chebyshev or Gauss-Legendre points: O( n ) Error in Gauss quadrature: O( 2n ) (Bernstein 1919) 4/35

5 PLAN OF THE TALK: WE LL APPLY THESE RESULTS TO THREE PROBLEMS, EACH INVOLVING A CONFORMAL CHANGE OF VARIABLES 1. New formulas for quadrature on [ 1,1] 2. Evaluating f(a), A = matrix or operator 3. Tee s adaptive spectral method RELATED TOPICS WE WON T HAVE TIME FOR: 4. Double Exponential quadrature 5. Analytic continuation 6. Inverse Laplace transforms 5/35

6 1. New formulas for quadrature on [ 1,1] JOINT WORK WITH NICK HALE, OXFORD U. SIAM J. Numer. Anal., to appear 6/35

7 1 1 Analyticity in an ellipse is a strange condition. - It entails more smoothness in the middle than near the ends. - A Gauss or Chebyshev grid is /2 times coarser in the middle than an equispaced grid. - pts per wavelength are needed in total to resolve a sine wave. Gauss quad. is /2 times less efficient than the trapezoid rule for periodic integrands. Chebyshev spectral methods need /2 times as many grid points as Fourier spectral methods or in 3D, ( /2) 3 4 times as many. 7/35

8 Q: Where do ellipses come from? 1 1 A: From using polynomials to derive the quadrature formula. Q: Why do we have to use polynomials? A: We don t! 8/35

9 Our solution: conformally map the ρ-ellipse to a region with straighter sides. For example, map it to an infinite strip: s 1 1 Gauss quadrature here g strip is π/2 times narrower than ellipse x 1 1 gives us a non-polynomial transplanted quadrature rule here 1 1 Transplanted integral: f(x) dx = f(g(s)) g (s) ds 1 1 THM: If f is analytic in the strip, the transplanted Gauss formula has error O( ρ~ 2n ) for any ρ ~ < ρ. 9/35

10 Conformal map from ellipse to infinite strip sin 1 tanh 1 sn 10/35

11 GAUSS vs. TRANSPLANTED GAUSS quadrature points (for a typical choice of parameter ρ ) 1 1 N= N= N=64 11/35

12 Convergence for f(x) = 1/(cosh(1) cos(16x)) (analytic in the strip of half-width a = 1/16) error Gauss quadrature Transplanted Gauss quadrature n 12/35

13 Nine more examples (strip map with ρ=1.4) Gauss transplanted Gauss 13/35

14 THEOREMS Standard theorems for Gauss quadrature New theorems for transplanted Gauss quadrature. E.G.: Suppose f is analytic and bounded in the ε-nbhd of [ 1,1] for any ε < 0.05, and we use the ρ=1.1 strip map. THM: Gauss quadrature: error O( (1+ε) 2n ) Transplanted Gauss: error O( (1+ε) 3n ) 14/35

15 A wilder example integrand quadrature error Gauss transplanted Gauss 15/35

16 RELATED WORK Gregory formulas : trapezoid rule with endpoint corrections Bakhvalov 1967: theoretical results on conformal maps & quadrature Kosloff & Tal-Ezer 1993: arcsine change of vars. for spectral methods Beylkin, Boyd, Rokhlin & others: prolate spheroidal wave functions Alpert 1999: hybrid trapezoid/gauss quadrature formulas The last three seem roughly as effective as our method in practice. But they come with no thms about geometric convergence for analytic f. 16/35

17 2. Evaluating f(a), A = matrix or operator JOINT WORK WITH NICK HALE AGAIN AND ALSO NICK HIGHAM, U. OF MANCHESTER SIAM J. Numer. Anal., submitted 17/35

18 Aim: compute f(a), A = operator or large matrix (e.g. of dimension 10 6 ) or f(a)b for various vectors b Examples: A, A, log(a), exp(a),... Applications: anomalous diffusion, finance, semigroups,... Higham has written a book about f(a) problems. 18/35

19 For a scalar a, Cauchy integrals where C encloses a and lies in the region of analyticity of f. For a matrix or operator A, where C encloses spec(a ). If C is a circular contour, equally spaced points should be perfect periodic trapezoid rule! 19/35

20 ASSUMPTIONS f is analytic in the complex plane except (-, 0]. A has spectrum in [m,m], M» m > 0. E.G.: A A log(a) tanh( A ) (A)... singularities of f spectrum of A 0 m M 20/35

21 A BAD IDEA Take the contour C to be a circle surrounding the spectrum. For this you ll need a very large number of sample points:» M/m. Reason: annulus of analyticity is narrow. singularities of f 0 spectrum of A m M Instead we want to map a much thicker annulus onto the WHOLE LIGHT GRAY REGION. 21/35

22 MAP FROM THE ANNULUS (equivalently could use periodic strip) g As always we use a change of variables: f(z) (z-a) -1 dz = f(g(s)) (g(s)-a) -1 g (s) ds 22/35

23 CONFORMAL MAP FROM ANNULUS (plots show the upper half) log sn (Jacobi elliptic function again) Möbius 23/35

24 MATLAB TEST CODE FOR MAP 1, f = % method1.m - evaluate f(a) by contour integral. The functions % ellipkkp and ellipjc are from Driscoll's SC Toolbox. f % change this for another function f A = pascal(6); % change this for another matrix A X = sqrtm(a); % change this if f is not sqrt I = eye(size(a)); e = eig(a); m = min(e); M = max(e); k = (sqrt(m/m)-1)/(sqrt(m/m)+1); L = -log(k)/pi; RESULTS [K,Kp] = ellipkkp(l); for N = 5:5:50 >> method1 t =.5i*Kp - K + (.5:N)*2*K/N; [u,cn,dn] = ellipjc(t,l); z = sqrt(m*m)*((1/k+u)./(1/k-u)); snp = cn.*dn./(1/k-u).^2; S = zeros(size(a)); for j = 1:N S = S + f(z(j))*inv(z(j)*i-a)*snp(j); end S = -4*K*sqrt(m*M)*imag(S)/(k*pi*N); error = norm(s-x)/norm(x); fprintf('%4d %16.12f\n', N, error) end 24/35

25 A more practical example A = negative of discrete Laplacian (sparse, dimension 2500) b = random vector of same dimension Compute A 1/2 b : Contour integral & conformal map: 0.76 secs. on this laptop Matlab sqrtm : 4 min. 48 secs. 25/35

26 Comments about conformal mapping methods for f(a) Further improvements get a further factor of 2 speedup We have reduced f(a)b to a dozen or two backslashes Competitor for small A: Schur reduction, Padé approx. Competitor for large A: Krylov subspace compressions This technique is very general, applicable to many f and A Deeper understanding: link with rational approximation 26/35

27 3. Tee s adaptive spectral method JOINT WORK WITH WYNN TEE, OXFORD DPhil 2007 SIAM J. Sci. Comp., /35

28 This final topic is the most complex. I told Wynn it would never work. But it did! The aim: adaptive spectral method for PDEs for problems with spikes, fronts, rapid variation RELATED WORK Bayliss, Matkowsky and others `87,`89,`90,`92,`95 Guillard and Peyret `88 Augenbaum `89 Kosloff and Tal-Ezer `93 Mulholland, Huang, Sloan, Qiu `97,`98 Weideman `99 Berrut, Baltesnsperger, Mittelmann `00,`01,`02,`04,`05 Good ideas here. But no method that can handle extreme cases. Why not? None of them thought in terms of conformal maps. 28/35

29 Tee s new method combines: 1. Padé/Chebyshev-Padé location of complex singularities 2. Conformal mapping onto domains with slits 3. Spectral differentiation by rational barycentric formulas 29/35

30 At each time step we construct conformal map from ellipse to plane minus slits ending at estimated singularities 30/35

31 Examples of adaptively constructed irregular grids For these computations we achieve 10-digit accuracy with grids of <100 points (spectral in x, 9 th or 13 th order in t) 31/35

32 32/35

33 33/35

34 demonstrations to 10-digit accuracy with <100 grid points in x burgers allencahn blowup 34/35

35 RECAP OF OUR PROBLEMS 1. New formulas for quadrature on [-1,1] 2. Evaluating f(a), A = matrix or operator 3. Tee s adaptive spectral method MORAL OF THE STORY It s not enough for a grid to look good. It must correspond to a transplantation with a wide region of analyticity. And if it does, you get exponential convergence. 35/35

36 Speeding up numerical computations via conformal maps Nick Trefethen, Oxford University Thanks to Nick Hale, Nick Higham and Wynn Tee 36/35

Ten things you should know about quadrature. Nick Trefethen, Vanderbilt, Wed. 28 May 8:35 PM

Ten things you should know about quadrature. Nick Trefethen, Vanderbilt, Wed. 28 May 8:35 PM Ten things you should know about quadrature Nick Trefethen, Vanderbilt, Wed. 28 May 2014 @ 8:35 PM 1. If the integrand is analytic, Gauss quadrature converges geometrically. f is analytic and bounded by

More information

Ten things you should know about quadrature

Ten things you should know about quadrature Ten things you should know about quadrature Nick Trefethen, March 2016 With thanks to André Weideman for #2, #5, #8, #9 Nick Hale for #4, #5, #7, #8 Nick Higham for #5, #8 Folkmar Bornemann for #6. 1/26

More information

1. Introduction. It is well known that an analytic function f of a square matrix A can be represented as a contour integral,

1. Introduction. It is well known that an analytic function f of a square matrix A can be represented as a contour integral, SIAM J. NUMER. ANAL. Vol. 46, No. 5, pp. 2505 2523 c 2008 Society for Industrial and Applied Mathematics COMPUTING A α, log(a), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS NICHOLAS HALE, NICHOLAS

More information

Chebfun and equispaced data

Chebfun and equispaced data Chebfun and equispaced data Georges Klein University of Oxford SIAM Annual Meeting, San Diego, July 12, 2013 Outline 1 1D Interpolation, Chebfun and equispaced data 2 3 (joint work with R. Platte) G. Klein

More information

A RATIONAL SPECTRAL COLLOCATION METHOD WITH ADAPTIVELY TRANSFORMED CHEBYSHEV GRID POINTS

A RATIONAL SPECTRAL COLLOCATION METHOD WITH ADAPTIVELY TRANSFORMED CHEBYSHEV GRID POINTS SIAM J. SCI. COMPUT. Vol. 2, o. 5, pp. 79 c 26 Society for Industrial and Applied Mathematics A RATIOAL SPECTRAL COLLOCATIO METHOD WITH ADAPTIVELY TRASFORMED CHEBYSHEV GRID POITS T. W. TEE AD LLOYD. TREFETHE

More information

On The Use Of Conformal Maps To Speed Up Numerical Computations

On The Use Of Conformal Maps To Speed Up Numerical Computations On The Use Of Conformal Maps To Speed Up Numerical Computations Nicholas Hale St Hugh s College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity Term, 29 Abstract

More information

Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms

Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms 2. First Results and Algorithms Michael Eiermann Institut für Numerische Mathematik und Optimierung Technische

More information

Computing the Action of the Matrix Exponential

Computing the Action of the Matrix Exponential Computing the Action of the Matrix Exponential Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with Awad H. Al-Mohy 16th ILAS

More information

Barycentric interpolation, Chebfun, rational approximation, Bernstein ellipse,

Barycentric interpolation, Chebfun, rational approximation, Bernstein ellipse, STABILITY OF BARYCENTRIC INTERPOLATION FORMULAS MARCUS WEBB, LLOYD N. TREFETHEN, AND PEDRO GONNET Abstract. The barycentric interpolation formula defines a stable algorithm for evaluation at points in

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes

On the Lebesgue constant of barycentric rational interpolation at equidistant nodes On the Lebesgue constant of barycentric rational interpolation at equidistant nodes by Len Bos, Stefano De Marchi, Kai Hormann and Georges Klein Report No. 0- May 0 Université de Fribourg (Suisse Département

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. UMER. AAL. Vol. 43, o. 2, pp. 75 766 c 25 Society for Industrial and Applied Mathematics POLYOMIALS AD POTETIAL THEORY FOR GAUSSIA RADIAL BASIS FUCTIO ITERPOLATIO RODRIGO B. PLATTE AD TOBI A. DRISCOLL

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Mathematics of the Faraday cage

Mathematics of the Faraday cage Mathematics of the Faraday cage Nick Trefethen, University of Oxford with Jon Chapman and Dave Hewett Andrew Wiles Building opened September 2013 1 /24 Mathematics of the Faraday cage Nick Trefethen, University

More information

Instructions for Matlab Routines

Instructions for Matlab Routines Instructions for Matlab Routines August, 2011 2 A. Introduction This note is devoted to some instructions to the Matlab routines for the fundamental spectral algorithms presented in the book: Jie Shen,

More information

Numerical Integration (Quadrature) Another application for our interpolation tools!

Numerical Integration (Quadrature) Another application for our interpolation tools! Numerical Integration (Quadrature) Another application for our interpolation tools! Integration: Area under a curve Curve = data or function Integrating data Finite number of data points spacing specified

More information

It is a pleasure to o er this essay for Mathematics Today as a

It is a pleasure to o er this essay for Mathematics Today as a faug July 12, 2011 10:51 Page 1 Six Myths of Polynomial Interpolation and Quadrature Lloyd N. Trefethen FRS, FIMA, Oxford University It is a pleasure to o er this essay for Mathematics Today as a record

More information

CF Approximation 30 Years Later. Nick Trefethen, Oxford University

CF Approximation 30 Years Later. Nick Trefethen, Oxford University CF Approximation 30 Years Later Nick Trefethen, Oxford University Then. Megaflops. Fortran. Now. Teraflops. Matlab. 1. Then 0.17737 Harvard 1976-77: senior thesis with Birkhoff on complex approximation.

More information

Practice Exercises on Differential Equations

Practice Exercises on Differential Equations Practice Exercises on Differential Equations What follows are some exerices to help with your studying for the part of the final exam on differential equations. In this regard, keep in mind that the exercises

More information

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup

AND NONLINEAR SCIENCE SERIES. Partial Differential. Equations with MATLAB. Matthew P. Coleman. CRC Press J Taylor & Francis Croup CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES An Introduction to Partial Differential Equations with MATLAB Second Edition Matthew P Coleman Fairfield University Connecticut, USA»C)

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples

Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples SIAM REVIEW Vol. 53, No. 2, pp. 308 318 c 2011 Society for Industrial and Applied Mathematics Impossibility of Fast Stable Approximation of Analytic Functions from Equispaced Samples Rodrigo B. Platte

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

c 2011 Society for Industrial and Applied Mathematics

c 2011 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 33, No. 5, pp. 2519 2535 c 2011 Society for Industrial and Applied Mathematics A SINC FUNCTION ANALOGUE OF CHEBFUN MARK RICHARDSON AND LLOYD N. TREFETHEN Abstract. Chebfun is

More information

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 8 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).

More information

THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE

THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE THE EXPONENTIALLY CONVERGENT TRAPEZOIDAL RULE LLOYD N. TREFETHEN AND J. A. C. WEIDEMAN Abstract. It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Key words. Equispaced nodes, scattered data, spectral methods, Runge phenomenon, analytic functions

Key words. Equispaced nodes, scattered data, spectral methods, Runge phenomenon, analytic functions A MAPPED POLYNOMIAL METHOD FOR HIGH-ACCURACY APPROXIMATIONS ON ARBITRARY GRIDS BEN ADCOCK AND RODRIGO B. PLATTE Abstract. The focus of this paper is the approximation of analytic functions on compact intervals

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Math 126 Winter 2012: Rough lecture notes

Math 126 Winter 2012: Rough lecture notes Math 126 Winter 2012: Rough lecture notes Alex Barnett, Dartmouth College March 1, 2012 1 Introduction Numerical mathematics is at the intersection of analysis (devising and proving theorems), computation

More information

Exponential integrators and functions of the matrix exponential

Exponential integrators and functions of the matrix exponential Exponential integrators and functions of the matrix exponential Paul Matthews, Stephen Cox, Hala Ashi and Linda Cummings School of Mathematical Sciences, University of Nottingham, UK Introduction to exponential

More information

Spatial Resolution Properties of Mapped Spectral Chebyshev Methods

Spatial Resolution Properties of Mapped Spectral Chebyshev Methods Spatial Resolution Properties of Mapped Spectral Chebyshev Methods Bruno Costa Wai-Sun Don Aline Simas June 4, 006 Abstract In this article we clarify some fundamental questions on the resolution power

More information

Chebfun and numerical quadrature

Chebfun and numerical quadrature SCIENCE CHINA Mathematics. ARTICLES. doi: 1.17/s11425-12-4474-z Chebfun and numerical quadrature HALE Nicholas & TREFETHEN Lloyd N. Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK Email:

More information

The Exponentially Convergent Trapezoidal Rule

The Exponentially Convergent Trapezoidal Rule SIAM REVIEW Vol. 56, No. 3, pp. 385 458 c 2014 Society for Industrial and Applied Mathematics The Exponentially Convergent Trapezoidal Rule Lloyd N. Trefethen J. A. C. Weideman Abstract. It is well known

More information

Pole-Based Approximation of the Fermi-Dirac Function

Pole-Based Approximation of the Fermi-Dirac Function Chin. Ann. Math. 3B(6), 29, 729 742 DOI:.7/s4-9-2-7 Chinese Annals of Mathematics, Series B c The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 29 Pole-Based Approximation of the Fermi-Dirac

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Research Statement. James Bremer Department of Mathematics, University of California, Davis

Research Statement. James Bremer Department of Mathematics, University of California, Davis Research Statement James Bremer Department of Mathematics, University of California, Davis Email: bremer@math.ucdavis.edu Webpage: https.math.ucdavis.edu/ bremer I work in the field of numerical analysis,

More information

The automatic solution of PDEs using a global spectral method

The automatic solution of PDEs using a global spectral method The automatic solution of PDEs using a global spectral method 2014 CBMS-NSF Conference, 29th June 2014 Alex Townsend PhD student University of Oxford (with Sheehan Olver) Supervised by Nick Trefethen,

More information

SINC PACK, and Separation of Variables

SINC PACK, and Separation of Variables SINC PACK, and Separation of Variables Frank Stenger Abstract This talk consists of a proof of part of Stenger s SINC-PACK computer package (an approx. 400-page tutorial + about 250 Matlab programs) that

More information

Accuracy, Precision and Efficiency in Sparse Grids

Accuracy, Precision and Efficiency in Sparse Grids John, Information Technology Department, Virginia Tech.... http://people.sc.fsu.edu/ jburkardt/presentations/ sandia 2009.pdf... Computer Science Research Institute, Sandia National Laboratory, 23 July

More information

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS

A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS A THEORETICAL INTRODUCTION TO NUMERICAL ANALYSIS Victor S. Ryaben'kii Semyon V. Tsynkov Chapman &. Hall/CRC Taylor & Francis Group Boca Raton London New York Chapman & Hall/CRC is an imprint of the Taylor

More information

Discontinuous Galerkin methods for fractional diffusion problems

Discontinuous Galerkin methods for fractional diffusion problems Discontinuous Galerkin methods for fractional diffusion problems Bill McLean Kassem Mustapha School of Maths and Stats, University of NSW KFUPM, Dhahran Leipzig, 7 October, 2010 Outline Sub-diffusion Equation

More information

Contents. I Basic Methods 13

Contents. I Basic Methods 13 Preface xiii 1 Introduction 1 I Basic Methods 13 2 Convergent and Divergent Series 15 2.1 Introduction... 15 2.1.1 Power series: First steps... 15 2.1.2 Further practical aspects... 17 2.2 Differential

More information

Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation. Deadman, Edvin and Relton, Samuel. MIMS EPrint: 2015.

Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation. Deadman, Edvin and Relton, Samuel. MIMS EPrint: 2015. Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation Deadman, Edvin and Relton, Samuel 215 MIMS EPrint: 215.27 Manchester Institute for Mathematical Sciences School of

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Numerical integration in arbitrary-precision ball arithmetic

Numerical integration in arbitrary-precision ball arithmetic / 24 Numerical integration in arbitrary-precision ball arithmetic Fredrik Johansson (LFANT, Bordeaux) Journées FastRelax, Inria Sophia Antipolis 7 June 208 Numerical integration in Arb 2 / 24 New code

More information

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING

NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING NUMERICAL COMPUTATION IN SCIENCE AND ENGINEERING C. Pozrikidis University of California, San Diego New York Oxford OXFORD UNIVERSITY PRESS 1998 CONTENTS Preface ix Pseudocode Language Commands xi 1 Numerical

More information

Parabolic and Hyperbolic Contours for Computing the Bromwich Integral

Parabolic and Hyperbolic Contours for Computing the Bromwich Integral Report no. 05/29 Parabolic and Hyperbolic Contours for Computing the Bromwich Integral J. A. C. Weideman University of Stellenbosch Department of Applied Mathematics L. N. Trefethen Oxford University Computing

More information

Comparison of Clenshaw-Curtis and Gauss Quadrature

Comparison of Clenshaw-Curtis and Gauss Quadrature WDS'11 Proceedings of Contributed Papers, Part I, 67 71, 211. ISB 978-8-7378-184-2 MATFYZPRESS Comparison of Clenshaw-Curtis and Gauss Quadrature M. ovelinková Charles University, Faculty of Mathematics

More information

On the Use of Conformal Maps for the Acceleration of Convergence of the Trapezoidal Rule and Sinc Numerical Methods

On the Use of Conformal Maps for the Acceleration of Convergence of the Trapezoidal Rule and Sinc Numerical Methods On the Use of Conformal Maps for the Acceleration of Convergence of the Trapezoidal Rule and Sinc Numerical Methods Richard Mikael Slevinsky and Sheehan Olver Mathematical Institute, University of Oxford

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

Index. B beats, 508 Bessel equation, 505 binomial coefficients, 45, 141, 153 binomial formula, 44 biorthogonal basis, 34

Index. B beats, 508 Bessel equation, 505 binomial coefficients, 45, 141, 153 binomial formula, 44 biorthogonal basis, 34 Index A Abel theorems on power series, 442 Abel s formula, 469 absolute convergence, 429 absolute value estimate for integral, 188 adiabatic compressibility, 293 air resistance, 513 algebra, 14 alternating

More information

Numerical Experiments for Finding Roots of the Polynomials in Chebyshev Basis

Numerical Experiments for Finding Roots of the Polynomials in Chebyshev Basis Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 2 (December 2017), pp. 988 1001 Applications and Applied Mathematics: An International Journal (AAM) Numerical Experiments

More information

2015 Society for Industrial and Applied Mathematics

2015 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 37, No. 6, pp. A2630 A2655 2015 Society for Industrial and Applied Mathematics CONTOUR INTEGRAL SOLUTION OF ELLIPTIC PDEs IN CYLINDRICAL DOMAINS NICHOLAS HALE AND J. A. C. WEIDEMAN

More information

Final Year M.Sc., Degree Examinations

Final Year M.Sc., Degree Examinations QP CODE 569 Page No Final Year MSc, Degree Examinations September / October 5 (Directorate of Distance Education) MATHEMATICS Paper PM 5: DPB 5: COMPLEX ANALYSIS Time: 3hrs] [Max Marks: 7/8 Instructions

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

Continuous analogues of matrix factorizations NASC seminar, 9th May 2014

Continuous analogues of matrix factorizations NASC seminar, 9th May 2014 Continuous analogues of matrix factorizations NSC seminar, 9th May 2014 lex Townsend DPhil student Mathematical Institute University of Oxford (joint work with Nick Trefethen) Many thanks to Gil Strang,

More information

Fourier Spectral Computing for PDEs on the Sphere

Fourier Spectral Computing for PDEs on the Sphere Fourier Spectral Computing for PDEs on the Sphere an FFT-based method with implicit-explicit timestepping a simple & efficient approach Dave Muraki, Andrea Blazenko & Kevin Mitchell Mathematics, Simon

More information

HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE

HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE HIGH-ORDER ACCURATE METHODS FOR NYSTRÖM DISCRETIZATION OF INTEGRAL EQUATIONS ON SMOOTH CURVES IN THE PLANE S. HAO, A. H. BARNETT, P. G. MARTINSSON, AND P. YOUNG Abstract. Boundary integral equations and

More information

Barycentric rational interpolation with no poles and high rates of approximation

Barycentric rational interpolation with no poles and high rates of approximation Barycentric rational interpolation with no poles and high rates of approximation Michael S. Floater Kai Hormann Abstract It is well known that rational interpolation sometimes gives better approximations

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

Explicit construction of rectangular differentiation matrices

Explicit construction of rectangular differentiation matrices IMA Journal of Numerical Analysis (206) 36, 68 632 doi:0.093/imanum/drv03 Advance Access publication on April 26, 205 Explicit construction of rectangular differentiation matrices Kuan Xu Mathematical

More information

Quasiconformal Folding (or dessins d adolescents) Christopher J. Bishop Stony Brook

Quasiconformal Folding (or dessins d adolescents) Christopher J. Bishop Stony Brook Quasiconformal Folding (or dessins d adolescents) Christopher J. Bishop Stony Brook Workshop on Dynamics of Groups and Rational Maps IPAM, UCLA April 8-12, 2013 lecture slides available at www.math.sunysb.edu/~bishop/lectures

More information

Fast algorithms based on asymptotic expansions of special functions

Fast algorithms based on asymptotic expansions of special functions Fast algorithms based on asymptotic expansions of special functions Alex Townsend MIT Cornell University, 23rd January 2015, CAM Colloquium Introduction Two trends in the computing era Tabulations Software

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

Preliminary Examination, Numerical Analysis, August 2016

Preliminary Examination, Numerical Analysis, August 2016 Preliminary Examination, Numerical Analysis, August 2016 Instructions: This exam is closed books and notes. The time allowed is three hours and you need to work on any three out of questions 1-4 and any

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

The Condition of Linear Barycentric Rational Interpolation from Equispaced Samples

The Condition of Linear Barycentric Rational Interpolation from Equispaced Samples The Condition of Linear Barycentric Rational Interpolation from Equispaced Samples Georges Klein University of Fribourg (Switzerland) georges.klein@unifr.ch homeweb.unifr.ch/kleing/pub Vancouver, ICIAM,

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 43: RBF-PS Methods in MATLAB Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 43 1 Outline

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/31 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Index. Acton, Forman S., 3 adaptive interpolation, 25, Adomian decomposition, 275

Index. Acton, Forman S., 3 adaptive interpolation, 25, Adomian decomposition, 275 Index Acton, Forman S., 3 adaptive interpolation, 25, 50 61 Adomian decomposition, 275 barycentric coordinates, 421 Bernstein, Sergei, 22 Bezout matrix Chebyshev, 379, 394 Bezout s theorem (number of roots

More information

Lecture 6, Sci. Comp. for DPhil Students

Lecture 6, Sci. Comp. for DPhil Students Lecture 6, Sci. Comp. for DPhil Students Nick Trefethen, Thursday 1.11.18 Today II.3 QR factorization II.4 Computation of the QR factorization II.5 Linear least-squares Handouts Quiz 4 Householder s 4-page

More information

Qualifying Examination

Qualifying Examination Summer 24 Day. Monday, September 5, 24 You have three hours to complete this exam. Work all problems. Start each problem on a All problems are 2 points. Please email any electronic files in support of

More information

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 22, 1097-1106 A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning M. T. Darvishi a,, S.

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA

BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA 1 BASIC EXAM ADVANCED CALCULUS/LINEAR ALGEBRA This part of the Basic Exam covers topics at the undergraduate level, most of which might be encountered in courses here such as Math 233, 235, 425, 523, 545.

More information

Spectral method for the unsteady incompressible Navier Stokes equations in gauge formulation

Spectral method for the unsteady incompressible Navier Stokes equations in gauge formulation Report no. 04/09 Spectral method for the unsteady incompressible Navier Stokes equations in gauge formulation T. W. Tee I. J. Sobey A spectral method which uses a gauge method, as opposed to a projection

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

MATH5685 Assignment 3

MATH5685 Assignment 3 MATH5685 Assignment 3 Due: Wednesday 3 October 1. The open unit disk is denoted D. Q1. Suppose that a n for all n. Show that (1 + a n) converges if and only if a n converges. [Hint: prove that ( N (1 +

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

Numerical Integration with the double exponential method

Numerical Integration with the double exponential method Numerical Integration with the double exponential method Pascal Molin Université Paris 7 December 7 2016 Numerical integration Number-theory context, want fast quadrature high precision (100 1000 digits)

More information

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 c&d. Continuity Handout. Page 1 of 5 Topic Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 Recall Limits and Function Values: We have already studied

More information

MATH 20B MIDTERM #2 REVIEW

MATH 20B MIDTERM #2 REVIEW MATH 20B MIDTERM #2 REVIEW FORMAT OF MIDTERM #2 The format will be the same as the practice midterms. There will be six main questions worth 0 points each. These questions will be similar to problems you

More information

LAPIN User s Manual. Fabien Cornaton. CHYN - IGUN, Universit de Neuchtel, Emile-Argand 11, CP 158, CH-2009 Neuchtel, Suisse.

LAPIN User s Manual. Fabien Cornaton. CHYN - IGUN, Universit de Neuchtel, Emile-Argand 11, CP 158, CH-2009 Neuchtel, Suisse. LAPIN User s Manual Fabien Cornaton CHYN - IGUN, Universit de Neuchtel, Emile-Argand 11, CP 158, CH-009 Neuchtel, Suisse fabien.cornaton@unine.ch December 00 1 Laplace ransforms he Laplace transform L{f,

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015 Department of Mathematics, University of California, Berkeley YOUR OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 205. Please write your - or 2-digit exam number on this

More information

Introduction to Uncertainty Quantification in Computational Science Handout #3

Introduction to Uncertainty Quantification in Computational Science Handout #3 Introduction to Uncertainty Quantification in Computational Science Handout #3 Gianluca Iaccarino Department of Mechanical Engineering Stanford University June 29 - July 1, 2009 Scuola di Dottorato di

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

The Pseudospectral Method

The Pseudospectral Method The Pseudospectral Method Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Heiner Igel Computational Seismology 1 / 43 Outline 1 Introduction Motivation History

More information

Staple or bind all pages together. DO NOT dog ear pages as a method to bind.

Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Math 3337 Homework Instructions: Staple or bind all pages together. DO NOT dog ear pages as a method to bind. Hand-drawn sketches should be neat, clear, of reasonable size, with axis and tick marks appropriately

More information

Numerical Mathematics

Numerical Mathematics Alfio Quarteroni Riccardo Sacco Fausto Saleri Numerical Mathematics Second Edition With 135 Figures and 45 Tables 421 Springer Contents Part I Getting Started 1 Foundations of Matrix Analysis 3 1.1 Vector

More information

On the remainder term of Gauss Radau quadratures for analytic functions

On the remainder term of Gauss Radau quadratures for analytic functions Journal of Computational and Applied Mathematics 218 2008) 281 289 www.elsevier.com/locate/cam On the remainder term of Gauss Radau quadratures for analytic functions Gradimir V. Milovanović a,1, Miodrag

More information

arxiv: v1 [math.na] 8 Oct 2014

arxiv: v1 [math.na] 8 Oct 2014 SPECTRALLY-ACCURATE QUADRATURES FOR EVALUATION OF LAYER POTENTIALS CLOSE TO THE BOUNDARY FOR THE 2D STOKES AND LAPLACE EQUATIONS ALEX BARNETT, BOWEI WU, AND SHRAVAN VEERAPANENI arxiv:4.287v [math.na] 8

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information