Math 126 Winter 2012: Rough lecture notes

Size: px
Start display at page:

Download "Math 126 Winter 2012: Rough lecture notes"

Transcription

1 Math 126 Winter 2012: Rough lecture notes Alex Barnett, Dartmouth College March 1, Introduction Numerical mathematics is at the intersection of analysis (devising and proving theorems), computation (devising algorithms, coding efficiently), and addressing application areas (e.g. PDE problems in engineering, science, technology). This course will focus on the first two: analysis, and coding/testing computer algorithms. What is numerical analysis? Trefethen [1] gives an inspiring answer: it is not merely the study of rounding errors in computations, rather, it is the study of algorithms for the problems of continuous mathematics. We should also remind ourselves that carelessness over rounding errors, and over convergence issues, in numerical algorithms has caused loss of life and equipment destruction with losses of $10 8 (see Arnold disasters website). Our goal is to understand the mathematics behind our algorithms, and be able to code them reliably and invent new ones. Our topic is the solution of PDEs via integral equations (IEs). Along the way we touch upon rounding error, quadrature, numerical linear algegra, convergence, etc. Paradigm PDE: Let Ω R 2 be an open connected domain. (All of this works in higher dimensions too.) The interior BVP for Laplace s equation is u = 0 in Ω (1) u = f on Ω (2) where Ω denotes the boundary of the set Ω, i.e. the set of points that are both limit points of sequences in Ω and in R 2 Omega. The boundary data is the given function f on Ω. Applications include electrostatics (u represents electric potential), steady-state heat distribution (u is temperature), complex analysis (u is the real part of an analytic function), and Brownian motion or diffusion (u is probability density). Paradigm IE: Let [0, 1] be an interval, and we are given f C([0, 1]), and k C([0, 1] 2 ) i.e. a continuous function on the unit square. Then find a function u satistfying the integral equation u(t) k(t, s)u(s)ds = f(t) for all t (0, 1) (3) 1

2 This is a Fredholm equation, and since u itself is present on the LHS, is called 2nd kind. To give an idea of the intimate connection between the above BVP and IE, consider that uniqueness for the BVP is easy to prove: Let u and v be solutions, then w = u v satisfies w = 0 in Ω, and w = 0 on Ω. But by the maximum principle, the maximum of w over Ω cannot exceed the maximum on Ω, which is zero. The same holds for w, so w 0, and we have uniqueness. In contrast, existence of a solution to the BVP is much harder. It was first proved by transformation of the BVP to an IE, in 1900 by Fredholm, and, along with Hilbert s work that decade, became the foundation of modern functional analysis. Here the identification is made between the 1D sets Ω and [0, 1]. Thus the IE becomes a boundary integral equation or BIE. The beautiful thing is that this method of proof leads to an efficient numerical method for solving the BVP. Crudely speaking, the efficiency stems from the reduction in dimensionality from u being an unknown function in 2D in the BVP to only in 1D in the IE. Waves: As well as Laplace, we will also study the Helmholtz equation ( + ω 2 )u = 0 (4) where ω > 0 is a frequency. What do solutions of this look like? The 1D analog is the ODE u + ω 2 u = 0 which has solutions such as sinωx or e iωx which oscillate with wavelength 2π/ω. Similar things happen in higher dimensions, except that waves may travel in all directions. See picture Notice that Laplace and Helmholtz are both elliptic PDE since the signs of the 2nd derivatives are the same. The contrasts with the wave equation, ũ xx + ũ yy ũ tt = 0 (5) for the time-dependent field ũ(x, y, t), which could represent acoustic pressure, for example. The wave equation is hyperbolic since its has mixed signs of 2nd derivatives. The mnemonic is to convert derivatives to powers of the coordinate (this is actually called the symbol of a differential operator; see pseudodifferential operators): u xx + u yy = 0 x 2 + y 2 = const ellipse (here happens to be a circle) u xx u yy = 0 x 2 y 2 = const hyperbola Equations such as the heat equation have no 2nd-derivative in one of the variables, and are thus parabolic. Given even rough boundary data, elliptic PDEs lead to very smooth (even sometimes analytic) solutions; on the other hand, with hyperbolic PDEs rough initial data is carried along characteristics and remains nonsmooth. The picture for the wave equation is of the light cone disturbance produced by point-like initial data at the origin at t = 0. The Helmholtz equation follows from the wave equation when the assumption of motion in time at a single frequency is made, e.g. if I were to sing in this 2

3 room with a pure tone at a single frequency, the pressure field would settle into one with harmonic time-dependence ũ(x, y, t) = u(x, y)e iωt Substitution of this into (5) and canceling exponential factors gives (4). When waves traveling in free space hit an obstacle this is a scattering problem. One then needs to solve an exterior problem, with (4) holding in the unbounded domain R Ω, with given boundary data as before, and a so-called radiation condition. What BIE methods are good for: Piecewise-homogeneous media, i.e. the coefficients of the PDE are constant in chunks of space touching on lowerdimensional boundaries. BIEs are excellent especially for exterior problems, finite element methods cannot easily handle the infinite extent of the domain. Also, BIE are excellent for high frequencies ω 1, since then there are many wavelengths across the domain, and the lower dimensionality of BIE vs FEM is a huge advantage. What BIE methods are not good for: Variable-coefficient PDEs, or nonlinear PDEs. Note that there are IE methods for some of these, namely, volume-integral based methods such as Lippman-Schwinger. 2 Numerical Linear Algebra: Stability and Conditioning Well, now we go over to scanned paper lectures... (One day I will TEX up the whole thing) References [1] L. Trefethen. The definition of numerical analysis. SIAM News, November

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 Periodic numerical quadrature The simplest rule to approximate 2π f(t)dt is sometimes the best: 0 sum N equally spaced samples of f! Theorem (Davis 59): Let f be 2π-periodic, andrealanalytic, meaning f(z) is bounded and analytic in some strip Im z a of half-width a > 0. Then there is a const C > 0 (indep. of N) such that the error is 2π N N j=1 f ( 2π N j ) 2π 0 f(t)dt Ce an 10 0 exponential convergence in N: doubling N squares your accuracy very desirable: can get accuracies of algebraic N α exponential e β N relative error 10 w/ little effort. Carries over to solving the PDE! N p. 8

23 Proof Residue Thm: 2πi residues = closed contour integral in C Beautiful cotangent function cot(z): poles at πj, j Z, residues 1 cot(z) tends to i, exponentially fast poles a a Im z Γ1 D 0 D 1 Γ Γ 2 (2π/Ν) 2 j Re z 2π 1 f analytic f(z) 2i cot(n z): poles at 2π 2 N Res. Thm in strip: 2π N N j=1 f ( 2π N j ) = Γ1+Γ2 j, residues 1 1 2i f(z) cot in f(2π N j) ( N 2 z ) dz integrand pure Im on R, so Re parts antisymmetric add Im parts symmetric cancel = Re Γ1 ( i)f(z) cot ( N 2 z ) dz p. 9

24 2π N N j=1 f ( 2π N j ) = Re Γ1 ( i)f(z) cot ( N 2 z ) dz Cauchy integral formula in D1 (since f analytic): Γ f(z)dz = f(z)dz Γ1 add Re part of this to previous eqn: 2π N QED N j=1 f ( 2π N j ) Γ f(z)dz = Re Γ1 [ 1 i cot ( N 2 z) ] f(z)dz error of our quadrature exp. small 2/(e an 1) bnded in D1 Research: good quadrature schemes for f s withsingularities? p. 10

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

LECTURE-13 : GENERALIZED CAUCHY S THEOREM LECTURE-3 : GENERALIZED CAUCHY S THEOREM VED V. DATAR The aim of this lecture to prove a general form of Cauchy s theorem applicable to multiply connected domains. We end with computations of some real

More information

Math 126: Course Summary

Math 126: Course Summary Math 126: Course Summary Rich Schwartz August 19, 2009 General Information: Math 126 is a course on complex analysis. You might say that complex analysis is the study of what happens when you combine calculus

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS425 SEMESTER: Autumn 25/6 MODULE TITLE: Applied Analysis DURATION OF EXAMINATION:

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436 1 Introduction You may have noticed that when we analyzed the heat equation on a bar of length 1 and I talked about the equation

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

Complex Analysis Math 205A, Winter 2014 Final: Solutions

Complex Analysis Math 205A, Winter 2014 Final: Solutions Part I: Short Questions Complex Analysis Math 205A, Winter 2014 Final: Solutions I.1 [5%] State the Cauchy-Riemann equations for a holomorphic function f(z) = u(x,y)+iv(x,y). The Cauchy-Riemann equations

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 11 Partial Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002.

More information

Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department

Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department Syllabus for Applied Mathematics Graduate Student Qualifying Exams, Dartmouth Mathematics Department Alex Barnett, Scott Pauls, Dan Rockmore August 12, 2011 We aim to touch upon many topics that a professional

More information

MAT389 Fall 2016, Problem Set 4

MAT389 Fall 2016, Problem Set 4 MAT389 Fall 2016, Problem Set 4 Harmonic conjugates 4.1 Check that each of the functions u(x, y) below is harmonic at every (x, y) R 2, and find the unique harmonic conjugate, v(x, y), satisfying v(0,

More information

Cauchy Integral Formula Consequences

Cauchy Integral Formula Consequences Cauchy Integral Formula Consequences Monday, October 28, 2013 1:59 PM Homework 3 due November 15, 2013 at 5 PM. Last time we derived Cauchy's Integral Formula, which we will present in somewhat generalized

More information

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16 Physics 307 Mathematical Physics Luis Anchordoqui 1 Bibliography L. A. Anchordoqui and T. C. Paul, ``Mathematical Models of Physics Problems (Nova Publishers, 2013) G. F. D. Duff and D. Naylor, ``Differential

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

2 of PU_2015_ of PU_2015_ of PU_2015_118

2 of PU_2015_ of PU_2015_ of PU_2015_118 PU Ph D Mathematics Error! Not a valid embedded object.error! Not a valid embedded object.error! Not a valid embedded object.error! Not a valid embedded object.error! Not a valid embedded object.error!

More information

Elements of Matlab and Simulink Lecture 7

Elements of Matlab and Simulink Lecture 7 Elements of Matlab and Simulink Lecture 7 Emanuele Ruffaldi 12th May 2009 Copyright 2009,Emanuele Ruffaldi. This work is licensed under the Creative Commons Attribution-ShareAlike License. PARTIAL DIFFERENTIAL

More information

Dispersion relations, linearization and linearized dynamics in PDE models

Dispersion relations, linearization and linearized dynamics in PDE models Dispersion relations, linearization and linearized dynamics in PDE models 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

A Direct Method for reconstructing inclusions from Electrostatic Data

A Direct Method for reconstructing inclusions from Electrostatic Data A Direct Method for reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with:

More information

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1.1 Separable Partial Differential Equations 1. Classical PDEs and Boundary-Value Problems 1.3 Heat Equation 1.4 Wave Equation 1.5 Laplace s Equation

More information

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator

The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator The Pole Condition: A Padé Approximation of the Dirichlet to Neumann Operator Martin J. Gander and Achim Schädle Mathematics Section, University of Geneva, CH-, Geneva, Switzerland, Martin.gander@unige.ch

More information

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20

Video 15: PDE Classification: Elliptic, Parabolic and Hyperbolic March Equations 11, / 20 Video 15: : Elliptic, Parabolic and Hyperbolic Equations March 11, 2015 Video 15: : Elliptic, Parabolic and Hyperbolic March Equations 11, 2015 1 / 20 Table of contents 1 Video 15: : Elliptic, Parabolic

More information

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R

Modeling using conservation laws. Let u(x, t) = density (heat, momentum, probability,...) so that. u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...) so that u dx = amount in region R Ω. R Modeling using conservation laws Let u(x, t) = density (heat, momentum, probability,...)

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Discontinuous Galerkin methods for fractional diffusion problems

Discontinuous Galerkin methods for fractional diffusion problems Discontinuous Galerkin methods for fractional diffusion problems Bill McLean Kassem Mustapha School of Maths and Stats, University of NSW KFUPM, Dhahran Leipzig, 7 October, 2010 Outline Sub-diffusion Equation

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

Introduction and some preliminaries

Introduction and some preliminaries 1 Partial differential equations Introduction and some preliminaries A partial differential equation (PDE) is a relationship among partial derivatives of a function (or functions) of more than one variable.

More information

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Numerical Solutions of Partial Differential Equations

Numerical Solutions of Partial Differential Equations Numerical Solutions of Partial Differential Equations Dr. Xiaozhou Li xiaozhouli@uestc.edu.cn School of Mathematical Sciences University of Electronic Science and Technology of China Introduction Overview

More information

Module 7: The Laplace Equation

Module 7: The Laplace Equation Module 7: The Laplace Equation In this module, we shall study one of the most important partial differential equations in physics known as the Laplace equation 2 u = 0 in Ω R n, (1) where 2 u := n i=1

More information

SINC PACK, and Separation of Variables

SINC PACK, and Separation of Variables SINC PACK, and Separation of Variables Frank Stenger Abstract This talk consists of a proof of part of Stenger s SINC-PACK computer package (an approx. 400-page tutorial + about 250 Matlab programs) that

More information

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis Zeta Functions and Regularized Determinants for Elliptic Operators Elmar Schrohe Institut für Analysis PDE: The Sound of Drums How Things Started If you heard, in a dark room, two drums playing, a large

More information

High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium Alex H. Barnett,a, Bradley J. Nelson b, J. Matthew Mahoney c a

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs MATH 4354 Fall 2005 December 5, 2005 1 Duhamel s Principle

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Geometry, Physics, and Harmonic Functions

Geometry, Physics, and Harmonic Functions Geometry, Physics, and Harmonic Functions Robert Huffaker June 3, 2010 1 Introduction Mathematics is a language of rigor and clarity. A plethora of symbols and words litter every student s math textbooks,

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

Lecture 16: Relaxation methods

Lecture 16: Relaxation methods Lecture 16: Relaxation methods Clever technique which begins with a first guess of the trajectory across the entire interval Break the interval into M small steps: x 1 =0, x 2,..x M =L Form a grid of points,

More information

18.04 Practice problems exam 2, Spring 2018 Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions 8.04 Practice problems exam, Spring 08 Solutions Problem. Harmonic functions (a) Show u(x, y) = x 3 3xy + 3x 3y is harmonic and find a harmonic conjugate. It s easy to compute: u x = 3x 3y + 6x, u xx =

More information

Applied Mathematics 505b January 22, Today Denitions, survey of applications. Denition A PDE is an equation of the form F x 1 ;x 2 ::::;x n ;~u

Applied Mathematics 505b January 22, Today Denitions, survey of applications. Denition A PDE is an equation of the form F x 1 ;x 2 ::::;x n ;~u Applied Mathematics 505b January 22, 1998 1 Applied Mathematics 505b Partial Dierential Equations January 22, 1998 Text: Sobolev, Partial Dierentail Equations of Mathematical Physics available at bookstore

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

Approximation by plane and circular waves

Approximation by plane and circular waves LMS EPSRC DURHAM SYMPOSIUM, 8 16TH JULY 2014 Building Bridges: Connections and Challenges in Modern Approaches to Numerical PDEs Approximation by plane and circular waves Andrea Moiola DEPARTMENT OF MATHEMATICS

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ Lecture 6 Consequences of Cauchy s Theorem MATH-GA 45.00 Complex Variables Cauchy s Integral Formula. Index of a point with respect to a closed curve Let z C, and a piecewise differentiable closed curve

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

We start with a discussion of the Sampling Theorem.

We start with a discussion of the Sampling Theorem. Math 625 Lecture Notes - March 10, 2014 We start with a discussion of the Sampling Theorem. Discussion 0.1 Assume that the Fourier transform f of a function f satisfies f(w) = 0 for w > Ω, that is, f is

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

PHYS 3900 Homework Set #03

PHYS 3900 Homework Set #03 PHYS 3900 Homework Set #03 Part = HWP 3.0 3.04. Due: Mon. Feb. 2, 208, 4:00pm Part 2 = HWP 3.05, 3.06. Due: Mon. Feb. 9, 208, 4:00pm All textbook problems assigned, unless otherwise stated, are from the

More information

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids joint work with Hengguang Li Yu Qiao School of Mathematics and Information Science Shaanxi Normal University Xi an,

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

The Factorization Method for Inverse Scattering Problems Part I

The Factorization Method for Inverse Scattering Problems Part I The Factorization Method for Inverse Scattering Problems Part I Andreas Kirsch Madrid 2011 Department of Mathematics KIT University of the State of Baden-Württemberg and National Large-scale Research Center

More information

Morera s Theorem for Functions of a Hyperbolic Variable

Morera s Theorem for Functions of a Hyperbolic Variable Int. Journal of Math. Analysis, Vol. 7, 2013, no. 32, 1595-1600 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.212354 Morera s Theorem for Functions of a Hyperbolic Variable Kristin

More information

Math 220A - Fall 2002 Homework 5 Solutions

Math 220A - Fall 2002 Homework 5 Solutions Math 0A - Fall 00 Homework 5 Solutions. Consider the initial-value problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

A new method for the solution of scattering problems

A new method for the solution of scattering problems A new method for the solution of scattering problems Thorsten Hohage, Frank Schmidt and Lin Zschiedrich Konrad-Zuse-Zentrum Berlin, hohage@zibde * after February 22: University of Göttingen Abstract We

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Research Statement. Tonatiuh Sánchez-Vizuet

Research Statement. Tonatiuh Sánchez-Vizuet {tonatiuh@cims.nyu.edu} http://cims.nyu.edu/~tonatiuh/ I am especially interested in devising, rigorously analyzing and implementing methods for the numerical simulation of transient wave phenomena. During

More information

Assignment 2 - Complex Analysis

Assignment 2 - Complex Analysis Assignment 2 - Complex Analysis MATH 440/508 M.P. Lamoureux Sketch of solutions. Γ z dz = Γ (x iy)(dx + idy) = (xdx + ydy) + i Γ Γ ( ydx + xdy) = (/2)(x 2 + y 2 ) endpoints + i [( / y) y ( / x)x]dxdy interiorγ

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Lecture notes: Introduction to Partial Differential Equations

Lecture notes: Introduction to Partial Differential Equations Lecture notes: Introduction to Partial Differential Equations Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 Classification of Partial Differential

More information

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant

More information

M E M O R A N D U M. Faculty Senate approved November 1, 2018

M E M O R A N D U M. Faculty Senate approved November 1, 2018 M E M O R A N D U M Faculty Senate approved November 1, 2018 TO: FROM: Deans and Chairs Becky Bitter, Sr. Assistant Registrar DATE: October 23, 2018 SUBJECT: Minor Change Bulletin No. 5 The courses listed

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Numerical Methods for PDEs

Numerical Methods for PDEs Numerical Methods for PDEs Partial Differential Equations (Lecture 1, Week 1) Markus Schmuck Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.306 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Monday March 12, 2018. Turn it in (by 3PM) at the Math.

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

12.1. Exponential shift. The calculation (10.1)

12.1. Exponential shift. The calculation (10.1) 62 12. Resonance and the exponential shift law 12.1. Exponential shift. The calculation (10.1) (1) p(d)e = p(r)e extends to a formula for the effect of the operator p(d) on a product of the form e u, where

More information

Splitting methods with boundary corrections

Splitting methods with boundary corrections Splitting methods with boundary corrections Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Strang s paper, SIAM J. Numer. Anal., 1968 S (5)

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Final Examination Solutions

Final Examination Solutions Math. 42 Fulling) December 22 Final Examination Solutions Calculators may be used for simple arithmetic operations only! Laplacian operator in polar coordinates: Some possibly useful information 2 u =

More information

Complex Variables & Integral Transforms

Complex Variables & Integral Transforms Complex Variables & Integral Transforms Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Dr.W.Parnell July 9, 007 Contents 1 Complex Variables 3 1.1 General Relations

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

Conservation and dissipation principles for PDEs

Conservation and dissipation principles for PDEs Conservation and dissipation principles for PDEs Modeling through conservation laws The notion of conservation - of number, energy, mass, momentum - is a fundamental principle that can be used to derive

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Second-Order Linear ODEs (Textbook, Chap 2)

Second-Order Linear ODEs (Textbook, Chap 2) Second-Order Linear ODEs (Textbook, Chap ) Motivation Recall from notes, pp. 58-59, the second example of a DE that we introduced there. d φ 1 1 φ = φ 0 dx λ λ Q w ' (a1) This equation represents conservation

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Solve Wave Equation from Scratch [2013 HSSP]

Solve Wave Equation from Scratch [2013 HSSP] 1 Solve Wave Equation from Scratch [2013 HSSP] Yuqi Zhu MIT Department of Physics, 77 Massachusetts Ave., Cambridge, MA 02139 (Dated: August 18, 2013) I. COURSE INFO Topics Date 07/07 Comple number, Cauchy-Riemann

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

EE2 Mathematics : Complex Variables

EE2 Mathematics : Complex Variables EE Mathematics : omplex Variables J. D. Gibbon (Professor J. D Gibbon 1, Dept of Mathematics) j.d.gibbon@ic.ac.uk http://www.imperial.ac.uk/ jdg These notes are not identical word-for-word with my lectures

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

Homogenization and error estimates of free boundary velocities in periodic media

Homogenization and error estimates of free boundary velocities in periodic media Homogenization and error estimates of free boundary velocities in periodic media Inwon C. Kim October 7, 2011 Abstract In this note I describe a recent result ([14]-[15]) on homogenization and error estimates

More information

27. The pole diagram and the Laplace transform

27. The pole diagram and the Laplace transform 124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

Mathematics 350: Problems to Study Solutions

Mathematics 350: Problems to Study Solutions Mathematics 350: Problems to Study Solutions April 25, 206. A Laurent series for cot(z centered at z 0 i converges in the annulus {z : < z i < R}. What is the largest possible value of R? Solution: The

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information