36-463/663: Multilevel & Hierarchical Models

Size: px
Start display at page:

Download "36-463/663: Multilevel & Hierarchical Models"

Transcription

1 36-463/663: Multilevel & Hierarchical Models From Maximum Likelihood to Bayes Brian Junker 132E Baker Hall 1 Outline 2016 Pre-election oll in Ohio Binomial and Bernoulli MLE Bayes Rule Bayes for densities Bayesian inference 2016 Pre-election oll in Ohio 2

2 Ohio, 2016 Pre-Election Poll Donald Trum (R) running for election to the residency against Hillary Clinton (D) In a Suffolk University Poll (Set 12-14, 2016): 401 of 500 voters exressed a reference for Trum or Clinton. Of those 401: 208 refer Donald Trum. In most olling, weights are attached to each resonse, to adjust the reresentativeness of the resonse for things like who is likely to be home when survey worker calls who refuses to answer etc We will ignore weights etcand treat the 401 as a simle random samle. 3 Possible models for the data 401 individual Bernoulli coin flis, x i = 1 for Trum, x i = 0 for Clinton 401 trials, 208 successes (Trum voters) What matters for MLE and SE is shae, not size! 4

3 Binomial and Bernoulli Likelihoods Binomial Likelihood Binomial Log-likelihood L bin () [arameter] Bernouli Likelihood L bin () e e-242 log(l bin ()) [arameter] Bernouli Log-likelihood log(l ber ()) [arameter] [arameter] 5 Proortionality and log-roortionality f(θ) g(θ) [ f(θ) is roortional tog(θ) ] if f(θ) = cg(θ) Clearly L bin () L ber (), with c = For log-likelihoods we also write : LL bin () LL ber () because LL bin () = LL ber () + log (weird, huh?) 6

4 Finding the MLE If we use the Bernoulli likelihood, If we use the Binomial likelihood Either way we want to maximize with k = 208, n=401 7 MLE: Point Estimate Differentiating and setting to zero so, clearly, 8

5 MLE: Standard Error & CI First we calculate the exected Information and then A CI for is then (0.47,0.57), uncertain who wins! 9 Bayes Rule (a.k.a. Bayes Theorem) A very simle idea with very owerful consequences We often start with information like P[A B] and what we really want is P[B A]. Bayes Theorem lets us turn the conditioning around : See htt://yudkowsky.net/rational/bayesfor a ton of examles and geeky roselytizing. 10

6 Finding Terrorists According to htt://wiki.answers.com/q/how_many_eole_fly_in_a_year, US airlines carry million assengers er year According to htt:// RAND_OP292.df, 42 eole were indicted in the US for jihadists activities in About 2000 eole are under surveillance in the UK (htt:// so let s generously assume that about 10,000 are under surveillance in the US. Let s assume (again generously) that all 10,000 will try to fly once in the US in a year, carrying a detectable weaon. Now suose TSA methods are 99.99% accurate: P[red light terrorist] = = P[green light not terrorist] What is P[terrorist red light]? P[not terrorist green]? How many travellers will be red-lighted? 11 Terrorists and Bayes B = terrorist; B c = not terrorist P(B) = 10,000/(561.9*10 6 ) = 1.78*10-15 A = red light; A c = green light P[A B]= P[A c B c ] = P[A] = P[A&B] + P[A&B c ] = P[A B]P[B] + P[A B c ]P[B c ] = (0.9999)(1.78*10-15 ) + ( )(1-1.78*10-15 ) = P[B A] = P[A B]P[B]/P[A] = (0.9999)(1.78*10-15 ) / = 1.5*10-11 P[B c A c ] = P[A c B c ]P[B c ]/P[A c ] = (0.9999)(1-1.78*10-15) ) / ( ) 1 E[#A] = P[A] * (561*10 6 ) = ( ) (561*10 6 ) = 66,188 There better be other ways! 12

7 Conditional robability & conditional density P[A & B] = P[B A]P[A] P[B] = P[B A]P[A] + P[B A c ]P[A c ] P[A B] = P[A&B]/P[B] f(x,y) = f(y x) f(x) f(x y) = f(x,y)/f(y) Bayes Theorem: Bayes Theorem: 13 Bayes Theorem for Data Bayes Theorem Let x = data, y = θ(arameter!); then 14

8 Bayes Theorem for Data We call f(θ) the rior distribution f(data θ) = L(θ) the likelihood f(θ data) the osterior distribution So Bayes Theorem says Slogan: (osterior) (likelihood) (rior) 15 Back to 2016 Ohio re-election oll The likelihoodis the same as before: L() k (1-) n-k We need a rior distribution. One good choice is a beta distribution, with Some grahs of beta densities aear on the next slide 16

9 Some Beta Densities dbeta(,0.5,0.5) dbeta(,1,0.5) dbeta(,0.5,1) dbeta(,1,1) dbeta(,0.5,2) dbeta(,1,2) dbeta(,0.5,4) dbeta(,1,4) dbeta(,2,0.5) 0 2 dbeta(,2,1) dbeta(,2,2) dbeta(,4,0.5) dbeta(,4,1) dbeta(,4,2) dbeta(,4,4) dbeta(,2,4) 17 Some Beta Densities uniform distribution! dbeta(,0.5,0.5) dbeta(,0.5,1) dbeta(,0.5,2) dbeta(,1,0.5) dbeta(,1,1) dbeta(,1,2) dbeta(,0.5,4) dbeta(,2,0.5) 0 2 dbeta(,2,1) dbeta(,2,2) dbeta(,1,4) dbeta(,4,0.5) dbeta(,4,1) dbeta(,4,2) dbeta(,4,4) dbeta(,2,4) 18

10 Choosing rior arameters The likelihoodis the same as before: L() k (1-) n-k = 208 (1-) 193 The rior distribution is a beta distribution α= 1, β= 1 gives a uniform distribution no reference for one over another! Suose that in a revious oll, 942 refer Trum and 1008 refer Clinton. Could set α=942, β= If α=1 and β=1 (osterior) (likelihood) (rior): Since f( data)=l(), osterior mode = MLE = 208/401 = 0.52 Since f( data) is a beta with α=209, β=194, E[ data] = 209/403 20

11 If α=942, β=1008 (osterior) (likelihood) (rior): shrinkage : osterior between rior & likelihood Since f( data) = beta(,1150,1202), E[ data] = 1150/2352 = vs MLE= Standard Errors (α=942, β=1008) Since then (comare to SE=0.018 from MLE ) Arox 95% interval from : (0.47, 0.51) still can t decide 22

12 Alternative interval for Since we know the osterior distribution of, we can calculate the 2.5%-ileand 97.5%-ileand get another 95% interval: > nsim < > <- rbeta(nsim,1150,1202) > quantile(,c(0.025,.5,.975)) 2.5% 50% 97.5% Gives almost the same 95% interval: (0.47, 0.51)... still can t decide Summary For MLE Need a function roortional to L(θ) Calculate MLE by setting 0 = LL (θ) Calculate where I(θ) = E[-LL (θ)] For Bayes Need a function roortional to L(θ) Need a rior distribution Calculate (osterior) (likelihood) (rior) Calculate osterior mean, SE Use formula if you have one Use simulation if you don t! 24

13 What we did 2016 Pre-election oll in Ohio Binomial and Bernoulli MLE Bayes Rule Bayes for densities Bayesian inference 2016 Pre-election oll in Ohio Summary! 25

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference

Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Lecture 23 Maximum Likelihood Estimation and Bayesian Inference Thais Paiva STA 111 - Summer 2013 Term II August 7, 2013 1 / 31 Thais Paiva STA 111 - Summer 2013 Term II Lecture 23, 08/07/2013 Lecture

More information

Hypothesis Test-Confidence Interval connection

Hypothesis Test-Confidence Interval connection Hyothesis Test-Confidence Interval connection Hyothesis tests for mean Tell whether observed data are consistent with μ = μ. More secifically An hyothesis test with significance level α will reject the

More information

Bayesian classification CISC 5800 Professor Daniel Leeds

Bayesian classification CISC 5800 Professor Daniel Leeds Bayesian classification CISC 5800 Professor Daniel Leeds Classifying with robabilities Examle goal: Determine is it cloudy out Available data: Light detector: x 0,25 Potential class (atmosheric states):

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

1 A simple example. A short introduction to Bayesian statistics, part I Math 217 Probability and Statistics Prof. D.

1 A simple example. A short introduction to Bayesian statistics, part I Math 217 Probability and Statistics Prof. D. probabilities, we ll use Bayes formula. We can easily compute the reverse probabilities A short introduction to Bayesian statistics, part I Math 17 Probability and Statistics Prof. D. Joyce, Fall 014 I

More information

36-463/663: Hierarchical Linear Models

36-463/663: Hierarchical Linear Models 36-463/663: Hierarchical Linear Models Taste of MCMC / Bayes for 3 or more levels Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Practical Bayes Mastery Learning Example A brief taste of JAGS

More information

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution Monte Carlo Studies Do not let yourself be intimidated by the material in this lecture This lecture involves more theory but is meant to imrove your understanding of: Samling distributions and tests of

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Chater 8 Ammar M. Sarhan, asarhan@mathstat.dal.ca Deartment of Mathematics and Statistics, Dalhousie University Fall Semester 28 Chater 8 Tests of Hyotheses Based

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics October 17, 2017 CS 361: Probability & Statistics Inference Maximum likelihood: drawbacks A couple of things might trip up max likelihood estimation: 1) Finding the maximum of some functions can be quite

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts Basics of Iferece Lecture 21: Sta230 / Mth230 Coli Rudel Aril 16, 2014 U util this oit i the class you have almost exclusively bee reseted with roblems where we are usig a robability model where the model

More information

Named Entity Recognition using Maximum Entropy Model SEEM5680

Named Entity Recognition using Maximum Entropy Model SEEM5680 Named Entity Recognition using Maximum Entroy Model SEEM5680 Named Entity Recognition System Named Entity Recognition (NER): Identifying certain hrases/word sequences in a free text. Generally it involves

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 10: The Bayesian way to fit models. Geoffrey Hinton

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 10: The Bayesian way to fit models. Geoffrey Hinton CSC31: 011 Introdution to Neural Networks and Mahine Learning Leture 10: The Bayesian way to fit models Geoffrey Hinton The Bayesian framework The Bayesian framework assumes that we always have a rior

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Economics 101. Lecture 7 - Monopoly and Oligopoly

Economics 101. Lecture 7 - Monopoly and Oligopoly Economics 0 Lecture 7 - Monooly and Oligooly Production Equilibrium After having exlored Walrasian equilibria with roduction in the Robinson Crusoe economy, we will now ste in to a more general setting.

More information

Learning Sequence Motif Models Using Gibbs Sampling

Learning Sequence Motif Models Using Gibbs Sampling Learning Sequence Motif Models Using Gibbs Samling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Sring 2018 Anthony Gitter gitter@biostat.wisc.edu These slides excluding third-arty material are licensed under

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

36-463/663Multilevel and Hierarchical Models

36-463/663Multilevel and Hierarchical Models 36-463/663Multilevel and Hierarchical Models From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Bayesian Statistics and MCMC Distribution of Skill Mastery in a Population

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 379: Business and Economics Statistics Instructor: Yogesh Ual Email: yual@ysu.edu Chater 9, Part A: Hyothesis Tests Develoing Null and Alternative Hyotheses Tye I and Tye II Errors Poulation Mean:

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 379: Business and Economics Statistics Instructor: Yogesh Ual Email: yual@ysu.edu Chater 9, Part A: Hyothesis Tests Develoing Null and Alternative Hyotheses Tye I and Tye II Errors Poulation Mean:

More information

Lecture: Condorcet s Theorem

Lecture: Condorcet s Theorem Social Networs and Social Choice Lecture Date: August 3, 00 Lecture: Condorcet s Theorem Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler Condorcet s theorem, the most basic jury

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Bayesian RL Seminar. Chris Mansley September 9, 2008

Bayesian RL Seminar. Chris Mansley September 9, 2008 Bayesian RL Seminar Chris Mansley September 9, 2008 Bayes Basic Probability One of the basic principles of probability theory, the chain rule, will allow us to derive most of the background material in

More information

¼ ¼ 6:0. sum of all sample means in ð8þ 25

¼ ¼ 6:0. sum of all sample means in ð8þ 25 1. Samling Distribution of means. A oulation consists of the five numbers 2, 3, 6, 8, and 11. Consider all ossible samles of size 2 that can be drawn with relacement from this oulation. Find the mean of

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

36-463/663: Multilevel & Hierarchical Models

36-463/663: Multilevel & Hierarchical Models 36-463/663: Multilevel & Hierarchical Models (P)review: in-class midterm Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 In-class midterm Closed book, closed notes, closed electronics (otherwise I have

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

Learning Bayesian Networks (part 1) Goals for the lecture

Learning Bayesian Networks (part 1) Goals for the lecture Learning Bayesian Networks (part 1) Mark Craven and David Page Computer Scices 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some ohe slides in these lectures have been adapted/borrowed from materials

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 14, 2018 CS 361: Probability & Statistics Inference The prior From Bayes rule, we know that we can express our function of interest as Likelihood Prior Posterior The right hand side contains the

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Sampling. Inferential statistics draws probabilistic conclusions about populations on the basis of sample statistics

Sampling. Inferential statistics draws probabilistic conclusions about populations on the basis of sample statistics Samling Inferential statistics draws robabilistic conclusions about oulations on the basis of samle statistics Probability models assume that every observation in the oulation is equally likely to be observed

More information

1 Random Experiments from Random Experiments

1 Random Experiments from Random Experiments Random Exeriments from Random Exeriments. Bernoulli Trials The simlest tye of random exeriment is called a Bernoulli trial. A Bernoulli trial is a random exeriment that has only two ossible outcomes: success

More information

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)]

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)] LECTURE 7 NOTES 1. Convergence of random variables. Before delving into the large samle roerties of the MLE, we review some concets from large samle theory. 1. Convergence in robability: x n x if, for

More information

Advanced Probabilistic Modeling in R Day 1

Advanced Probabilistic Modeling in R Day 1 Advanced Probabilistic Modeling in R Day 1 Roger Levy University of California, San Diego July 20, 2015 1/24 Today s content Quick review of probability: axioms, joint & conditional probabilities, Bayes

More information

PROBLEM 1 CONTINUES ON NEXT PAGE

PROBLEM 1 CONTINUES ON NEXT PAGE . The ages X (in years) of n = 200 randomly selected individuals are summarized in the table below. Answer each of the following; show all work. Midpoints x i Age Interval Frequency Relative Frequency

More information

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 11: Bayesian learning continued. Geoffrey Hinton

CSC321: 2011 Introduction to Neural Networks and Machine Learning. Lecture 11: Bayesian learning continued. Geoffrey Hinton CSC31: 011 Introdution to Neural Networks and Mahine Learning Leture 11: Bayesian learning ontinued Geoffrey Hinton Bayes Theorem, Prior robability of weight vetor Posterior robability of weight vetor

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Bayesian Parameter Estimation Introduction to Bayesian Statistics Harvey Thornburg Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

Likelihood and Bayesian Inference for Proportions

Likelihood and Bayesian Inference for Proportions Likelihood and Bayesian Inference for Proportions September 18, 2007 Readings Chapter 5 HH Likelihood and Bayesian Inferencefor Proportions p. 1/24 Giardia In a New Zealand research program on human health

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Probability Review - Bayes Introduction

Probability Review - Bayes Introduction Probability Review - Bayes Introduction Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Advantages of Bayesian Analysis Answers the questions that researchers are usually interested in, What

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI **

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI ** Iranian Journal of Science & Technology, Transaction A, Vol 3, No A3 Printed in The Islamic Reublic of Iran, 26 Shiraz University Research Note REGRESSION ANALYSIS IN MARKOV HAIN * A Y ALAMUTI AND M R

More information

IEOR165 Discussion Week 5

IEOR165 Discussion Week 5 IEOR165 Discussion Week 5 Sheng Liu University of California, Berkeley Feb 19, 2016 Outline 1 1st Homework 2 Revisit Maximum A Posterior 3 Regularization IEOR165 Discussion Sheng Liu 2 About 1st Homework

More information

Published: 14 October 2013

Published: 14 October 2013 Electronic Journal of Alied Statistical Analysis EJASA, Electron. J. A. Stat. Anal. htt://siba-ese.unisalento.it/index.h/ejasa/index e-issn: 27-5948 DOI: 1.1285/i275948v6n213 Estimation of Parameters of

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Introduction to Applied Bayesian Modeling. ICPSR Day 4

Introduction to Applied Bayesian Modeling. ICPSR Day 4 Introduction to Applied Bayesian Modeling ICPSR Day 4 Simple Priors Remember Bayes Law: Where P(A) is the prior probability of A Simple prior Recall the test for disease example where we specified the

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Collaborative Place Models Supplement 1

Collaborative Place Models Supplement 1 Collaborative Place Models Sulement Ber Kaicioglu Foursquare Labs ber.aicioglu@gmail.com Robert E. Schaire Princeton University schaire@cs.rinceton.edu David S. Rosenberg P Mobile Labs david.davidr@gmail.com

More information

On split sample and randomized confidence intervals for binomial proportions

On split sample and randomized confidence intervals for binomial proportions On slit samle and randomized confidence intervals for binomial roortions Måns Thulin Deartment of Mathematics, Usala University arxiv:1402.6536v1 [stat.me] 26 Feb 2014 Abstract Slit samle methods have

More information

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Outline 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Likelihood A common and fruitful approach to statistics is to assume

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Naïve Bayes Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative HW 1 out today. Please start early! Office hours Chen: Wed 4pm-5pm Shih-Yang: Fri 3pm-4pm Location: Whittemore 266

More information

MLE/MAP + Naïve Bayes

MLE/MAP + Naïve Bayes 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University MLE/MAP + Naïve Bayes Matt Gormley Lecture 19 March 20, 2018 1 Midterm Exam Reminders

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides slide 1 Inference with Bayes rule: Example In a bag there are two envelopes one has a red ball (worth $100) and a black ball one

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

Lecture 7. Bayes formula and independence

Lecture 7. Bayes formula and independence 18.440: Lecture 7 Bayes formula and independence Scott Sheffield MIT 1 Outline Bayes formula Independence 2 Outline Bayes formula Independence 3 Recall definition: conditional probability Definition: P(E

More information

18.600: Lecture 7 Bayes formula and independence

18.600: Lecture 7 Bayes formula and independence 18.600 Lecture 7 18.600: Lecture 7 Bayes formula and independence Scott Sheffield MIT 18.600 Lecture 7 Outline Bayes formula Independence 18.600 Lecture 7 Outline Bayes formula Independence Recall definition:

More information

Allele Frequency Estimation

Allele Frequency Estimation Allele Frequency Estimation Examle: ABO blood tyes ABO genetic locus exhibits three alleles: A, B, and O Four henotyes: A, B, AB, and O Genotye A/A A/O A/B B/B B/O O/O Phenotye A A AB B B O Data: Observed

More information

The Binomial Approach for Probability of Detection

The Binomial Approach for Probability of Detection Vol. No. (Mar 5) - The e-journal of Nondestructive Testing - ISSN 45-494 www.ndt.net/?id=7498 The Binomial Aroach for of Detection Carlos Correia Gruo Endalloy C.A. - Caracas - Venezuela www.endalloy.net

More information

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Bayesian inference & Markov chain Monte Carlo Note 1: Many slides for this lecture were kindly rovided by Paul Lewis and Mark Holder Note 2: Paul Lewis has written nice software for demonstrating Markov

More information

Likelihood and Bayesian Inference for Proportions

Likelihood and Bayesian Inference for Proportions Likelihood and Bayesian Inference for Proportions September 9, 2009 Readings Hoff Chapter 3 Likelihood and Bayesian Inferencefor Proportions p.1/21 Giardia In a New Zealand research program on human health

More information

Lecture 3 January 16

Lecture 3 January 16 Stats 3b: Theory of Statistics Winter 28 Lecture 3 January 6 Lecturer: Yu Bai/John Duchi Scribe: Shuangning Li, Theodor Misiakiewicz Warning: these notes may contain factual errors Reading: VDV Chater

More information

Loglikelihood and Confidence Intervals

Loglikelihood and Confidence Intervals Stat 504, Lecture 2 1 Loglikelihood and Confidence Intervals The loglikelihood function is defined to be the natural logarithm of the likelihood function, l(θ ; x) = log L(θ ; x). For a variety of reasons,

More information

Bayesian Statistics. Debdeep Pati Florida State University. February 11, 2016

Bayesian Statistics. Debdeep Pati Florida State University. February 11, 2016 Bayesian Statistics Debdeep Pati Florida State University February 11, 2016 Historical Background Historical Background Historical Background Brief History of Bayesian Statistics 1764-1838: called probability

More information

Machine Learning. Topic 12: Probability and Bayesian Networks

Machine Learning. Topic 12: Probability and Bayesian Networks Machine Learning Topic 12: robability and ayesian Networks ryan ardo, Machine Learning: EECS 349 Fall 2009 xioms of robability Let there be a space S composed of a countable number of events The probability

More information

Probability Theory. Patrick Lam

Probability Theory. Patrick Lam Probability Theory Patrick Lam Outline Probability Random Variables Simulation Important Distributions Discrete Distributions Continuous Distributions Most Basic Definition of Probability: number of successes

More information

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior:

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior: Pi Priors Unobservable Parameter population proportion, p prior: π ( p) Conjugate prior π ( p) ~ Beta( a, b) same PDF family exponential family only Posterior π ( p y) ~ Beta( a + y, b + n y) Observed

More information

Measuring center and spread for density curves. Calculating probabilities using the standard Normal Table (CIS Chapter 8, p 105 mainly p114)

Measuring center and spread for density curves. Calculating probabilities using the standard Normal Table (CIS Chapter 8, p 105 mainly p114) Objectives 1.3 Density curves and Normal distributions Density curves Measuring center and sread for density curves Normal distributions The 68-95-99.7 (Emirical) rule Standardizing observations Calculating

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Compute f(x θ)f(θ) dθ

Compute f(x θ)f(θ) dθ Bayesian Updating: Continuous Priors 18.05 Spring 2014 b a Compute f(x θ)f(θ) dθ January 1, 2017 1 /26 Beta distribution Beta(a, b) has density (a + b 1)! f (θ) = θ a 1 (1 θ) b 1 (a 1)!(b 1)! http://mathlets.org/mathlets/beta-distribution/

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Exeriment-I MODULE II LECTURE -4 GENERAL LINEAR HPOTHESIS AND ANALSIS OF VARIANCE Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur

More information

Non-parametric Methods

Non-parametric Methods Non-parametric Methods Machine Learning Alireza Ghane Non-Parametric Methods Alireza Ghane / Torsten Möller 1 Outline Machine Learning: What, Why, and How? Curve Fitting: (e.g.) Regression and Model Selection

More information

PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric

PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric 2. Preliminary Analysis: Clarify Directions for Analysis Identifying Data Structure:

More information

Notes on Instrumental Variables Methods

Notes on Instrumental Variables Methods Notes on Instrumental Variables Methods Michele Pellizzari IGIER-Bocconi, IZA and frdb 1 The Instrumental Variable Estimator Instrumental variable estimation is the classical solution to the roblem of

More information

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III AI*IA 23 Fusion of Multile Pattern Classifiers PART III AI*IA 23 Tutorial on Fusion of Multile Pattern Classifiers by F. Roli 49 Methods for fusing multile classifiers Methods for fusing multile classifiers

More information

18.600: Lecture 7 Bayes formula and independence

18.600: Lecture 7 Bayes formula and independence 18.600: Lecture 7 Bayes formula and independence Scott Sheffield MIT Outline Bayes formula Independence Outline Bayes formula Independence Recall definition: conditional probability Definition: P(E F )

More information