240NU211 - Fusion Technology

Size: px
Start display at page:

Download "240NU211 - Fusion Technology"

Transcription

1 Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: ETSEIB - Barcelona School of Industrial Engineering FIS - Department of Physics MASTER'S DEGREE IN INDUSTRIAL ENGINEERING (Syllabus 2014). (Teaching unit Optional) MASTER'S DEGREE IN NUCLEAR ENGINEERING (Syllabus 2012). (Teaching unit Optional) 4,5 Teaching languages: English Teaching staff Coordinator: Others: De Blas Del Hoyo, Alfredo Futatani, Shimpei Degree competences to which the subject contributes Specific: 1. Ability to write the main systems of a nuclear power plant and identify the main features of such systems. 2. Knowledge of different reactor designs and nuclear plants, including proposals for future reactors, and will be able to assess their strengths and weaknesses. 1 / 9

2 Teaching methodology 1. LECTURES AND CASE EXAMPLES. Lectures are devoted to form the content of the subject, and some case examples enable to retain and quantify the presented concepts. These lecture sessions are supported by slides that graphically complement the main ideas of the presentations. Previous nesses to that, the slides are distributed to the students, making easy to follow the explanations. The "Digital Campus" will be used throughout the course. 2. MULTIMEDIA RESOURCES. Some technological aspects of the subject are complemented by multimedia projections: - Magnetic confinement Fusion. - Tore Supra. (Superconducting materials used in this experimental fusion device). - JET, Joint European Torus. 3. LAB WORK. The following lab work has been prepared with the aim of motivating the student: Use of a Nuclear Fusion Reactor Simulator type Tokamak for educational purposes. The students individually will simulate the following cases: P1. Reproduction of actual experiences of fusion devices (JET, Tore Supra). P2. ITER fusion reactor operation simulation. P3. Plasma confinement improvement in a fusion reactor. Safety factor profile inversion, magnetic shear. (10 hours) Methodology for the development of the lab work: - Presentation of the software: content, models included, and data base required. - Running of the simulation program: definition of input parameters and data, output data and storage. - Analysis of the results. - Guidance for the answers of the stated questions, and report elaboration. 4. TECHNICAL VISIT. Technical visit to the reactor Tore Supra and the ITER site in CEA, France: -Tore Supra is a thermonuclear fusion reactor type Tokamak, builded in The toroidal magnetic fields are created by using superconducting coils. The reactor is operated by the "Departament de Recherches sur la Fusion Contrôlée", of the "Commissariat d'energie Atomique", "Association EURATOM-CEA sur la fusion", Cadarache France. -Visit the ITER site in Cadarache. France. This is a thermonuclear reactor of 500 MW of nominal power, is a tokamak reactor. The coils are superconducting. The budget is more than M. This is the second biggest international project in the world. With the participation of: EEUU, Japón, Europa, China, Rusia, Corea, and India. (7 hours + travel) A special relevance is given to technological aspects related to the different heating and cooling methods as the Neutral Beam Injection (NBI), Radio Frequency (RF) heating systems, cryogenic systems, electrical systems for the generation of magnetic fields, and plasma diagnostics. Learning objectives of the subject At the end of the course the student will be able: a) To know the basic physics necessary in order to understand the development of nuclear fusion energy. b) To provide the state of art of the different technological ways towards the achievement of a commercial fusion reactor. 2 / 9

3 c) To understand the technological aspects required for the fusion energy production d) To applied the elemental background and tools for performance evaluations and calculations. e) To know the ITER project, the technological aspects, the objectives, and the construction schedule (CE8). Study load Total learning time: 112h 30m Hours large group: 0h 0.00% Hours medium group: 0h 0.00% Hours small group: 40h 30m 36.00% Guided activities: 0h 0.00% Self study: 72h 64.00% 3 / 9

4 Content 1. Introduction Learning time: 6h Theory classes: 3h Self study : 3h 1.1. Energy Resources Fusion Reactions Fuels Fusion products Thermonuclear fusion history. 2. Fusion reactions rate Learning time: 6h Theory classes: 3h Self study : 3h 2.1. Plasma kinetics 2.2. Thermonuclear plasma evolution 2.3. Cross sections 2.4. Two Maxwellian distributions 2.5. A monoenergetic beam and a Maxwelliam distribution 2.6. Fusion reaction rate 2.7. Fusion reaction rate in plasmas with only one kind of particles Power density. Fluency. 3. Energy losses 3.1. Radiative Power losses, Bremsstrahlung 3.2. Cyclotron radiation power loss Recombination 3.4. Charge exchange 4 / 9

5 4. Thermonuclear plasma balance Learning time: 4h Theory classes: 2h Self study : 2h 4.1. Lawson's criteria Conservation equations Thermal equilibrium and ignition temperature. 5. Plasma confinement systems Learning time: 8h Theory classes: 4h Self study : 4h 5.1 Introduction. Classification Open systems. Magnetic mirrors: confinement system; simple mirror, lowest B mirror; baseball mirror, Yingyang mirror Closed systems: Introduction, Stability, Magnetic fields (toroidal, pooidal) Tokamaks: JET. Tore-Supra, DIII-D. ITER Stellarators: TJ-II, LHD, Wendeistain 7-AS, Wendeistain 7-X. 6. Heating systems Learning time: 4h Theory classes: 2h Self study : 2h 6.1. Ohmic heating Neutral Beam Infection (NBI) Adiabatic compression Radio Frequency (RF) heating Relativistic electrons heating. 5 / 9

6 7. Plasma impurity. Fuel breeding 7.1. Impurities: effects, concentrations Helium accumulation Divertors Fuel breeding: gas blanking, NBI's. 8. Energy extractor systems 8.1. Fusion reactor's thermohydraulics Blanket design Energy Direct Conversion. 9. Diagnostic systems Learning time: 4h Theory classes: 2h Self study : 2h 9.1. Density measurements Temperature measurements Measurements of fusion products. 10. Neutronics. Tritium production Neutronic flux distribution Tritium production rate Neutron effects on reactor materials Shielding design. 6 / 9

7 11. Inertial fusion Introduction Lawson's criteria in ICS Inertial confinement steps Laser fusion: laser. Energy exchange with plasma Particles beams fusion: relativistic electrons, ions. 12. ITER project Learning time: 16h Theory classes: 8h Self study : 8h Main characteristics Design Construction schedule and planning Operation planning Safety and Environmental Impact. 7 / 9

8 Planning of activities USE OF A NUCLEAR FUSION REACTOR SIMULATOR TYPE TOKAMAK FOR EDUCATIONAL PURPOSES. Hours: 17h Laboratory classes: 5h Self study: 12h P1. Reproduction of actual experiences of fusion devices (JET, Tore Supra). P2. ITER fusion reactor operation simulation. P3. Plasma confinement improvement in a fusion reactor. Safety factor profile inversion, magnetic shear. Support materials: Experimental manual: Use of a Nuclear Fusion Reactor Simulator type Tokamak for educational purposes. Specific objectives: The objectives 1, 3 and 5 are achieved. Contribution to competences CE 7 and CE8. TECHNICAL VISIT TO THE REACTOR TORE SUPRA AND THE ITER SITE IN CEA, FRANCE: Hours: 6h Laboratory classes: 6h -Technical visit to the fusion reactor Tore Supra, tokamak, superconducter -Technical visit to the ITER site. Specific objectives: The objectives 1, 3 and 5 are achieved. Contribution to competences CE 7 and CE8. 8 / 9

9 Qualification system The student performances are assessed both by the continuous learning exams (50%), named NAC, and by the continuous work participation (50%), named NAEP. On the one hand, the qualification of the theoretical knowledge is determined by two exams. The first one will be done after the lecture of about 4 topics (NACET), and the second one will involve all the contents (NE). On the other hand, the qualification of the continuous work participation will be determined by the lab work reports (MP), the presence to the different lab works (AP), the participation to the technical visit (V), the attendance to the invited conferences (IC). Finally, the final qualification (NF) will be the maximum of the following qualifications: NF = Maximum (NF1, NF2 ) NF1 = NE NF2 = r * NE + (1- r) * NAC NAC = q * NAEP + (1- q) * NACET NAEP=1/4. MP + 1/4. AP + 1/4.V + 1/4 IC r = 0,5 q = 0,5 NF =Final qualification NE =Second exam result NAC =Qualification of the continuous learning exams NAEP = Qualification of the continuous work participation NACET = First exam result Bibliography Basic: Raeder, J. Controlled nuclear fusion : fundamentals of its utilization for energy supply. New York: Wiley & Sons, cop ISBN Wesson, John; Campbell, D. J. Tokamaks. 4th ed. Oxford : New York: Clarendon Press ; Oxford University Press, cop ISBN Dolan, Thomas James. Fusion Research : principles, experiments and technology. New York: Pergamon Press, ISBN Dies, J.; Albajar, F.; Fontanet, J. Simulator of nuclear fusion reactor,tipus tokamak, for educational proposals. Barcelona: UPC. Imatge, Dies, J. Slides of Nuclear Fusion: ITER. Barcelona: UPC. Imatge, Complementary: Hutchinson, I. H. Principles of plasma diagnostics. 2nd ed. Cambridge: Cambridge University Press, ISBN Wakatani, Masahiro. Stellarator and Heliotron Devices. Oxford: Oxford University Press, ISBN Adam, M.M.J. La Fusion thermonucléaire contrôlée par confinement magnétique. Paris: Masson, ISBN Kammash, Terry. Fusion reactor physics : principles and technology. Michigan: Ann Arbor Science, Freidberg, Jeffrey P. Plasma physics and fusion energy. Cambridge: Cambridge University Press, ISBN Others resources: 9 / 9

240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de. European Master in Innovation in Nuclear Energy (EMINE)

240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de. European Master in Innovation in Nuclear Energy (EMINE) Course Name: Code: Fusion Technology 240NU211 Crèdits ECTS: 4.5 Responsible unit: Barcelona Department: 240 ETSEIB Escola Tècnica Superior d Enginyeria Industrial de 721 Physics and Nuclear Engineering

More information

for the French fusion programme

for the French fusion programme The ITER era : the 10 year roadmap for the French fusion programme E. Tsitrone 1 on behalf of IRFM and Tore Supra team 1 : CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France Association EURATOM-CEA TORE

More information

240NU215 - Monte Carlo Simulation of Radiation Transport

240NU215 - Monte Carlo Simulation of Radiation Transport Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 MASTER'S DEGREE IN NUCLEAR ENGINEERING (Syllabus

More information

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective

Chapter 12. Magnetic Fusion Toroidal Machines: Principles, results, perspective Chapter 12 Magnetic Fusion Toroidal Machines: Principles, results, perspective S. Atzeni May 10, 2010; rev.: May 16, 2012 English version: May 17, 2017 1 Magnetic confinement fusion plasmas low density

More information

Neutral beam plasma heating

Neutral beam plasma heating Seminar I b 1 st year, 2 nd cycle program Neutral beam plasma heating Author: Gabrijela Ikovic Advisor: prof.dr. Tomaž Gyergyek Ljubljana, May 2014 Abstract For plasma to be ignited, external heating is

More information

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 4-7, 2017 Tokamak Outline Fusion

More information

Issues for Neutron Calculations for ITER Fusion Reactor

Issues for Neutron Calculations for ITER Fusion Reactor Introduction Issues for Neutron Calculations for ITER Fusion Reactor Erik Nonbøl and Bent Lauritzen Risø DTU, National Laboratory for Sustainable Energy Roskilde, Denmark Outline 1. Fusion development

More information

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East Ghassan Antar Physics Department American University of Beirut http://www.aub.edu.lb/physics/lpfd Outline 1. Introduction and

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory The Path to Fusion Energy creating a star on earth S. Prager Princeton Plasma Physics Laboratory The need for fusion energy is strong and enduring Carbon production (Gton) And the need is time urgent Goal

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future Presented by Rick Lee Chief Operator, DIII-D Operations Manager, Energy/Fusion Outreach Program General Atomics

More information

ASM - Actuators and Sensors for Mechatronics

ASM - Actuators and Sensors for Mechatronics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 295 - EEBE - Barcelona East School of Engineering 709 - EE - Department of Electrical Engineering BACHELOR'S DEGREE IN ELECTRICAL

More information

The Dynomak Reactor System

The Dynomak Reactor System The Dynomak Reactor System An economically viable path to fusion power Derek Sutherland HIT-SI Research Group University of Washington November 7, 2013 Outline What is nuclear fusion? Why do we choose

More information

Development of education and training programs using ISIS research reactor

Development of education and training programs using ISIS research reactor Development of education and training programs using ISIS research reactor F. Foulon 1, B. Lescop 1, X. Wohleber 2 1) National Institute for Nuclear Science and Technology, CEA-Saclay,France 2) Nuclear

More information

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets PFC/JA-91-5 Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets E. A. Chaniotakis L. Bromberg D. R. Cohn April 25, 1991 Plasma Fusion Center Massachusetts Institute of Technology

More information

Atomic physics in fusion development

Atomic physics in fusion development Atomic physics in fusion development The next step in fusion development imposes new requirements on atomic physics research by R.K. Janev In establishing the scientific and technological base of fusion

More information

Magnetic Confinement Fusion-Status and Challenges

Magnetic Confinement Fusion-Status and Challenges Chalmers energy conference 2012 Magnetic Confinement Fusion-Status and Challenges F. Wagner Max-Planck-Institute for Plasma Physics, Greifswald Germany, EURATOM Association RLPAT St. Petersburg Polytechnic

More information

EDM - Electronic Devices Modelling

EDM - Electronic Devices Modelling Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering DEGREE IN

More information

Toward the Realization of Fusion Energy

Toward the Realization of Fusion Energy Toward the Realization of Fusion Energy Nuclear fusion is the energy source of the sun and stars, in which light atomic nuclei fuse together, releasing a large amount of energy. Fusion power can be generated

More information

ERQ - Chemical Reaction Engineering

ERQ - Chemical Reaction Engineering Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2017 BACHELOR'S

More information

NTECH - Nanotechnology

NTECH - Nanotechnology Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 710 - EEL - Department of Electronic Engineering 713 - EQ -

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

240 ETSEIB School of Industrial Engineering of Barcelona

240 ETSEIB School of Industrial Engineering of Barcelona Name of the subject: Reactor Physics and Thermal hydraulics Code: 240NU013 ECTS Credits: 7.5 Unit responsible: 240 ETSEIB School of Industrial Engineering of Barcelona Department: 721, Physics and Nuclear

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

240EQ212 - Fundamentals of Combustion and Fire Dynamics

240EQ212 - Fundamentals of Combustion and Fire Dynamics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering MASTER'S DEGREE IN CHEMICAL ENGINEERING

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

TTC - Thermodynamics and Heat Transfer

TTC - Thermodynamics and Heat Transfer Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 295 - EEBE - Barcelona East School of Engineering 729 - MF - Department of Fluid Mechanics BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING

More information

ALG - Algebra

ALG - Algebra Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 270 - FIB - Barcelona School of Informatics 749 - MAT - Department of Mathematics BACHELOR'S DEGREE IN DATA SCIENCE AND ENGINEERING

More information

QUI - Chemistry

QUI - Chemistry Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering 745 - EAB - Department of Agri-Food Engineering

More information

QAU - Car's Chemistry

QAU - Car's Chemistry Coordinating unit: 330 - EPSEM - Manresa School of Engineering Teaching unit: 750 - EMIT - Department of Mining, Industrial and ICT Engineering Academic year: Degree: 2017 BACHELOR'S DEGREE IN AUTOMOTIVE

More information

ANMODCONQ - Basin Analysis and Modelling

ANMODCONQ - Basin Analysis and Modelling Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 1004 - UB - (ENG)Universitat de Barcelona MASTER'S DEGREE IN GEOLOGICAL

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

EQ021 - Process Control

EQ021 - Process Control Coordinating unit: 295 - EEBE - Barcelona East School of Engineering Teaching unit: 707 - ESAII - Department of Automatic Control Academic year: 2018 Degree: ECTS credits: 6 Teaching languages: English

More information

AQ - Chemical Analysis

AQ - Chemical Analysis Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2018 BACHELOR'S

More information

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L Polywell Fusion J A E YO UNG PA R K E NERGY MAT T E R CONVERSION CORPORATION E NN F USION SYMPOSIUM, A P R I L 20 20 1 8 History of EMC2 1985 Energy Matter Conversion Corporation is a US-incorporated,

More information

QOT - Quantum Optical Technologies

QOT - Quantum Optical Technologies Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

SIMCON - Computer Simulation of Condensed Matter

SIMCON - Computer Simulation of Condensed Matter Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2017 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

RELG - General Relativity

RELG - General Relativity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 230 - ETSETB - Barcelona School of Telecommunications Engineering 749 - MAT - Department of Mathematics 748 - FIS - Department

More information

Computational Engineering

Computational Engineering Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering Academic

More information

TERMOPRONA - Thermodynamics of Natural Processes

TERMOPRONA - Thermodynamics of Natural Processes Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering Teaching unit: 1004 - UB - (ENG)Universitat de Barcelona Academic year: Degree: 2017 BACHELOR'S DEGREE IN GEOLOGICAL ENGINEERING

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Ion energy balance during fast wave heating in TORE SUPRA

Ion energy balance during fast wave heating in TORE SUPRA Ion energy balance during fast wave heating in TORE SUPRA Thierry Hutter, Alain Bécoulet, Jean-Pierre Coulon, Vincent Saoutic, Vincent Basiuk, G.T. Hoang To cite this version: Thierry Hutter, Alain Bécoulet,

More information

TMSB - Mass Transfer in Biological Systems

TMSB - Mass Transfer in Biological Systems Coordinating unit: 390 - ESAB - Barcelona School of Agricultural Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN BIOSYSTEMS ENGINEERING (Syllabus

More information

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy Nuclear Energy in the Future The ITER Project Brad Nelson Chief Engineer, US ITER Presentation for NE-50 Symposium on the Future of Nuclear Energy November 1, 2012 Fusion research is ready for the next

More information

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power Derek Sutherland HIT-SI Research Group University of Washington July 25, 2017 D.A. Sutherland -- EPR 2017, Vancouver,

More information

Nuclear Fusion and ITER

Nuclear Fusion and ITER Nuclear Fusion and ITER C. Alejaldre ITER Deputy Director-General Cursos de Verano UPM Julio 2, 2007 1 ITER the way to fusion power ITER ( the way in Latin) is the essential next step in the development

More information

Nonlinear Systems, Chaos and Control in Engineering

Nonlinear Systems, Chaos and Control in Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 748 - FIS - Department of Physics BACHELOR'S

More information

Neutronic Activation Analysis for ITER Fusion Reactor

Neutronic Activation Analysis for ITER Fusion Reactor Neutronic Activation Analysis for ITER Fusion Reactor Barbara Caiffi 100 Congresso Nazionale SIF 1 Outlook Nuclear Fusion International Thermonuclear Experimental Reactor (ITER) Neutronics Computational

More information

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,

More information

AW - Aviation Weather

AW - Aviation Weather Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 300 - EETAC - Castelldefels School of Telecommunications and Aerospace Engineering 748 - FIS - Department of Physics MASTER'S

More information

ELAS - Elasticity

ELAS - Elasticity Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 295 - EEBE - Barcelona East School of Engineering 737 - RMEE - Department of Strength of Materials and Structural Engineering

More information

PETROL - Petrology

PETROL - Petrology Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering Teaching unit: 1004 - UB - (ENG)Universitat de Barcelona Academic year: Degree: 2017 BACHELOR'S DEGREE IN GEOLOGICAL ENGINEERING

More information

FISES - Statistical Physics

FISES - Statistical Physics Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

CARTGEOL - Geological Mapping

CARTGEOL - Geological Mapping Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering Teaching unit: 1004 - UB - (ENG)Universitat de Barcelona Academic year: Degree: 2017 BACHELOR'S DEGREE IN GEOLOGICAL ENGINEERING

More information

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 2-4, 2002 TOPICS Stellarator Reactor Optimization 0-D Spreadsheet Examples 1-D POPCON Examples 1-D Systems Optimization

More information

JET and Fusion Energy for the Next Millennia

JET and Fusion Energy for the Next Millennia JET and Fusion Energy for the Next Millennia JET Joint Undertaking Abingdon, Oxfordshire OX14 3EA JG99.294/1 Talk Outline What is Nuclear Fusion? How can Fusion help our Energy needs? Progress with Magnetic

More information

EPQB - Chemical and Biotechnological Process Engineering

EPQB - Chemical and Biotechnological Process Engineering Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering Teaching unit: 713 - EQ - Department of Chemical Engineering Academic year: Degree: 2017 BACHELOR'S

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

GEOMENGTER - Geomechanical and Geotechnical Engineering

GEOMENGTER - Geomechanical and Geotechnical Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 250 - ETSECCPB - Barcelona School of Civil Engineering 751 - DECA - Department of Civil and Environmental Engineering MASTER'S

More information

CN - Numerical Computation

CN - Numerical Computation Coordinating unit: 270 - FIB - Barcelona School of Informatics Teaching unit: 749 - MAT - Department of Mathematics Academic year: Degree: 2017 BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010).

More information

VD - Differentiable Manifolds

VD - Differentiable Manifolds Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 200 - FME - School of Mathematics and Statistics 749 - MAT - Department of Mathematics MASTER'S DEGREE IN ADVANCED MATHEMATICS

More information

Helium Catalyzed D-D Fusion in a Levitated Dipole

Helium Catalyzed D-D Fusion in a Levitated Dipole Helium Catalyzed D-D Fusion in a Levitated Dipole Jay Kesner, L. Bromberg, MIT D.T. Garnier, A. Hansen, M.E. Mauel Columbia University APS 2003 DPP Meeting, Albuquerque October 27, 2003 Columbia University

More information

Fusion Principles Jef ONGENA Plasma Physics Laboratory Royal Military Academy Brussels

Fusion Principles Jef ONGENA Plasma Physics Laboratory Royal Military Academy Brussels Fusion Principles Jef ONGENA Plasma Physics Laboratory Royal Military Academy Brussels 4 th SIF-EPS International School on Energy Villa Monastero Varenna, Lago di Como 25 July 2017 Outline Fusion reactions

More information

240EQ031 - Risk and Safety

240EQ031 - Risk and Safety Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering MASTER'S DEGREE IN CHEMICAL ENGINEERING

More information

purposes is highly encouraged.

purposes is highly encouraged. The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma physics education community. We realize

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Basic Thermodynamics

Basic Thermodynamics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 240 - ETSEIB - Barcelona School of Industrial Engineering 748 - FIS - Department of Physics BACHELOR'S DEGREE IN MATERIALS ENGINEERING

More information

FQ - Physical Chemistry

FQ - Physical Chemistry Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering BACHELOR'S DEGREE IN CHEMICAL

More information

FISQ - Quantum Physics

FISQ - Quantum Physics Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

and expectations for the future

and expectations for the future 39 th Annual Meeting of the FPA 2018 First operation of the Wendelstein 7-X stellarator and expectations for the future Hans-Stephan Bosch Max-Planck-Institut für Plasmaphysik Greifswald, Germany on behalf

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering EQ - Department of Chemical Engineering

205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering EQ - Department of Chemical Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 713 - EQ - Department of Chemical Engineering

More information

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION

More information

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.

More information

Design window analysis of LHD-type Heliotron DEMO reactors

Design window analysis of LHD-type Heliotron DEMO reactors Design window analysis of LHD-type Heliotron DEMO reactors Fusion System Research Division, Department of Helical Plasma Research, National Institute for Fusion Science Takuya GOTO, Junichi MIYAZAWA, Teruya

More information

ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS

ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS ISIS TRAINING REACTOR: A REACTOR DEDICATED TO EDUCATION AND TRAINING FOR STUDENTS AND PROFESSIONALS F. FOULON : francois.foulon@cea.fr French Atomic Energy and Alternative Energies Commission CEA FRANCE

More information

On tokamak plasma rotation without the neutral beam torque

On tokamak plasma rotation without the neutral beam torque On tokamak plasma rotation without the neutral beam torque Antti Salmi (VTT) With contributions from T. Tala (VTT), C. Fenzi (CEA) and O. Asunta (Aalto) 2 Motivation: Toroidal rotation Plasma rotation

More information

A Faster Way to Fusion

A Faster Way to Fusion A Faster Way to Fusion 2017 Tokamak Energy Tokamak Energy Ltd Company Overview April 2018 Our Mission To deliver to mankind a cheap, safe, secure and practically limitless source of clean energy fusion

More information

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant Implementation of a long leg X-point target divertor in the ARC fusion pilot plant A.Q. Kuang, N.M. Cao, A.J. Creely, C.A. Dennett, J. Hecla, H. Hoffman, M. Major, J. Ruiz Ruiz, R.A. Tinguely, E.A. Tolman

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

Materials Chemistry

Materials Chemistry Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 713 - EQ - Department of Chemical Engineering

More information

EQDI-F2O43 - Differential Equations

EQDI-F2O43 - Differential Equations Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 340 - EPSEVG - Vilanova i la Geltrú School of Engineering 749 - MAT - Department of Mathematics BACHELOR'S DEGREE IN ELECTRICAL

More information

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén Current density modelling in JET and JT-60U identity plasma experiments Paula Sirén 1/12 1/16 Euratom-TEKES Euratom-Tekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET

More information

Integrated Modelling and Simulation of Toroidal Plasmas

Integrated Modelling and Simulation of Toroidal Plasmas 7th ITER International School on High performance computing in fusion science Aix-Marseille University, Aix-en-Provence, France 2014-08-28 Integrated Modelling and Simulation of Toroidal Plasmas Atsushi

More information

ERQQ - Chemical Reaction Engineering

ERQQ - Chemical Reaction Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering BACHELOR'S DEGREE IN CHEMICAL

More information

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut

Nuclear Fusion Energy Research at AUB Ghassan Antar. Physics Department American University of Beirut Nuclear Fusion Energy Research at AUB Ghassan Antar Physics Department American University of Beirut Laboratory for Plasma and Fluid Dynamics [LPFD) Students: - R. Hajjar [Physics] - L. Moubarak [Physics]

More information

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology

More information

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH

POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH Dedicated to Professor Oliviu Gherman s 80 th Anniversary POWER DENSITY ABSORPTION PROFILE IN TOKAMAK PLASMA WITH ICRH N. POMETESCU Association EURATOM-MECTS Romania, University of Craiova, Faculty of

More information

240EQ232 - Polymer Experimental Methods

240EQ232 - Polymer Experimental Methods Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 713 - EQ - Department of Chemical Engineering MASTER'S DEGREE IN CHEMICAL ENGINEERING

More information

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future

A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) 3 A Technology Review of Electricity Generation from Nuclear Fusion Reaction in Future 1 Joydeep Sarkar, 2 Karishma P. Patil, 3

More information

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS J. F. Lyon, L.P. Ku 2, P. Garabedian, L. El-Guebaly 4, L. Bromberg 5, and the ARIES Team Oak Ridge National Laboratory, Oak Ridge, TN, lyonjf@ornl.gov 2 Princeton

More information

F1FM - Physics I: Fundamentals of Mechanics

F1FM - Physics I: Fundamentals of Mechanics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 748 - FIS - Department of Physics BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING

More information

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus)

Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) Improved Plasma Confinement by Ion Bernstein Waves (IBWs) Interacting with Ions in JET (Joint European Torus) PD/P-01 C. Castaldo 1), R. Cesario 1), Y, Andrew 2), A. Cardinali 1), V. Kiptly 2), M. Mantsinen

More information

Small Spherical Tokamaks and their potential role in development of fusion power

Small Spherical Tokamaks and their potential role in development of fusion power Small Spherical Tokamaks and their potential role in development of fusion power Dr David Kingham, Nuclear Futures, 26 March 2013 Plasma in START tokamak, Courtesy Euratom/CCFE Fusion Association 1 Introduction

More information