Beats by Lilly Lab Report

Size: px
Start display at page:

Download "Beats by Lilly Lab Report"

Transcription

1 Beats by Lilly Lab Report Introduction: Testing: Our Role, Task, and Stakeholders: We as a business group in the field of design seek to make a pendulum swing to any beat in order to create a light that moves to the beat of any song for our client, One Dimension. Constraints and Criteria: Some constraints that we must have include a pendulum that has the ability to swing to a song of any frequency, a ring stand, washers, and string. Some criteria that we would like to have included a visual representation of the steps taken in our lab (such as a PowerPoint), a pendulum that is consistent with more than just the two songs from class, and a simple equation that can be used to figure out the value of the independent variable for a certain dependent variable. During testing, it was important to change numerous variables in order to encounter one that has the largest impact on the speed of the pendulum. Through numerous tests, we noticed that the length of the string for the pendulum had the greatest impact on its speed. First, we altered the number of centimeters back from which we let the pendulum go. Overall, the speed of the pendulum only varied by one-tenth of a second between ten centimeters, demonstrating that this was not a very influential factor; therefore, we moved on to changing the length of the string. At each length, we also pulled the string back to a certain set of distances in order to be able to manipulate the length based on the period of the song. Through our testing, we measured the period of the song: this later referred to the time elapsed between each beat of a specific song. We altered the period based on the number of centimeters back at which we let the pendulum go.

2 Here is a photo of our group with our pendulum created at school. Here is the pendulum testing at work, as I pull the string back to a certain length using a meter stick. I also created a pendulum at home with the same characteristics in order to complete all the necessary data. Data: Table of Testing Results: There are numerous data tables due to the numerous tests done at varying heights with varying lengths to which the string was pulled back to. centimeter pull-back centimeter pull-back 3 centimeter pull-back

3 4 centimeter pull-back 5 centimeter pull-back Graph of Testing Results: There are also numerous graphs due to the numerous tests done with varying heights and pull-back lengths. These graphs have different relationships based on the number of points found during testing. If there are fewer points, there is more room for inaccuracy and linear graphs. There is also no graph for the fifty centimeter height, as two points was not sufficient to create an accurate graph. cm Pull-Back of and its Impact on the y =.63x + 83 R² =.987 Linear ( period) This graph has a root relationship.

4 cm Pull-Back of and its Impact on the y =.44x R² =.9974 Linear (Time per period) This graph has a linear relationship, but seems a bit exponential as the length of the string pulled back increases. 3 cm Pull-Back of and its Impact on the y =.9x R² =.9979 Linear ( period) This graph has a linear relationship, but seems a bit exponential as the length of the string pulled back increases cm Pull-Back of and its Impact on the This graph has an exponential relationship. y =.5x +.97 R² =.9845 Linear ( period)

5 Linearized Graph: This is the table and graph for our linearized graph at a ten centimeter pull-back length, which was used during our performance. Since this was a root function, we kept the y values the same, but altered the x values to (x^). When a graph was created with these values, the graph became linear. Linearized Linearized cm Pull-Back of and its Impact on the 5 y =.86x +.43 R² =.9949 Linear ( period with linearization) Linearized Equation: Our equation is as follows: T =.86 (h^) +.43 for cm pull-back where T = period where h = string Using the data and the linearized equation that comes from it, our group would be able to change the prototype to move to the beat of any song. The beats per minute will provide us with the period, so using the y axis as a guide, we can move to the right to see the height that corresponds with such period. Another simple way is to plug in a value of T into the equation and solve for h. Performance: Our pendulum successfully swung to the beat of both our self-chosen song and clientchosen song for fifteen seconds during our performance. Through the use of the equation derived from our testing, our pendulum and prototype worked extremely well. The pendulum swung to the song All of Me, with 8 beats per minute, on each beat, but for the challenge song, Bye Bye Bye, with 8 beats per minute, the pendulum swung to every other beat, as to not move too quickly when being converted to a light system. Overall, our group executed the performance portion of the lab well.

6 Discussion of Future Changes: Overall, our group did a wonderful job and was able to successfully create a pendulum that can swing to the beat of any song for our clients of One Dimension. We also quickly found an equation that could be used to find the height at which our pendulum must stand for the client's mystery song. The data turned out to be accurate and extremely useful. But, even with the successes that took place towards the end, there were numerous challenges throughout the process. For starters, our initial data collecting was not as useful, which resulted in extra testing at home and over the course of numerous days in class. Also, the equation was hard to interpret with the variables at hand: we were unsure at first where each piece of our data would eventually fall. In the end, though, the difficulties proved to be worthwhile for our successful performance. To continue work with this project, it would seem useful to test the pendulum at reasonable heights for the light, such as in meters. That way, the data collected will be based off of a measurement that is logical for the task at hand. Also, the weight of the light must be put into consideration, as it is much larger than the mass of five washers. One thing that could be changed for the next data collection is using a protractor rather than a ruler to consider angles with the pendulum. That way, there can be more accuracy over the usage of a meter stick in the life-size prototype.

Investigative Science PENDULUM LAB Tuesday November Perry High School Mr. Pomerantz Page 1 of 5

Investigative Science PENDULUM LAB Tuesday November Perry High School Mr. Pomerantz Page 1 of 5 Mr. Pomerantz Page 1 of 5 A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum was the heart of clocks used in astronomical measurements at the Greenwich

More information

SECTION 1: EXPERIMENT AND OBSERVATION

SECTION 1: EXPERIMENT AND OBSERVATION SECTION 1: EXPERIMENT AND OBSERVATION A. ABSTRACT This experiment was to build a homemade pendulum which was used to measure gravity s acceleration while in swinging back and forth while anchored to a

More information

PHYS 2211L Final Examination Laboratory Simple Pendulum.

PHYS 2211L Final Examination Laboratory Simple Pendulum. PHYS 11L Final Examination Laboratory Simple Pendulum Study Assignment: Lesson notes: This laboratory is the final examination for PHYS 11L. You should insure that you thoroughly understand the requirements

More information

Lab 12: Periodic Motion

Lab 12: Periodic Motion Lab 12: Periodic Motion Objectives: To devise an experiment to test variables that might affect the period of a pendulum To carry out an experiment testing variables that might affect the period of a pendulum,

More information

LabQuest 14. Pendulum Periods

LabQuest 14. Pendulum Periods Pendulum Periods LabQuest 14 A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum was the heart of clocks used in astronomical measurements at the

More information

Acceleration Due to Gravity

Acceleration Due to Gravity Acceleration Due to Gravity You are probably familiar with the motion of a pendulum, swinging back and forth about some equilibrium position. A simple pendulum consists of a mass m suspended by a string

More information

SOL Study Book Fifth Grade Scientific Investigation, Reasoning, and Logic

SOL Study Book Fifth Grade Scientific Investigation, Reasoning, and Logic SOL Study Book Fifth Grade Scientific Investigation, Reasoning, and Logic Table of Contents Page 1: Measurement Page 2: Measuring Instruments Page 3: Data Collection, Recording, and Reporting Page 4-5:

More information

INSPIRE GK12 Lesson Plan. DOK 3 - Hypothesize, Investigate, Compare, Draw Conclusions DOK Application

INSPIRE GK12 Lesson Plan. DOK 3 - Hypothesize, Investigate, Compare, Draw Conclusions DOK Application Lesson Title Period of a Pendulum Length of Lesson 2 class periods (100 min) Created By Charles Vaughan Subject General Science Grade Level 8 State Standards 1a, 1c, 1d DOK Level DOK 3 - Hypothesize, Investigate,

More information

Pendulum Activity! Frequency, Length, and Gravity. Materials

Pendulum Activity! Frequency, Length, and Gravity. Materials Pendulum Activity! Frequency, Length, and Gravity A Pendulum is a weight (bob) that swings back and forth. Frequency is how many times something happens in a certain amount of time like how many times

More information

Lab 4: The Simple Pendulum

Lab 4: The Simple Pendulum Page 1 Technical Math II Lab 4: Simple Pendulum Lab 4: The Simple Pendulum Purpose: To investigate the relationship between the length of a simple pendulum and the time it takes to complete a full swing.

More information

Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob.

Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob. Simple Pendulum Many mechanical systems exhibit motion that is periodic. Generally, this is because the system has been displaced from an equilibrium position and is subject to a restoring force. When

More information

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

Name: Regents Physics Lab # 7. Measuring Height Indirectly

Name: Regents Physics Lab # 7. Measuring Height Indirectly Measuring Height Indirectly Purpose: In this activity you will use your mathematics skills to indirectly measure the height of several objects. You will also practice percent error calculations. Materials:

More information

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to

More information

EXPERIMENT MEASUREMENT

EXPERIMENT MEASUREMENT PHYS 1401 General Physics I EXPERIMENT 1 MEASUREMENT and UNITS I. OBJECTIVE The objective of this experiment is to become familiar with the measurement of the basic quantities of mechanics and to become

More information

Pendulum Wave Machine. Abstract. Background. Materials and Methods. By Keaton Scheible

Pendulum Wave Machine. Abstract. Background. Materials and Methods. By Keaton Scheible Pendulum Wave Machine By Keaton Scheible Abstract The objective of this project was to create a fun and exciting demonstration that would fascinate people of all ages and get them interested in the fields

More information

Physics lab Hooke s Law and Pendulums

Physics lab Hooke s Law and Pendulums Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring

More information

Laboratory 3: Acceleration due to gravity

Laboratory 3: Acceleration due to gravity Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity

More information

Harmonic Motion: The Pendulum Lab Advanced Version

Harmonic Motion: The Pendulum Lab Advanced Version Harmonic Motion: The Pendulum Lab Advanced Version In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum.

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

Tic, Toc: Pendulum Motion

Tic, Toc: Pendulum Motion Tic, Toc: Pendulum Motion Activity 25 Pendulum motion has long fascinated people. Galileo studied pendulum motion by watching a swinging chandelier and timing it with his pulse. In 1851 Jean Foucault demonstrated

More information

have tried with your racer that are working well? you would like to make to your car?

have tried with your racer that are working well? you would like to make to your car? 1. What is energy? 2. What are some things you have tried with your racer that are working well? 3. What are some changes you would like to make to your car? Chapter 5 Section 1 Energy is the ability to

More information

Unit 2: Vectors Student Papers

Unit 2: Vectors Student Papers INQUIRY PHYSICS A Modified Learning Cycle Curriculum by Granger Meador Unit 2: Vectors Student Papers inquiryphysics.org 2010 these SAMPLE NOTES, the STUDENT PAPERS, and any PRESENTATIONS for each unit

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

PHY 101L - Experiments in Mechanics

PHY 101L - Experiments in Mechanics PHY 101L - Experiments in Mechanics introduction to error analysis What is Error? In everyday usage, the word error usually refers to a mistake of some kind. However, within the laboratory, error takes

More information

Uncertainty: A Reading Guide and Self-Paced Tutorial

Uncertainty: A Reading Guide and Self-Paced Tutorial Uncertainty: A Reading Guide and Self-Paced Tutorial First, read the description of uncertainty at the Experimental Uncertainty Review link on the Physics 108 web page, up to and including Rule 6, making

More information

The Pendulum. Goals and Introduction

The Pendulum. Goals and Introduction The Pendulum Goals and Introduction In this experiment, we will examine the relationships between the period, frequency and length of a simple pendulum. The oscillation of a pendulum swinging back and

More information

LAB 10 - HARMONIC MOTION AND THE PENDULUM

LAB 10 - HARMONIC MOTION AND THE PENDULUM L10-1 Name Date Partners LAB 10 - HARMONIC MOION AND HE PENDULUM θ L Groove marking the center of mass Photogate s = 0 s F tan mg θ OVERVIEW Figure 1 A body is said to be in a position of stable equilibrium

More information

Experiment 4: Motion in a Plane

Experiment 4: Motion in a Plane Experiment 4: Motion in a Plane Part 1: Projectile Motion. You will verify that a projectile s velocity and acceleration components behave as described in class. A ball bearing rolls off of a ramp, becoming

More information

Back and Forth Motion

Back and Forth Motion Back and Forth Motion LabQuest 2 Lots of objects go back and forth; that is, they move along a line first in one direction, then move back the other way. An oscillating pendulum or a ball tossed vertically

More information

5.1/4.1 Scientific Investigation, Reasoning, and Logic Question/Answer Packet #1

5.1/4.1 Scientific Investigation, Reasoning, and Logic Question/Answer Packet #1 5.1/4.1 Scientific Investigation, Reasoning, and Logic Question/Answer Packet #1 The student will demonstrate an understanding of scientific reasoning, logic, and the nature of science by planning and

More information

Part A Pendulum Worksheet (Period and Energy):

Part A Pendulum Worksheet (Period and Energy): Pendulum Lab Name: 4 th Grade PSI Part A Pendulum Worksheet (Period and Energy): The weight at the end of the rod is called the pendulum bob. Pull one of the bobs back and hold it. What type of energy

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

TERRY G. MCCREA/SMITHSONIAN INSTITUTION

TERRY G. MCCREA/SMITHSONIAN INSTITUTION TERRY G. MCCREA/SMITHSONIAN INSTITUTION PART 1Energy LESSON 1 Circuit of Inquiries A Preassessment 2 Inquiry 1 The Single Pulley 4 Inquiry 2 The Pegboard Lever 4 Inquiry 3 The Hand Warmer 5 Inquiry 4 Constructing

More information

AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2)

AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2) Physics Exemplars AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2) Level 3, 5 credits. The following extracts from

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya Pendulum Explorations ID: 17 By Irina Lyublinskaya Time required 90 minutes Topic: Circular and Simple Harmonic Motion Explore what factors affect the period of pendulum oscillations. Measure the period

More information

Purpose of the experiment

Purpose of the experiment Seasons and Angle of Insolation ENSC 162 Solar Energy Lab Purpose of the experiment Use a Temperature Probe to monitor simulated warming of your city by the sun in the winter. Use a Temperature Probe monitor

More information

EXPERIMENTAL UNCERTAINTY

EXPERIMENTAL UNCERTAINTY 3 EXPERIMENTAL UNCERTAINTY I am no matchmaker, as you well know, said Lady Russell, being much too aware of the uncertainty of all human events and calculations. --- Persuasion 3.1 UNCERTAINTY AS A 95%

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

Pendulums. P3 3.6 Lesson guide. Resources available. Specification. Keywords. Points to note. Lesson objectives

Pendulums. P3 3.6 Lesson guide. Resources available. Specification. Keywords. Points to note. Lesson objectives P3 3.6 Lesson guide Pendulums This lesson explains the relationship between the time period and frequency of a pendulum, and looks at the factors that affect the period of a pendulum. Resources available

More information

Physics 202 Homework 7

Physics 202 Homework 7 Physics 202 Homework 7 May 15, 2013 1. On a cello, the string with the largest linear density (0.0156 kg/m) is the C 171 newtons string. This string produces a fundamental frequency of 65.4 Hz and has

More information

Name: Section #: Date: The Pendulum

Name: Section #: Date: The Pendulum ASU University Physics Labs - Mechanics Lab 9 p. 1 Name: Section #: Date: Part 1 The Pendulum For Part 1 of the experiment, make a sketch of the graph you think will be produced by the simple pendulum

More information

Student Sheet: Self-Assessment

Student Sheet: Self-Assessment Student s Name Date Class Student Sheet: Self-Assessment Directions: Use the space provided to prepare a KWL chart. In the first column, write things you already know about energy, forces, and motion.

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

Integrated Science Force Test

Integrated Science Force Test Integrated Science Force Test Name: Answer Key For multiple-choice, please circle the correct letter. For short answer, be sure to use complete sentences and lots of details. To get full credit, you must

More information

Centripetal Force Exploring Uniform Circular Motion

Centripetal Force Exploring Uniform Circular Motion 1 Exploring Uniform Circular Motion An object that moves in a circle at constant speed, v, is said to experience uniform circular motion (UCM). The magnitude of the velocity remains constant, but the direction

More information

The children have already done several experiments with gravity from Functional

The children have already done several experiments with gravity from Functional 1. Purpose of Experiments with Gravity The children have already done several experiments with gravity from Functional Geography and learned about its importance in the formation of the universe. This

More information

Simple Harmonic Motion

Simple Harmonic Motion 1. Object Simple Harmonic Motion To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2. Apparatus Assorted weights

More information

Optimal Cone. 1 Grade Levels and Time. 2 Objectives and Topics. 3 Introduction. 4 Procedure and Discussion. Grades:11-12

Optimal Cone. 1 Grade Levels and Time. 2 Objectives and Topics. 3 Introduction. 4 Procedure and Discussion. Grades:11-12 1 Grade Levels and Time Optimal Cone Grades:11-12 Time: This lesson will take two 50-minute class periods. 2 Objectives and Topics Objectives: Topics: The students should be able to formulate the volume

More information

MEASUREMENT: From the Lab to the Moon

MEASUREMENT: From the Lab to the Moon GSCI 1020 - Physical Science Laboratory Experiment #1 Name Partners Date Section MEASUREMENT: From the Lab to the Moon Equipment: Meter stick, ruler, calipers, vernier calipers, steel rod, ball, wood block,

More information

1 Measurement Uncertainties

1 Measurement Uncertainties 1 Measurement Uncertainties (Adapted stolen, really from work by Amin Jaziri) 1.1 Introduction No measurement can be perfectly certain. No measuring device is infinitely sensitive or infinitely precise.

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Figure 1 ELL strategies in the science classroom (Carr, Sexton, and Lagunoff 2002) Paired/cooperative groups

Figure 1 ELL strategies in the science classroom (Carr, Sexton, and Lagunoff 2002) Paired/cooperative groups Figure 1 ELL strategies in the science classroom (Carr, Sexton, and Lagunoff 2002) ELL strategy Paired/cooperative groups Background/prior knowledge Sample procedures Pair by same language: same level

More information

Seasons and Angle of Insolation

Seasons and Angle of Insolation Computer Seasons and Angle of Insolation 29 (Adapted from Exp 29 Seasons and Angle of Insolation from the Earth Science with Vernier lab manual.) Have you ever wondered why temperatures are cooler in the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum) 1980M2. A block of mass m slides at velocity v o across a horizontal frictionless surface toward a large curved movable ramp

More information

Introduction to Special Relativity

Introduction to Special Relativity 1 Introduction to Special Relativity PHYS 1301 F99 Prof. T.E. Coan version: 20 Oct 98 Introduction This lab introduces you to special relativity and, hopefully, gives you some intuitive understanding of

More information

Measurement of Mass, Length, and Time

Measurement of Mass, Length, and Time Measurement of Mass, Length, and Time INTRODUCTION In an experiment 1 we define and determine the relationship between physical characteristics of nature that have been observed. Measurement of those physical

More information

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R

Name: Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use. 2, and. v R Centripetal Force Lab Objective: Does F = ma work for circular motion? Seriously, does it work in real-life??? We will use F ma, C C Name: HONOS v a C, and v to find out in this lab. Partners: Equipment:

More information

Science Notebook Motion, Force, and Models

Science Notebook Motion, Force, and Models 5 th Science Notebook Motion, Force, and Models Investigation 1: Motion and Variables Name: Big Question: How does investigating a pendulum help you understand how scientists use math to do their work?

More information

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101

Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 NAME DATE Lab 5: Rotational motion at the playground Essentials of Physics: PHYS 101 Important note: this lab meets at the playground located at the SW corner of 23 rd and University streets, about 7 blocks

More information

Session 12 Lab Based Questions

Session 12 Lab Based Questions Session 12 Lab Based Questions Free Response: 1. You are conducting an experiment to measure the acceleration due to gravity g u at an unknown location. In the measurement apparatus, a simple pendulum

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Since the first caveman threw a rock at a sarer- toothed tiger, we ve been intrigued by the study of motion. In our quest to understand nature, we ve looked for simple, fundamental laws

More information

FORCES & MOTION STUDY GUIDE. 1. What does it mean when forces are balanced on an object? (Exploration F)

FORCES & MOTION STUDY GUIDE. 1. What does it mean when forces are balanced on an object? (Exploration F) FORCES & MOTION STUDY GUIDE 1. What does it mean when forces are balanced on an object? (Exploration F) 2. How do unbalanced forces affect the motion of an object? (Exploration G and Idea Questions) 3.

More information

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force.

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force. Circular Motion I. Centripetal Impulse The centripetal impulse was Sir Isaac Newton s favorite force. The Polygon Approximation. Newton made a business of analyzing the motion of bodies in circular orbits,

More information

Physics Lab 1 - Measurements

Physics Lab 1 - Measurements Phsics 203 - Lab 1 - Measurements Introduction An phsical science requires measurement. This lab will involve making several measurements of the fundamental units of length, mass, and time. There is no

More information

Motion in Two Dimensions Teacher s Guide

Motion in Two Dimensions Teacher s Guide Motion in Two Dimensions Teacher s Guide Objectives: 1. Use kinematic equations for motion in two dimensions to determine the range of a projectile.. Use the equation for torque to determine at what point

More information

Simple Harmonic Motion *

Simple Harmonic Motion * OpenStax-CNX module: m54154 1 Simple Harmonic Motion * OpenStax HS Physics This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 : By the end of this section,

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

Unit 3, Lesson 3: Exploring Circumference

Unit 3, Lesson 3: Exploring Circumference Unit 3, Lesson 3: Exploring Circumference Lesson Goals Understand diameter and circumference of a circle. as the constant of proportionality in the relationship between the Recognize that the relationship

More information

MATH EVALUATION. What will you learn in this Lab?

MATH EVALUATION. What will you learn in this Lab? MATH EVALUATION What will you learn in this Lab? This exercise is designed to assess whether you have been exposed to the mathematical methods and skills necessary to complete the lab exercises you will

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion.

1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion. Name period date assigned date due date returned? 1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion. - - -

More information

Homework due Nov 28 Physics

Homework due Nov 28 Physics Homework due Nov 28 Physics Name Base your answers to questions 1 through 4 on the information and vector diagram below and on your knowledge of physics. A hiker starts at point P and walks 2.0 kilometers

More information

SECTION NUMBER: LAB PARTNERS: VECTORS (FORCE TABLE) LAB II

SECTION NUMBER: LAB PARTNERS: VECTORS (FORCE TABLE) LAB II Physics 8/18 NAME: TA: LAB PARTNERS: SECTION NUMBER: VECTORS (FORCE TABLE) LAB II Introduction In the Vectors I lab last week we used force tables to introduce the concept of vectors and how they are used

More information

Equilibruim of a particle

Equilibruim of a particle Equilibruim of a particle 1 Purpose To investigate the validity of Newton s 1st Law. 2 Theory An inertial coordinate system is one that is not accelerating or rotating with respect to the fixed stars,

More information

Lab 1 Electrostatics 1

Lab 1 Electrostatics 1 Lab 1 Electrostatics 1 Apparatus: Scotch tape, fake fur, plastic rod, wood dowel, ring stand and clamp, foil rods on string, copper sphere or brass mass on insulating stand, brass mass You have all heard

More information

Determining the Factors that Affect Friction Using a Force Sensor

Determining the Factors that Affect Friction Using a Force Sensor Determining the Factors that Affect Friction Using a Force Sensor Yadesh Prashad, Mai Wageh, Saad Saleem, Timothy Yang, ThAnoja Gnanatheevam December 29 th, 2011 Abstract A force sensor is attached to

More information

Orbital Paths. the Solar System

Orbital Paths. the Solar System Purpose To compare the lengths of the terrestrial planets orbital paths and revolution times. Process Skills Measure, form a hypothesis, predict, observe, collect data, interpret data, communicate, draw

More information

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005 Final Project Physics 590 Mary-Kate McGlinchey MISEP Summer 2005 Lesson Objectives: Students will be able to Identify the relationship between motion and a reference point. Identify the two factors that

More information

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate) PASCO scientific Physics Lab Manual: P30-1 Experiment P30: (Force Sensor, Photogate) Concept Time SW Interface Macintosh File Windows File centripetal force 30 m 500 or 700 P30 Centripetal Force P30_CENT.SWS

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Parametric Resonance and Elastic Pendulums

Parametric Resonance and Elastic Pendulums Parametric Resonance and Elastic Pendulums Ravitej Uppu Abstract In this I try to extend the theoretical conception of Elastic Pendulum that can be explained by the Driven Pendulums that I presented during

More information

Experimenting with Forces

Experimenting with Forces A mother hears a loud crash in the living room. She walks into the room to see her seven-year-old son looking at a broken vase on the floor. How did that happen? she asks. I don t know. The vase just fell

More information

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating. 9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called

More information

Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test

Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test Physics Lesson 1 to Prepare for UIL Physics Portion of Science Test Lesson Plan Title: Free-Body Diagram Lesson Plan Physics EOC (End of Course) objective 2D The student demonstrates an understanding of

More information

Physics and Physical Measurement. Topic 1.2 The Realm of Physics Range of magnitudes of quantities in our universe

Physics and Physical Measurement. Topic 1.2 The Realm of Physics Range of magnitudes of quantities in our universe Physics and Physical Measurement Topic 1.2 The Realm of Physics Range of magnitudes of quantities in our universe Range of Magnitudes Scientists are more concerned with the order of magnitude rather than

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity UNIT 7 Student Reader E3 Student Reader v. 9 Unit 7 Page 1 2016 KnowAtom TM Front Cover: The front cover shows a photograph of a girl with her hair standing straight up. This

More information

PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION. II. APPARATUS Spring, weights, strings, meter stick, photogate and a computer.

PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION. II. APPARATUS Spring, weights, strings, meter stick, photogate and a computer. PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system will be studied.

More information

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition

Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition Errata for the First Printing of Exploring Creation With Physics, 2 nd Edition With the help of students and teachers, we have found a few typos in the first printing of the second edition. STUDENT TEXT

More information

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated)

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) Name: Score: / 50 Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. MAKE SURE CALCULATOR

More information

Newton Car. Rocket Activity

Newton Car. Rocket Activity Rocket Activity Newton Car Objective To investigate the relationship between mass, acceleration, and force as described in Newton s second law of motion. National Science Content Standards: Unifying Concepts

More information

Unit 4: Day 13: Sinusoidal Swing

Unit 4: Day 13: Sinusoidal Swing Unit 4: Day 13: Sinusoidal Swing Minds On: 10 Action: 55 Consolidate:10 Total=75 min Learning Goal: Identify periodic and sinusoidal functions, including those that arise from realworld applications involving

More information

PHYS 1401General Physics I Hooke s Law, Simple Harmonic Motion

PHYS 1401General Physics I Hooke s Law, Simple Harmonic Motion Name Date PHYS 1401General Physics I Hooke s Law, Simple Harmonic Motion Equipment Spring Mass Hanger(50g) Mass set Newton Set Meter Stick Ring Stand Rod Clamp 12 Rod Motion Sensor(15cm) Triple Beam Balance

More information

How do the physical aspects of the oscillators affect the Period?

How do the physical aspects of the oscillators affect the Period? LAST NAME FIRST NAME DATE 10.4 The Pendulum & Spring Mass Oscillator Conceptual Questions 10, 11, 12, 13 page 314 Problems 40 page 317 How do the physical aspects of the oscillators affect the Period?

More information