AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2)

Size: px
Start display at page:

Download "AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2)"

Transcription

1 Physics Exemplars AS90774 (Physics 3.1) Carry out a practical physics investigation with guidance, that leads to a mathematical relationship (version 2) Level 3, 5 credits. The following extracts from student work are intended to exemplify the boundaries between Achievement, Merit and Excellence for this achievement standard. While a particular grade would not be awarded on the basis of a single aspect of a student s work, these exemplars are designed to show features typical of work that level. See also: 2008 National Moderator s Report [ National Moderator s Report [ The explanatory notes (EN) of the standard give guidance about typical evidence that contributes to a particular grade. For Achievement, evidence will typically include (EN4): data relevant to the aim based on the manipulation of the independent variable and the consideration of other variable(s) that could affect the results uncertainties in raw data appropriate to the measurement a linear graph, including an error line, based on the data and relevant to the aim a conclusion that links to the aim and is drawn from information calculated from the linear graph. For Merit, evidence will typically include (EN5): accurate data relevant to the aim based on the manipulation of the independent variable over a reasonable range and number of values a description of the control of other variable(s) that could significantly affect the results the use of techniques to improve the accuracy of measurements appropriate uncertainties in raw and plotted data a linear graph with error bars and appropriate error line, based on sufficient data, relevant to the aim a conclusion that is relevant to the aim, based on the data, and is drawn from information calculated from the linear graph, including a processed uncertainty a discussion that evaluates the quality of the results. For Excellence, evidence will typically include, in addition (EN6):

2 uncertainties appropriately calculated in all processed data information from the linear graph is correctly rounded a discussion that shows critical thinking, evaluates and explains the validity of the results, and considers relevant physics theory. Conclusion Achievement: a conclusion that links to the aim and is drawn from information calculated from the linear graph. Merit: a conclusion that is relevant to the aim, based on the data, and is drawn from information calculated from the linear graph, including a processed uncertainty Excellence: information from the linear graph is correctly rounded Student Grade Student Response Moderator Commentary 1 Not Achieved My results clearly show that the greater the mass the longer the period of oscillation The aim is to give a mathematical relationship. This is too general as it does not refer to the nonlinear nature of the relationship. 2 Not Achieved / Achieved The relationship is y = m x 2 If the student shows no indication that they know what y, m and x refer to, this is not adequate. However if elsewhere they have identified y, x, and have calculated a value for m, this would be acceptable. 3 Achieved m = 24 L The relationship given is correct, but without uncertainties. 4 Merit m = 24 (± 3.95) L (± 5.8) The relationship given by the equation is correct but uncertainties are not rounded appropriately, which is required for Excellence. 5 Excellence m = 24 (± 4) L (± 6) Uncertainties are rounded appropriately.

3

4 Linear graph and error line Achievement: a linear graph, including an error line, based on the data and relevant to the aim Merit/Excellence: a linear graph with error bars and appropriate error line, based on sufficient data, relevant to the aim Student Grade Moderator Commentary 6 Not Achieved Students must have applied the appropriate transformation to their raw data, to give a linear graph. This graph of the raw data has a straight line drawn (i.e. a linear relationship implied), but it does not show the expected transformation (T 2 ) so cannot be accepted.

5 7 Achieved For Achieved, an attempted error line is needed, but error bars are not. 8 Merit / Excellence Error bars and error line show the effect data uncertainty has on the gradient. There is no distinction between Merit and Excellence in the graph, so the final grade would depend on other aspects of the report.

6 Discussion Merit: a discussion that evaluates the quality of the results. Excellence: a discussion that shows critical thinking, evaluates and explains the validity of the results, and considers relevant physics theory. Student Grade Student Response Moderator Commentary 9 Achieved The period of oscillation is a T α L B relationship, as the graph drawn with the transformation is a straight line. The range over which the lengths were measured was relatively small which provided only a small range of results. A large range could be used in further experiments. The angle from which the pendulum was released was also inexact, as this had to be estimated. In future experiments a protractor could be used to measure this more accurately. The lengths were hard to measure as the metre ruler was accurate to 1 mm but the string could bend. Also the centre of mass had to be estimated. This could be found accurately, and then used. Air resistance would have an effect on the system, causing it to have a different period. The original equipment changed L, but this would also affect the period, so the method was modified to only change L B. There was human error in the timing, as the distances had to be judged by sight. For Merit, students should have a discussion that evaluates the quality of the results. This discussion does not evaluate the quality of the results beyond general comment on experimental limitations.

7 10 Merit I improved my accuracy in many ways. I timed the period for each mass three times and took the average, and the range helped me make a reasonable uncertainty. By repeating and taking averages I reduced the human timing error. I also times 10 oscillations and divided it by 10 as it would have been hard to time one oscillation, especially with the smaller masses where the period is quite small. If I had timed a single oscillation my uncertainty would be unreasonably high. I controlled variables by making sure they were all the same for each test. I made sure that I pulled the end of the cantilever down 2 cm for each one, so the distance of the oscillations is the same. I also kept the length of the cantilever the same for each test and made sure that when I added masses, they were stacked on top of each other so the weight force acted on the same part of the cantilever for all tests. 11 Merit The relationship between the distance apart of the ropes (D) and the period of oscillation (T) is: T = (0.74 ± 0.04)/D + (0.0 ± 0.3) Discussion evaluates the quality of the results, giving reasons why they are reliable. This comparison of theory and experiment assesses the validity of the results (shows how they fit with expected values), and also considers relevant physics theory. However this is not enough for Excellence. When I substitute values of g = 9.81, r = 1.01, L = 0.4 into the theory equation I get:

8 T = (0.75)/D This fits with my experimental relationship as the value 0.75 is near the middle of my gradient range 0.74 ± 0.04, and the intercept (0) is also in the middle of my intercept range (0 ± 0.3). 12 Excellence This experiment was designed to model a person jumping on a trampoline, but there are some flaws: The ruler is not the same shape as a trampoline, and it is not known whether the ruler will deflect in the same way as a trampoline as it is loaded. However, without a real trampoline, this cannot be tested. On a trampoline the mass (person) bounces on top of the mat, inputting their own energy to the motion. Also the force they exert will change, increasing as they land, and maybe disappearing if they leave the surface. In my experiment the mass was hung passively below the ruler, a so it applied a constant force to the ruler. This would cause the ruler to oscillate with damped SHM, unlike the trampoline, which would not do SHM on account of the irregular force being applied by the person jumping. Critical thinking shown in the comparison of model and reallife situation (ruler c.f. trampoline). A factor is identified, and its effect is described (changing force applied as person bounces, causing non-shm motion).

9 Below are further examples of individual discussion statements. In most which exemplify Excellence level critical thinking, the student identifies some factor which could affect the results and explains the effect which that factor might have had. The overall grade attained would, of course, depend on many other aspects of the report. Student Student Response Moderator Commentary 13 It was extremely hard to get all of the string lengths exactly the same. A possible factor, but no explanation of its effect on the results: Not Excellence. 14 To determine the accuracy of my results and their validity I decided to use my mathematical relationship to interpolate a temperature value for an arbitrary current, and then compare this to a theoretical value 15 The experimental gradient is steeper than the theory predicted. This could be because the theory doesn t take into account friction in the real-life scenario. 16 The bridge wouldn t be uniform along its length like a ruler. That would obscure the results. 17 In the real life situation there were people standing on the swing-bridge. This would affect the position of the centre of mass, moving it towards the end where the people were. 18 I noticed that the wood was made up of several layers. This means its stiffness factor may have varied depending on the degree to which the wood was bent. As it bent, the upper layers would be stretched more, so could become stiffer. Similarly the lower layers would be compressed, changing their stiffness. Evaluating the quality of the results: Merit level, so far. Explanation too vague to be of use: Not Excellence. A possible factor, but no specific effect suggested: Not Excellence. Identifies the factor of people standing on the bridge, and describes it in terms of relevant physics (COM), but does not specify its effect on the results: Not Excellence Possible factors described in some detail, though their actual effect on the results obtained is not stated: A weak Excellence.

10 19 With my graph there is an intercept at T = -0.2 s, implying that the period is negative, which cannot happen. A possible reason for this is the way I timed the pendulum. I judged the end of the 10 oscillations by eye, but if I anticipated the end point too early, my times would be too short, and the periods would be shorter than they should be, causing the negative intercept. 20 The formula would not apply in real life as the suspensions would be steel cables, not cotton thread. Because the steel cable has more mass, it would have greater rotational inertia about the axis. This would make the bridge more reluctant to move, making its period longer. 21 The horizontal length of the ruler varied when it sagged. This sagging meant that the mass was significantly closer to the bench than if the ruler remained horizontal. At larger masses (greater sags), the effective length would therefore be smaller, so the period would be smaller than expected. 22 The mass of the rod itself was not taken into account. This resulted in the intercept being far from zero. When the square root of the mass was found the effect of the non-zero mass of the rod would be more significant for smaller masses. 23 According to the formula the period for no mass should be zero. If my line passed through Attempts to give a reason for the negative intercept. A weak Excellence at best. (It is unlikely, where the time for ten swings has been measured, that the period would be out by 0.2 s.) Identifies an aspect of physics, that heavier cables mean greater inertia, and how this might affect the period: Excellence. Explains why the applied mass will affect the period differently from expectation: Excellence. Explains why the rod s mass will affect the gradient of the graph: Excellence. Uses physics theory to evaluate student s results, and account for differences between actual and expected results:

11 that point (0, 0), the gradient would be steeper, so the stiffness factor would be lower and closer to the theoretical value. 24 For one of the masses (0.075 kg) the times were all the same so there was no range of data to estimate uncertainty from. There must be some uncertainty, given human reaction time, so a nominal uncertainty of 0.05 s was assigned to it. 25 The range of masses used is nowhere near the mass of the object it is designed to model. Even though my data fits the graph well, I cannot be sure that the trend would continue like this for the much larger real-life mass, so the conclusion might not apply in reality. 26 As the mass swung back and forth it also spun. The spinning caused the string to untwist, increasing the length of L. The increased length would cause the time period to be greater, increasing the value of the intercept. Excellence. Evaluates and explains the validity of the results: Excellence. Evaluates and explains the validity of the results: Excellence. A factor identified, and its effect described: Excellence.

Exemplar for Internal Achievement Standard. Physics Level 3 version 2

Exemplar for Internal Achievement Standard. Physics Level 3 version 2 Exemplar for Internal Achievement Standard Physics Level 3 version 2 This exemplar supports assessment against: Achievement Standard 91521 Carry out a practical investigation to test a physics theory relating

More information

Exemplar for Internal Achievement Standard. Physics Level 1

Exemplar for Internal Achievement Standard. Physics Level 1 Exemplar for internal assessment resource Physics for Achievement Standard 90935 Exemplar for Internal Achievement Standard Physics Level 1 This exemplar supports assessment against: Achievement Standard

More information

Lab 12: Periodic Motion

Lab 12: Periodic Motion Lab 12: Periodic Motion Objectives: To devise an experiment to test variables that might affect the period of a pendulum To carry out an experiment testing variables that might affect the period of a pendulum,

More information

Achievement Standard (Physics 2.1)

Achievement Standard (Physics 2.1) Achievement Standard 91168 (Physics 2.1) Guidelines What follows is an interpretation of the standard. It has not been approved by the NZQA. Aim Aim The aim of the experiment will be to find the relationship

More information

THIS IS A NEW SPECIFICATION MODIFIED LANGUAGE

THIS IS A NEW SPECIFICATION MODIFIED LANGUAGE THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE PHYSICS A Mechanics G481 * OCE / 24236* Candidates answer on the Question Paper OCR Supplied Materials: Data, Formulae and Relationships Booklet Other

More information

PIRATE SHIP EXAMPLE REPORT WRITE UP

PIRATE SHIP EXAMPLE REPORT WRITE UP PIRATE SHIP EXAMPE REPORT WRITE UP Title Aim period Pirate Ship investiation To find the relationship between the lenth of a pendulum and its Independent variable the lenth of the pendulum. I will use

More information

AS Physics Past Paper Questions

AS Physics Past Paper Questions AS Physics Past Paper Questions You may find the following useful for the uncertainty parts: Absolute Uncertainty If you only have one reading, or all repeat readings are the same, the absolute uncertainty

More information

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1 A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure shows the spring before and after the weight is added. Figure (a) Which distance gives the extension

More information

Figure 1. Before starting the investigation the student wrote the following prediction:

Figure 1. Before starting the investigation the student wrote the following prediction: Q1.A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1 shows the spring before and after the weight is added. Figure 1 (a) Measure the extension of the

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS SIMPLE HARMONIC MOTION (2016;3) A toy bumble bee hangs on a spring suspended from the ceiling in the laboratory. Tom pulls the bumble bee down 10.0 cm below

More information

Episode 304: Simple pendulum

Episode 304: Simple pendulum Episode 304: Simple pendulum This episode reinforces many of the fundamental ideas about SHM. Note a complication: a simple pendulum shows SHM only for small amplitude oscillations. Summary Student experiment:

More information

1. Anil sits on a mat at the top of a helter-skelter and then slides down a chute around the outside.

1. Anil sits on a mat at the top of a helter-skelter and then slides down a chute around the outside. 1. Anil sits on a mat at the top of a helter-skelter and then slides down a chute around the outside. (a) (i) Name two of the forces acting on Anil as he slides from point A to point B. 1. 2 marks 2. (ii)

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Lab 10: Ballistic Pendulum

Lab 10: Ballistic Pendulum Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Lab 10: Ballistic Pendulum Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information

A Physical Pendulum 2

A Physical Pendulum 2 A Physical Pendulum 2 Ian Jacobs, Physics Advisor, KVIS, Rayong, Thailand Introduction A physical pendulum rotates back and forth about a fixed axis and may be of any shape. All pendulums are driven by

More information

Fall 2009 Sample Problems Exam 2

Fall 2009 Sample Problems Exam 2 Sample Problems Exam 2 1. (24 points) In the table below is shown three physical situations in which two objects move and interact. The assumptions you are to make about the objects and the system are

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION. II. APPARATUS Spring, weights, strings, meter stick, photogate and a computer.

PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION. II. APPARATUS Spring, weights, strings, meter stick, photogate and a computer. PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system will be studied.

More information

Measuring Simple Harmonic Motion

Measuring Simple Harmonic Motion SECTION 2 Plan and Prepare Preview Vocabulary Scientific Meanings Explain that everyday words have more specialized meanings in science. Ask students the meaning of frequency. They are likely to use the

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum Core practical 9 Teacher sheet Core practical 9: Objective To determine the momentum change of a trolley when a force acts on it, as a function of time Safety There are trolleys and masses in motion so

More information

Physics lab Hooke s Law and Pendulums

Physics lab Hooke s Law and Pendulums Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring

More information

A-level PHYSICS (7408/3A)

A-level PHYSICS (7408/3A) SPECIMEN MATERIAL A-level PHYSICS (7408/3A) Paper 3 Section A Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Forces. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is a force? How are forces measured? What do forces do?

Forces. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is a force? How are forces measured? What do forces do? F O R C E S P A G E 1 L E A R N I N G O U T C O M E S Forces What is a force? Y E A R 9, C H A P T E R 2 G J Z A H R A B. E D ( H O N S ) How are forces measured? What do forces do? Why do we need to think

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include

More information

COMPONENT 2 ELECTRICITY AND THE UNIVERSE MARK SCHEME GENERAL INSTRUCTIONS

COMPONENT 2 ELECTRICITY AND THE UNIVERSE MARK SCHEME GENERAL INSTRUCTIONS A LEVEL PHYSICS Specimen Assessment Materials 00 COMPONENT ELECTRICITY AND THE UNIVERSE MARK SCHEME GENERAL INSTRUCTIONS The mark scheme should be applied precisely and no departure made from it. Recording

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

More information

Length & Time Question Paper 2

Length & Time Question Paper 2 Length & Time Question Paper 2 Level IGCSE Subject Physics Exam Board CIE Topic General Physics Sub-Topic Length & Time Paper Type Alternative to Practical Booklet Question Paper 2 Time Allowed: 60 minutes

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics.

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. 1 (a) The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. tensile stress tensile strain (b) A long wire is suspended vertically

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES 83 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES OVERVIEW And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly

More information

Equilibrium Notes 1 Translational Equilibrium

Equilibrium Notes 1 Translational Equilibrium Equilibrium Notes 1 Translational Equilibrium Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ex. Ok that was easy, now that same 20.0 kg object is lifted at a

More information

Chapter 11 Vibrations and Waves

Chapter 11 Vibrations and Waves Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system

More information

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Simple Harmonic Motion Practice Problems PSI AP Physics 1 Simple Harmonic Motion Practice Problems PSI AP Physics 1 Name Multiple Choice Questions 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the

More information

Cambridge International AS and A Level Physics. Paper 5 Planning, Analysis and Evaluation

Cambridge International AS and A Level Physics. Paper 5 Planning, Analysis and Evaluation Cambridge International AS and A Level Physics 9702 Paper 5 Planning, Analysis and Evaluation In order to help us develop the highest quality Curriculum Support resources, we are undertaking a continuous

More information

Assessment Schedule 2011 Mathematics and Statistics: Investigate relationships between tables, equations and graphs (91028)

Assessment Schedule 2011 Mathematics and Statistics: Investigate relationships between tables, equations and graphs (91028) NCEA Level 1 Mathematics and Statistics (928) 2011 page 1 of 7 Assessment Schedule 2011 Mathematics and Statistics: graphs (928) Evidence Statement Question Expected Coverage (u) between tables, graphs.

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 Force is a vector quantity. (a) State which two of the following are also vector quantities. acceleration, distance, mass, speed, velocity... [1] (b) When two forces of 5 N are

More information

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating.

9.1 Harmonic Motion. Motion in cycles. linear motion - motion that goes from one place to another without repeating. 9.1 Harmonic Motion A bicyclist pedaling past you on the street moves in linear motion. Linear motion gets us from one place to another (Figure 9.1A). This chapter is about another kind of motion called

More information

Question 13.1a Harmonic Motion I

Question 13.1a Harmonic Motion I Question 13.1a Harmonic Motion I A mass on a spring in SHM has a) 0 amplitude A and period T. What b) A/2 is the total distance traveled by c) A the mass after a time interval T? d) 2A e) 4A Question 13.1a

More information

In your answer, you should use appropriate technical terms, spelled correctly [1]

In your answer, you should use appropriate technical terms, spelled correctly [1] 1 (a) Define moment of a force. In your answer, you should use appropriate technical terms, spelled correctly.... [1] (b) State the two conditions that apply when an object is in equilibrium. 1.... 2....

More information

PHYSICS 0625/6 PAPER 6 Alternative to Practical MAY/JUNE SESSION 2000

PHYSICS 0625/6 PAPER 6 Alternative to Practical MAY/JUNE SESSION 2000 Centre Number Candidate Number Candidate Name International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE PHYSICS 0625/6 PAPER 6 Alternative to Practical

More information

Experimental Design and Graphical Analysis of Data

Experimental Design and Graphical Analysis of Data Experimental Design and Graphical Analysis of Data A. Designing a controlled experiment When scientists set up experiments they often attempt to determine how a given variable affects another variable.

More information

Level 3 Calculus, 2018

Level 3 Calculus, 2018 91578 915780 3SUPERVISOR S Level 3 Calculus, 2018 91578 Apply differentiation methods in solving problems 9.30 a.m. Tuesday 13 November 2018 Credits: Six Achievement Achievement with Merit Achievement

More information

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Using FIREFOX only, go to http://www.colorado.edu/physics/phet (or Google phet ) Click on Simulations, then Masses and Springs

More information

Back and Forth Motion

Back and Forth Motion Back and Forth Motion LabQuest 2 Lots of objects go back and forth; that is, they move along a line first in one direction, then move back the other way. An oscillating pendulum or a ball tossed vertically

More information

Physics: Uncertainties - Student Material (AH) 1

Physics: Uncertainties - Student Material (AH) 1 UNCERTAINTIES Summary of the Basic Theory associated with Uncertainty It is important to realise that whenever a physical quantity is being measured there will always be a degree of inaccuracy associated

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

Summer AP Assignment 2016

Summer AP Assignment 2016 Summer AP Assignment 2016 Mr. Michael Wichart (Rm. 109) wichart.m@woodstown.org Summer Assignment Goals The main goal of this assignment is to review some of the material that was taught during Honors

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2015

AAPT UNITED STATES PHYSICS TEAM AIP 2015 215 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 215 215 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 1 N/kg throughout this contest.

More information

EXPERIMENTAL PROJECT Rigid Pendulum Experiment

EXPERIMENTAL PROJECT Rigid Pendulum Experiment EXPERIMENTAL PROJECT 2012-2013 Rigid Pendulum Experiment INTRODUCTION The simple pendulum is familiar idea to many students as they will have seen a small mass swinging from side to side at the end of

More information

QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are

QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are APPY1 Review QuickCheck 1.5 An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are A. 50 cm and 50 cm B. 30 cm and 50 cm C. 50 cm and 30 cm D. 50 cm

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

Apex Grammar School O & A Level Evening Classes. Physics EVALUATION TEST PAPER. REAL EXAMINATION QUESTIONS for Secondary 4

Apex Grammar School O & A Level Evening Classes. Physics EVALUATION TEST PAPER. REAL EXAMINATION QUESTIONS for Secondary 4 Apex Grammar School O & A Level Evening Classes O Level Power Revision Series EVALUATION TEST PAPER REAL EXAMINATION QUESTIONS for Secondary 4 Name: Time Start: Date: Time End: Total Marks : / 40 40 questions

More information

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c

Now we are going to use our free body analysis to look at Beam Bending (W3L1) Problems 17, F2002Q1, F2003Q1c Now we are going to use our free body analysis to look at Beam Bending (WL1) Problems 17, F00Q1, F00Q1c One of the most useful applications of the free body analysis method is to be able to derive equations

More information

LAB 10: HARMONIC MOTION AND THE PENDULUM

LAB 10: HARMONIC MOTION AND THE PENDULUM 163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be

More information

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016 AP Physics Unit Six Oscillations and Waves 1 2 A. Dynamics of SHM 1. Force a. since the block is accelerating, there must be a force acting on it b. Hooke's Law F = kx F = force k = spring constant x =

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level PHYSICS 9702/3 Paper 3 Advanced Practical Skills MARK SCHEME Maximum Mark: 40 Published This

More information

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag?

1. a) A flag waving in the breeze flaps once each s. What is the period and frequency of the flapping flag? PHYSICS 20N UNIT 4 REVIEW NAME: Be sure to show explicit formulas and substitutions for all calculational questions, where appropriate. Round final answers correctly; give correct units. Be sure to show

More information

Assessment Schedule 2013 Physics: Demonstrate understanding of mechanical systems (91524)

Assessment Schedule 2013 Physics: Demonstrate understanding of mechanical systems (91524) NCEA Level 3 Physics (91524) 2013 page 1 of 11 Assessment Schedule 2013 Physics: Demonstrate understanding of mechanical systems (91524) Evidence Statement Achievement Achievement with Merit Achievement

More information

Lab 5. Simple Pendulum

Lab 5. Simple Pendulum Lab 5. Simple Pendulum Goals To design and perform experiments that show what factors, or parameters, affect the time required for one oscillation of a compact mass attached to a light string (a simple

More information

Calculate the force F needed to produce a horizontal component of 300 N on the sledge (1)

Calculate the force F needed to produce a horizontal component of 300 N on the sledge (1) 1. A heavy sledge is pulled across snowfields. The diagram shows the direction of the force F exerted on the sledge. Once the sledge is moving, the average horizontal force needed to keep it moving at

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Supplemental Activity: Vectors and Forces

Supplemental Activity: Vectors and Forces Supplemental Activity: Vectors and Forces Objective: To use a force table to test equilibrium conditions. Required Equipment: Force Table, Pasco Mass and Hanger Set, String, Ruler, Polar Graph Paper, Protractor,

More information

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level PHYSICS 9702/35 Paper 3 Advanced Practical Skills 207 MARK SCHEME Maximum Mark: 40 Published

More information

40 N 40 N. Direction of travel

40 N 40 N. Direction of travel 1 Two ropes are attached to a box. Each rope is pulled with a force of 40 N at an angle of 35 to the direction of travel. 40 N 35 35 40 N irection of travel The work done, in joules, is found using 2 Which

More information

Unit 4: Day 13: Sinusoidal Swing

Unit 4: Day 13: Sinusoidal Swing Unit 4: Day 13: Sinusoidal Swing Minds On: 10 Action: 55 Consolidate:10 Total=75 min Learning Goal: Identify periodic and sinusoidal functions, including those that arise from realworld applications involving

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed. Speed in m / s Thinking

More information

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems. Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by

More information

Physics Assessment Unit AS 3

Physics Assessment Unit AS 3 New Specification Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2009 Physics Assessment Unit AS 3 assessing Practical Techniques (Internal Assessment) Session

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK 3 Energy Mechanical work, energy and power: work - energy relationship,

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Practice exam-style paper

Practice exam-style paper Practice exam-style paper Paper 6 Alternative to Practical Write your answers on the question paper. The number of marks is given in brackets [ ] at the end of each question or part question. 1 A student

More information

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

Contents. Concept Map

Contents. Concept Map Contents 1. General Notes on Forces 2. Effects of Forces on Motion 3. Effects of Forces on Shape 4. The Turning Effect of Forces 5. The Centre of Gravity and Stability Concept Map April 2000 Forces - 1

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009 Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an

More information

Name: P8 Questions. Class: Date: 145 minutes. Time: 145 marks. Marks: Comments:

Name: P8 Questions. Class: Date: 145 minutes. Time: 145 marks. Marks: Comments: P8 Questions Name: Class: Date: Time: 45 minutes Marks: 45 marks Comments: Q. When two objects interact, they exert forces on each other. Which statement about the forces is correct? Tick ( ) one box.

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

a) period will increase b) period will not change c) period will decrease

a) period will increase b) period will not change c) period will decrease Physics 101 Tuesday 11/3/11 Class 21" Chapter 13.4 13.7" Period of a mass on a spring" Energy conservation in oscillations" Pendulum" Damped oscillations" " A glider with a spring attached to each end

More information

Investigating a pendulum

Investigating a pendulum P3 3.6 Student practical sheet Investigating a pendulum The period of a pendulum is the time it takes to complete one swing. Different pendulums have different periods, so what determines the period of

More information

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider

More information

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations.

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. The Pendulum Introduction: The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. Equipment: Simple pendulum made from string

More information

The children have already done several experiments with gravity from Functional

The children have already done several experiments with gravity from Functional 1. Purpose of Experiments with Gravity The children have already done several experiments with gravity from Functional Geography and learned about its importance in the formation of the universe. This

More information

Laboratory 3: Acceleration due to gravity

Laboratory 3: Acceleration due to gravity Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 2.1 & 2.2 & 2.3 & 2.4 - Matters and Forces Mass and Weight You need to know what mass and weight are. Mass is the measure of amount of matter in

More information