Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob.


 Felix Moody
 2 years ago
 Views:
Transcription
1 Simple Pendulum Many mechanical systems exhibit motion that is periodic. Generally, this is because the system has been displaced from an equilibrium position and is subject to a restoring force. When this restoring force is proportional to the displacement from equilibrium, we say that the motion is simple harmonic (SHM). Theory For the following definitions, reference Figure 1 and Equation 1. m Mass of pendulum bob. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob. θ Displacement from equilibrium  also known as the amplitude. Notice that this displacement occurs on both sides of the equilibrium position. T The period of oscillation of the pendulum (the time for one complete oscillation). From amplitude on one side of equilibrium, over, then back is one oscillation. Figure 1: A Simple Pendulum When we refer to a simple pendulum, it is understood that the mass (bob) that is oscillating is much greater than the mass of the support (string). Provided that the amplitude is kept small (θ < 15 ), the motion of 1
2 the pendulum approximates SHM. The motion is not truly SHM since the restoring force is proportional not to the displacement θ, but to the sine of θ. However, for small amplitudes, it can be shown that the period of the simple pendulum is given by T = 2π where g is the gravitational acceleration. Note that the period of a simple pendulum is dependent only upon its length. L g (1) Apparatus Table clamp, Vertical rod, Pendulum clamp, String, Bobs of varying mass, Protractor, Meter stick, Stopwatch, Balance. Procedure In all procedures you should use a constant (and relatively small; θ < 15 ) initial amplitude to set the pendulum into motion. Make sure that you do not impart a tangential velocity to the bob as you release it  the oscillations should ideally be confined to a vertical plane. Rather than trying to time one oscillation for the experimental period T of the pendulum, time a larger number of oscillations. To determine the period, simply divide this total time by the number of oscillations. Mass and Period 1. Experimentally determine the period of oscillation for bobs of varying mass (everything else remains constant). Place all data in Table 1. Length and Period 1. Experimentally determine the period of oscillation for varying lengths of the pendulum (everything else remains constant). Place this data in Table Graph the Experimental Period Squared vs. the Length. Plot the straight line of best fit over the data points and determine the slope of the line. 2
3 Table 1: Period and Mass Initial amplitude ( ) Pendulum length (m) Number of oscillations timed Mass Total Experimental Time Period (g) (s) (s) 3
4 Table 2: Period and Length Initial amplitude ( ) Bob mass (g) Number of oscillations timed Pendulum Total Experimental Experimental Length Time Period Period Squared (m) (s) (s) (s 2 ) Analysis Mass and Period 1. Calculate the average period as well as the average deviation in the period. What is the deviation expressed as a percentage of the average? 4
5 2. According to your answers in Question 1, what affect did the mass of the bob have on the period of the pendulum? Is this consistent with Equation 1? If so, how? If not, why not? Length and Period 1. What relationship did you test between period and length? Does your graph verify this relationship? Explain why or why not. 2. Use the slope of the line on the graph you plotted to calculate an experimental value of g. Show all work. 5
6 PreLab: Simple Pendulum Name Section Answer the questions at the bottom of this sheet, below the line  continue on the back if you need more room. Any calculations should be shown in full. 1. What is amplitude? 2. What is the period of a pendulum? 3. A simple pendulum has a length L of 55.0cm. What is its theoretical period? 4. You time 20 oscillations of the pendulum in Question 3; the total time is 29.50s. What is the experimental period? 5. According to Equation 1, what type of curve would you expect if you were to plot Period vs. Length? Provide a rough sketch. 6
Lab 12: Periodic Motion
Lab 12: Periodic Motion Objectives: To devise an experiment to test variables that might affect the period of a pendulum To carry out an experiment testing variables that might affect the period of a pendulum,
More informationPHYS 2211L Final Examination Laboratory Simple Pendulum.
PHYS 11L Final Examination Laboratory Simple Pendulum Study Assignment: Lesson notes: This laboratory is the final examination for PHYS 11L. You should insure that you thoroughly understand the requirements
More informationSIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION
SIMPE PENDUUM AND PROPERTIES OF SIMPE HARMONIC MOTION Purpose a. To investigate the dependence of time period of a simple pendulum on the length of the pendulum and the acceleration of gravity. b. To study
More informationChapter 11 Vibrations and Waves
Chapter 11 Vibrations and Waves If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system
More information4 A massspring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?
Slide 1 / 52 1 A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude? A 0 B + or  A C
More informationAcceleration Due to Gravity
Acceleration Due to Gravity You are probably familiar with the motion of a pendulum, swinging back and forth about some equilibrium position. A simple pendulum consists of a mass m suspended by a string
More informationPhysics lab Hooke s Law and Pendulums
Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring
More informationPhysics Mechanics. Lecture 32 Oscillations II
Physics 170  Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object
More informationFor a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is
Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For
More informationIntroduction to Simple Harmonic Motion
Introduction to Prelab Prelab 1: Write the objective of your experiment. Prelab 2: Write the relevant theory of this experiment. Prelab 3: List your apparatus and sketch your setup.! Have these ready to
More informationChapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.
Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring
More informationPhysics 4A Lab: Simple Harmonic Motion
Name: Date: Lab Partner: Physics 4A Lab: Simple Harmonic Motion Objective: To investigate the simple harmonic motion associated with a mass hanging on a spring. To use hook s law and SHM graphs to calculate
More informationSimple Harmonic Motion Practice Problems PSI AP Physics 1
Simple Harmonic Motion Practice Problems PSI AP Physics 1 Name Multiple Choice Questions 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the
More informationOscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Massspring system Energy in SHM Pendulums
PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Massspring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function
More informationOSCILLATIONS ABOUT EQUILIBRIUM
OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring
More informationPhysics 1021 Experiment 1. Introduction to Simple Harmonic Motion
1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic
More informationC. points X and Y only. D. points O, X and Y only. (Total 1 mark)
Grade 11 Physics  Homework 16  Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that
More informationLab 10: Harmonic Motion and the Pendulum
Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,
More informationLAB #8: SIMPLE HARMONIC MOTION
OBJECTIVES: LAB #8: SIPLE HARONIC OTION To study the motion of two systems that closely resembles simple harmonic motion. EQUIPENT: Equipment Needed Qty Equipment Needed Qty Balance 1 Table Clamp w/rod
More informationEpisode 304: Simple pendulum
Episode 304: Simple pendulum This episode reinforces many of the fundamental ideas about SHM. Note a complication: a simple pendulum shows SHM only for small amplitude oscillations. Summary Student experiment:
More informationSimple Harmonic Motion Practice Problems PSI AP Physics B
Simple Harmonic Motion Practice Problems PSI AP Physics B Name Multiple Choice 1. A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located
More informationSimple Harmonic Motion Investigating a Mass Oscillating on a Spring
17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to
More informationSimple Harmonic Motion
1. Object Simple Harmonic Motion To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2. Apparatus Assorted weights
More informationLab 14  Simple Harmonic Motion and Oscillations on an Incline
Lab 14  Simple Harmonic Motion and Oscillations on an Incline Name I. Introduction/Theory Partner s Name The purpose of this lab is to measure the period of oscillation of a spring and mass system on
More informationLab 10  Harmonic Motion and the Pendulum
Lab 10 Harmonic Motion and the Pendulum L101 Name Date Partners Lab 10  Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass
More informationLAB 10  HARMONIC MOTION AND THE PENDULUM
L101 Name Date Partners LAB 10  HARMONIC MOION AND HE PENDULUM θ L Groove marking the center of mass Photogate s = 0 s F tan mg θ OVERVIEW Figure 1 A body is said to be in a position of stable equilibrium
More informationWhat happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F =  k x (1)
Physics 244 Harmonic Motion Introduction In this lab you will observe simple harmonic motion qualitatively in the laboratory and use a program run in Excel to find the mathematical description of the motion
More informationThe Pendulum Approximate Simple Harmonic Motion
Physics Laboratory Manual Loyd LABORATORY 19 The Pendulum Approximate Simple Harmonic Motion OBJECTIVES Investigate the dependence of the period T of a pendulum on the length L and the mass M of the bob.
More informationChapter 14: Periodic motion
Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations
More informationOscillations. Oscillations and Simple Harmonic Motion
Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl
More informationGENERAL SCIENCE LABORATORY 1110L Lab Experiment 4: THE SIMPLE PENDULUM
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 4: THE SIMPLE PENDULUM Objective: To determine the local acceleration of gravity by a different method and to investigate the relationship between the length
More informationSimple Harmonic Motion  MBL
Simple Harmonic Motion  MBL In this experiment you will use a pendulum to investigate different aspects of simple harmonic motion. You will first examine qualitatively the period of a pendulum, as well
More informationTIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya
Pendulum Explorations ID: 17 By Irina Lyublinskaya Time required 90 minutes Topic: Circular and Simple Harmonic Motion Explore what factors affect the period of pendulum oscillations. Measure the period
More informationPhysics 1C. Lecture 12C
Physics 1C Lecture 12C Simple Pendulum The simple pendulum is another example of simple harmonic motion. Making a quick force diagram of the situation, we find:! The tension in the string cancels out with
More informationTo determine the value of g, the acceleration due to gravity, using a pendulum.
Experiment II The Pendulum I. Purpose: To determine the value of g, the acceleration due to gravity, using a pendulum. II. References: (CourseTextbooks) Serway and Jewett, 6 th Edition, Vol. 1, Chapter
More information18Dec12 PHYS Simple Pendulum. To investigate the fundamental physical properties of a simple pendulum.
Objective Simple Pendulum To investigate the fundamental physical properties of a simple pendulum. Equipment Needed Simple Pendulum Apparatus with Meter Scale and Protractor Bobs 4 (Aluminum, Brass, Lead,
More informationCHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS
CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic
More informationPreLab 2  Simple Harmonic Motion: Pendulum (adapted from PASCO PS2826 Manual)
Musical Acoustics Lab, C. Bertulani, 2012 PreLab 2  Simple Harmonic Motion: Pendulum (adapted from PASCO PS2826 Manual) A body is said to be in a position of stable equilibrium if, after displacement
More informationChapter 5 Oscillatory Motion
Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely
More information1 A mass on a spring undergoes SHM. The maximum displacement from the equilibrium is called?
Slide 1 / 20 1 mass on a spring undergoes SHM. The maximum displacement from the equilibrium is called? Period Frequency mplitude Wavelength Speed Slide 2 / 20 2 In a periodic process, the number of cycles
More informationLAB 10: HARMONIC MOTION AND THE PENDULUM
163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be
More informationPHYSICS 1 Simple Harmonic Motion
Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and
More informationMeasurement of Mass, Length, and Time
Measurement of Mass, Length, and Time INTRODUCTION In an experiment 1 we define and determine the relationship between physical characteristics of nature that have been observed. Measurement of those physical
More informationPeriodic Motion. Periodic motion is motion of an object that. regularly repeats
Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems
More informationPHYS 1401General Physics I Hooke s Law, Simple Harmonic Motion
Name Date PHYS 1401General Physics I Hooke s Law, Simple Harmonic Motion Equipment Spring Mass Hanger(50g) Mass set Newton Set Meter Stick Ring Stand Rod Clamp 12 Rod Motion Sensor(15cm) Triple Beam Balance
More informationPhysics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones
Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant
More informationLABORATORY IV OSCILLATIONS
LABORATORY IV OSCILLATIONS You are familiar with many objects that oscillate  a tuning fork, a pendulum, the strings of a guitar, or the beating of a heart. At the microscopic level, you have probably
More informationHarmonic Motion: Exercises
Harmonic Motion: Exercises 1. The following is a list of forces, each of which is the net external force acting on an object with mass number m that is free to move in onedimension only. Assume that s
More informationThe object of this experiment is to study systems undergoing simple harmonic motion.
Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations
More informationEducational Objectives Determine which variable affects the frequency of a simple pendulum.
Physics Workshop Main Topic Subtopic Learning Level Technology Level Activity Type Motion Periodic Motion Middle Low Student Teacher s Notes Description: Test the length, mass, and amplitude of a pendulum
More informationPHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I
PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include
More informationUnit 7: Oscillations
Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,
More informationSecond Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.
Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Rightangle clamp, Horizontal
More informationLab M1: The Simple Pendulum
Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as
More informationLab: Simple Harmonic Motion: Pendulum Mr. Fineman
Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to
More informationLabQuest 14. Pendulum Periods
Pendulum Periods LabQuest 14 A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum was the heart of clocks used in astronomical measurements at the
More informationPreClass. List everything you remember about circular motion...
PreClass List everything you remember about circular motion... Quote of the Day I'm addicted to brake fluid......but I can stop anytime I want. Table of Contents Click on the topic to go to that section
More informationAP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion
AP Physics 1 20160720 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency
More informationLab/Demo 5 Periodic Motion and Momentum PHYS 1800
Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use
More informationName: Section #: Date: The Pendulum
ASU University Physics Labs  Mechanics Lab 9 p. 1 Name: Section #: Date: Part 1 The Pendulum For Part 1 of the experiment, make a sketch of the graph you think will be produced by the simple pendulum
More informationAHL 9.1 Energy transformation
AHL 9.1 Energy transformation 17.1.2018 1. [1 mark] A pendulum oscillating near the surface of the Earth swings with a time period T. What is the time period of the same pendulum near the surface of the
More informationSimple Harmonic Motion and Damping
Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,
More informationApparatus: Stopwatch, meter rule, a retort stand, clamp, string and pendulum bob.
PreLab Questions 2 Topic: Acceleration due to gravity, g Learning Outcomes: To enable the students to (i) state the general pattern of variation of g on earth based on latitude. (ii) state the reasons
More informationLABORATORY VII MECHANICAL OSCILLATIONS
LABORATORY VII MECHANICAL OSCILLATIONS In most of the laboratory problems so far objects have been moving with constant acceleration because the total force acting on that object was constant. In this
More informationBrown University Physics 0030 Physics Department Lab 5
Oscillatory Motion Experiment 1: Oscillations of a spring As described in the text, a system of a simple spring exhibits simple harmonic motion and is a good introduction to a study of oscillations, which
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. When a spring is compressed 10 cm, compared to its
More informationSection 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum
Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic
More informationUpdated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
More informationMechanics Oscillations Simple Harmonic Motion
Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview
More informationPHYS 2425 Engineering Physics I EXPERIMENT 10 ARCHIMEDES PRINCIPLE
PHYS 2425 Engineering Physics I EXPERIMENT 10 ARCHIMEDES PRINCIPLE I. INTRODUCTION The objective of this experiment is to study Archimedes principle by measuring the weights of various objects in air and
More informationIntroduction. PreLab Questions: Physics 1CL PERIODIC MOTION  PART II Fall 2009
Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an
More informationLab/Demo 4 Circular Motion and Energy PHYS 1800
Lab/Demo 4 Circular Motion and Energy PHYS 1800 Objectives: Demonstrate the dependence of centripetal force on mass, velocity and radius. Learn to use these dependencies to predict circular motion Demonstrate
More informationPhET Pendulum Lab. l g. f 1. Part I: Pendulum Basics
IB PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS PhET Pendulum Lab Introduction: Old grandfather clocks have large pendulums that swing back and forth to keep time. A Foucault pendulum
More informationStudent Worksheet for Activity The Pendulum. Question. Materials
Student Worksheet for Activity 6.1.1 The Pendulum Questioning Hypothesizing Predicting Planning Conducting INQUIRY SKILLS Recording Analyzing Evaluating Communicating A pendulum swings with a regular period,
More informationThe Spring: Hooke s Law and Oscillations
Experiment 9 The Spring: Hooke s Law and Oscillations 9.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately
More informationName Section ate. Laboratory. The Pen
Name Section ate The Pen Laboratory PRELABORATORY ASSIGNMENT Read carefully the entire description of the laboratory and answer the following questions based on the material contained in the reading assignment.
More informationCHAPTER 11 TEST REVIEW
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER TEST
More informationPhysics 1C. Lecture 12B
Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity
More informationTHE CONSERVATION OF ENERGY  PENDULUM 
THE CONSERVATION OF ENERGY  PENDULUM  Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two
More informationThe Pendulum. Goals and Introduction
The Pendulum Goals and Introduction In this experiment, we will examine the relationships between the period, frequency and length of a simple pendulum. The oscillation of a pendulum swinging back and
More informationLab 4: The Simple Pendulum
Page 1 Technical Math II Lab 4: Simple Pendulum Lab 4: The Simple Pendulum Purpose: To investigate the relationship between the length of a simple pendulum and the time it takes to complete a full swing.
More informationOscillations and Waves
Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.
More informationChapter 4: Newton s First Law
Text: Chapter 4 Think and Explain: 112 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,
More informationSIMPLE HARMONIC MOTION
SIMPLE HARMONIC MOTION Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 Fig..1 shows a device for measuring the frequency of vibrations of an engine. The rigid
More informationSection 1 Simple Harmonic Motion. The student is expected to:
Section 1 Simple Harmonic Motion TEKS The student is expected to: 7A examine and describe oscillatory motion and wave propagation in various types of media Section 1 Simple Harmonic Motion Preview Objectives
More informationLab: Simple Harmonic Motion: Pendulum Mr. Fineman
Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to
More informationInvestigating Springs (Simple Harmonic Motion)
Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the wellknown force exerted by a spring The force, as given by Hooke s Law, is a function of the amount
More informationLaboratory 3: Acceleration due to gravity
Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity
More informationEXPERIMENT 11 The Spring Hooke s Law and Oscillations
Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately
More informationLab #1: Simple Harmonic Oscillators Physics 204, January 26, 2010
Lab #1: Simple Harmonic Oscillators Physics 04, January 6, 010 Objective This experiment may be divided into three parts: Determination of the spring constant, investigation of spring and gravitational
More informationGood Vibes: Introduction to Oscillations
Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,
More informationOscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance
Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum
More informationSimple Harmonic Motion
[International Campus Lab] Objective Investigate simple harmonic motion using an oscillating spring and a simple pendulum. Theory  Reference  Young
More informationChapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson
Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 14 To describe oscillations in
More informationIntroduction. PreLab Questions: Physics 1CL PERIODIC MOTION  PART II Spring 2009
Introduction This is the second of two labs on simple harmonic motion (SHM). In the first lab you studied elastic forces and elastic energy, and you measured the net force on a pendulum bob held at an
More informationA Physical Pendulum 2
A Physical Pendulum 2 Ian Jacobs, Physics Advisor, KVIS, Rayong, Thailand Introduction A physical pendulum rotates back and forth about a fixed axis and may be of any shape. All pendulums are driven by
More information11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion
11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,
More informationLab 9  Harmonic Motion and the Pendulum
Lab 9 Harmonic Motion and the Pendulum L91 Name Date Partners Lab 9  Harmonic Motion and the Pendulum Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in
More informationMotion in Two Dimensions: Centripetal Acceleration
Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:
More information4 VECTOR ADDITION ON THE FORCE TABLE. To study vector addition and resolution using forces.
4 VECTOR ADDITION ON THE FORCE TABLE OBJECTIVE To study vector addition and resolution using forces. INTRODUCTION (a) Figure 1. (a) Top view and (b) side view of a force table. Notice that the rim of the
More information