Bifurcations thresholds of halo orbits

Size: px
Start display at page:

Download "Bifurcations thresholds of halo orbits"

Transcription

1 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 1/23 spazio Bifurcations thresholds of halo orbits Dr. Ceccaroni Marta University of Roma Tor Vergata Work in collaboration with A. Celletti, G. Pucacco

2 0 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 2/23 spazio Table of Contents: Why the bifurcation energy? Why Halo orbits? The Model and its equilibria Lyapunov and Halo orbits The waltz of coordinates Bifurcation thresholds Results

3 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 3/23 spazio Why the bifurcation energy? because it is something we have just demonstrated because it is amazing to predict bifucations...not convinced yet, ah?... because this procedure, inverted, provides initial conditions for Halo orbits

4 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 4/23 spazio Why Halo orbits? 1968, C.C. Conley: unstable collinear points for low-cost interplanetary routes. The method used relies on Mosers version of Lyapunovs theorem and the existence of transit orbits between the primaries. Unfortunately, orbits such as this require a long time to complete a cycle [...] One cannot predict how knowledge will be applied - only that it often is. From 1978 on: ISEE-3, SOHO, WMAP, Genesis, Herschel-Planck, GAIA, Standing on the shoulders of the Giants : Libration point orbits (Lissajous, Lyapunov, Halo) Simò, Gómez, Masdemont, Jorba, Marsden, Lo...

5 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 5/23 spazio The Model and its equilibria: A CR3BP with a radiating major primary L S A β = 2πGM S c m, L S solar luminosity, A area to mass ratio, c light speed m units of measure scaled: - mass s.t. µ = m P 2 m P1 +m P2 (0, 1 2 ] 1 µ = m P 1 m P1 +m P2 - distance s.t. d P1,P 2 = 1 G(m - time s.t. t scaled = P1 +m P2 ) t ω = 1, G = 1 (grav. const.) d 3 P 1,P 2 synodic frame: rotating system of reference (uniformly ω = 1, centered in the barycenter of the primaries) P 1 set in [µ, 0, 0], P 2 in [ 1 + µ, 0, 0].

6 Figure: The system in the rotating frame 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 6/23 spazio

7 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 7/23 spazio The Hamiltonian of the system: H 0 = 1 2 (P 2 X + P 2 Y + P 2 Z) + Y P X XP Y The system has equations of motion: Ω = (X2 +Y 2 ) 2 + (1 β)(1 µ) r 1 + µ r 2 Ẍ 2Ẏ = Ω X Ÿ + 2Ẋ = Ω Y Z = Ω Z with r 1 = (X µ) 2 + Y 2 + Z 2, and r 2 = (X µ + 1) 2 + Y 2 + Z 2 (1 β)(1 µ) r 1 µ r 2. The equilibria of the system (x e, y e, 0), are the solutions of Ω X = 0 Ω Y = 0 Ω Z = 0

8 Figure: The Collinear equilibria of the system 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 8/23 spazio

9 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 9/23 spazio Shift and scale system of reference: x = X xe γ, y = Y ye γ, z = Z γ with γ distance of equilibria/closest primary Expand in Legendre polynomials H 1 = 1 ( p 2 2 x + p 2 y + p 2 z) + ypx xp y ( ) x c n (µ)ρ n P n ρ ρ = x 2 + y 2 ( + z 2 ) c n (µ) = (±1)n µ + ( 1) n (1 µ)(1 β)γ n+1 γ 3 (1 γ) n+1 n 2 Linearize H 1 around (x e, y e, 0) and diagonalise it: H 2 = λ 1 x p x + i ω 1 2 (ỹ2 + p 2 y) + i ω 2 2 ( z2 + p 2 z) + n 3 λ 1, ω 1, ω 2 R saddle center center. H (2) n

10 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 10/23 spazio Lyapunov and Halo orbits Lyapunov center theorem. Equilibrium two 1-parameter families of periodic orbits ( planar and vertical Lyapunov ). Energy increases stability change of Lyapunov periodic orbits bifurcation (Halo orbits, ω 1 = ω 2 ). REMARK: Periodic and quasi-periodic orbits in the center manifold inherit hyperbolicity from equilibria have stable/unstable manifolds suitable for transfer trajectories

11 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 11/23 spazio Lyapunov and Halo orbits Lyapunov center theorem. Equilibrium two 1-parameter families of periodic orbits ( planar and vertical Lyapunov ). Energy increases stability change of Lyapunov periodic orbits bifurcation (Halo orbits, ω 1 = ω 2 ). REMARK: Periodic and quasi-periodic orbits in the center manifold inherit hyperbolicity from equilibria have stable/unstable manifolds suitable for transfer trajectories

12 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 12/23 spazio The waltz of coordinates Resonant (ω 1 = ω 2 ) Birkhoff Normal Form: Proposition: There exists a canonical transformation (Lie Series) (p, q) (P, Q) mapping H 2 into H 3 = λq 1 P 1 + iω 1 Q 2 P 2 + iω 2 Q 3 P 3 + N n=3 H (3) n where polynomials of degree n R N+1 remainder of degree N + 1 (negligible). H n (3) satisfies some properties ( { REMARK: independent on Q 1, P 1 alone H (3) n (3) (3) H 0, H n } = 0). H (3) n (Q, P ) + R N+1 (Q, P )

13 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 13/23 spazio Action-angle variables for the quadratic part: Q 1 = I xe iθx P 1 = I xe iθx Q 2 = i I ye iθy P 2 = I ye iθy Q 3 = i I ze iθz P 3 = I ze iθz, REMARK: I y + I z = 0 E I y + I z = const. Central Manifold reduction: - I x = Q 1 P 1 = const 2 d.o.f. - I x = 0 center manifold (up to order N). H 4 = ω 1 I y + ω 2 I z + αi 2 y + βi 2 z + I y I z (σ + 2τ cos(2(θ y θ z ))) +... for suitable coefficients α abcd, and δ = (ω 1 ω 2 )/ω 2 detuning

14 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 14/23 spazio Bifurcation thresholds Resonant variables: E = I y + I z R = I y ν = θ z ψ = θ y θ z The equations of motion become: E = 0 Ṙ = 2dR(R E) sin(2ψ) +... ν = ω 2 + 2bE + cr dr cos(2ψ) +... ψ = δ + 2aR + ce + d(2r E) cos(2ψ) +... with a = α + β σ, b = β, c = σ 2β, d = 2τ. REMARK: This is a 1-DOF system in which the equilibria correspond to periodic orbits.

15 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 15/23 spazio Equilibria of the system: Ṙ = 0 for ψ = 0, π and for ψ = ± π 2, ψ = 0 for R 0/π = δ+(c d)e 2(a+d) R ± π = δ+(c+d)e 2 2(a d) Halo orbits: bifurcations of normal modes entering the 1 : 1 resonance. Recall I y, I z 0 and E = I y + I z 0 I y, I z E, yielding Inclined orbits (θ y θ z = 0, π) E E iy Loop orbits (θ y θ z = ±π/2) E E ly δ δ σ 2(α τ) E E iz 2(β τ) σ δ δ σ 2(α+τ) E E lz 2(β+τ) σ

16 Second order theory Reduce the perturbing function to sixth order. H 4 = ω 1 I y + ω 2 I z + αi 2 y + βi 2 z + I y I z (σ + 2τ cos(2(θ y θ z ))) +α 3300 I 3 y + α 0033 I 3 z + α 1122 I y I 2 z + α 2211 I 2 y I z +2I y I z [α 2013 I z + α 3102 I y ] cos(2(θ y θ z )) +... Following [ 1 ] yields: E (2) ly = E ly + δ 2 γ α 2 γ c 2 (µ 21 3µ 30 ν 21 ), (γ 2( γ+α)) 2 (γ 2( γ+α)) 3 E (2) iy = E iy + δ 2 γ α+2 γ c 2 (µ 21 3µ 30 +ν 21 ), (γ 2( γ+α)) 2 (γ 2( γ+α)) 3 E (2) lz = E lz + δ 2 β c 2 (µ 12 3µ 03 ν 12 ), ( γ 2( γ β)) 2 ( γ 2( γ β)) 3 E (2) iz = E iz + δ 2 β c 2 + (µ 12 3µ 03 +ν 12 ), ( γ 2( γ β)) 2 ( γ 2( γ β)) 3 1 J. Henrard, Periodic orbits emanating from a resonant equilibrium, Cel. Mech. 1, (1970) 0 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 16/23 spazio

17 Figure: Bifurcation Energies function of the mass ratio: L 1 (blue), L 2 (red), L 3 (orange). The dot-dashed part referring to L 3 corresponds to results obtained when the normal form has already reached the optimal order. 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 17/23 spazio Results Bifurcation Energy log Μ

18 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 18/23 spazio Comparison between results obtained and numerical results (literature) L 1 Hill s case barycenter Sun Earth Moon equal masses µ 0 µ = µ = µ = 1/2 I II III IV V VI Numerical Table: Results for the analytical bifurcation estimates for L 1 up to a normal form of order 6 and the numerical values (literature), physical energy.

19 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 19/23 spazio L 2 Hill s case barycenter Sun Earth Moon equal masses µ 0 µ = µ = µ = 1/2 I II III IV V VI Numerical Table: Results for the analytical bifurcation estimates for L 2 up to a normal form of order 6 and the numerical values (literature), physical energy.

20 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 20/23 spazio

21 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 21/23 spazio E=0.2 E=0.35 E=0.5 space Figure: Sun-Vesta-spacecraft, y, p y plane Poincaré map, β = 0, A = 0

22 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 21/23 spazio E=0.2 E=0.35 E=0.2 E=0.35 Figure: Sun-Vesta-spacecraft, y, p y plane Poincaré map, β = 0, A = 0

23 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 21/23 spazio E=0.2 E=0.35 Figure: Sun-Vesta-spacecraft, y, p y plane Poincaré map, β = 0, A = 0

24 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 22/23 spazio E=0.2 E=0.35 E=0.5 space Figure: Sun-Vesta-spacecraft, y, p y plane Poincaré map, β = 0, A = 0

25 E=0.04 E=0.05 E=0.1 E=0.4 Figure: Sun-Vesta-spacecraft, y, p y plane Poincaré map, β = 10 2, A = th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 23/23 spazio

A qualitative analysis of bifurcations to halo orbits

A qualitative analysis of bifurcations to halo orbits 1/28 spazio A qualitative analysis of bifurcations to halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work in collaboration with S. Bucciarelli, A. Celletti, G.

More information

arxiv: v2 [math.ds] 1 Feb 2015

arxiv: v2 [math.ds] 1 Feb 2015 QUALITATIVE AND ANALYTICAL RESULTS OF THE BIFURCATION THRESHOLDS TO HALO ORBITS SARA BUCCIARELLI, MARTA CECCARONI, ALESSANDRA CELLETTI, AND GIUSEPPE PUCACCO arxiv:1501.05795v [math.ds] 1 Feb 015 Abstract.

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 10 SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID F. Gabern, W.S. Koon

More information

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS Annelisie Aiex Corrêa 1, Gerard Gómez 2, Teresinha J. Stuchi 3 1 DMC/INPE - São José dos Campos, Brazil 2 MAiA/UB - Barcelona,

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

DYNAMICS OF A SOLAR SAIL NEAR A HALO ORBIT

DYNAMICS OF A SOLAR SAIL NEAR A HALO ORBIT DNAMICS OF A SOLAR SAIL NEAR A HALO ORBIT A. Farrés a,, À. Jorba a a Departament de Matemàtica Aplicada i Anàlisi, Univeritat de Barcelona Gran Via de les Corts Catalanes 585, 87 Barcelona, Spain Abstract

More information

Invariant Manifolds, Material Transport and Space Mission Design

Invariant Manifolds, Material Transport and Space Mission Design C A L T E C H Control & Dynamical Systems Invariant Manifolds, Material Transport and Space Mission Design Shane D. Ross Control and Dynamical Systems, Caltech Candidacy Exam, July 27, 2001 Acknowledgements

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem C C Dynamical A L T E C S H Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane/pub/thesis/ April

More information

Solar Sailing near a collinear point

Solar Sailing near a collinear point Solar Sailing near a collinear point 6th AIMS International Conference on Dynamical Systems and Differential Equations 26 Ariadna Farrès & Àngel Jorba Departament de Matemàtica Aplicada i Anàlisi Universitat

More information

I. Dynamics and phase space around the Libration Points

I. Dynamics and phase space around the Libration Points Libration Point Orbits and Applications G. Gómez, M. W. Lo and J. J. Masdemont (eds.) c 23 World Scientific Publishing Company LIBRATION POINT ORBITS: A SURVEY FROM THE DYNAMICAL POINT OF VIEW G. GÓMEZ

More information

Earth-to-Halo Transfers in the Sun Earth Moon Scenario

Earth-to-Halo Transfers in the Sun Earth Moon Scenario Earth-to-Halo Transfers in the Sun Earth Moon Scenario Anna Zanzottera Giorgio Mingotti Roberto Castelli Michael Dellnitz IFIM, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany (e-mail:

More information

Improved semi-analytical computation of center manifolds near collinear libration points

Improved semi-analytical computation of center manifolds near collinear libration points Research in Astron. Astrophys. 0XX Vol. X No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Improved semi-analytical computation of center

More information

Dynamical system theory and numerical methods applied to Astrodynamics

Dynamical system theory and numerical methods applied to Astrodynamics Dynamical system theory and numerical methods applied to Astrodynamics Roberto Castelli Institute for Industrial Mathematics University of Paderborn BCAM, Bilbao, 20th December, 2010 Introduction Introduction

More information

Invariant Manifolds and Transport in the Three-Body Problem

Invariant Manifolds and Transport in the Three-Body Problem Dynamical S C C A L T E C H Invariant Manifolds and Transport in the Three-Body Problem Shane D. Ross Control and Dynamical Systems California Institute of Technology Classical N-Body Systems and Applications

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu Halo Orbit and Its Computation From now on,

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS

ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS AAS 1-181 ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS Jules Simo and Colin R. McInnes INTRODUCTION In a prior study, a methodology was developed for computing approximate large displaced orbits

More information

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design Invariant Manifolds, Spatial 3-Bod Problem and Space Mission Design Góme, Koon, Lo, Marsden, Masdemont and Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cdscaltechedu Acknowledgements H

More information

Periodic Motion for an Imperfect Solar Sail near an Asteroid

Periodic Motion for an Imperfect Solar Sail near an Asteroid Periodic Motion for an Imperfect Solar Sail near an Asteroid Ariadna Farrés 1 Institute de Mathématiques de Bourgogne, Dijon 2178, France Àngel Jorba 2 Universitat de Barcelona, Barcelona 87, Spain Josep-Maria

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu The Flow near L and L 2 : Outline Outline

More information

INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS. A Thesis. presented to

INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS. A Thesis. presented to INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of

More information

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, January 8, 2001 shane@cds.caltech.edu

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation

Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation Low-Energy Earth-to-Halo Transfers in the Earth Moon Scenario with Sun-Perturbation Anna Zanzottera, Giorgio Mingotti, Roberto Castelli and Michael Dellnitz Abstract In this work, trajectories connecting

More information

This is an author-deposited version published in : Eprints ID : 13810

This is an author-deposited version published in :   Eprints ID : 13810 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Application of two special orbits in the orbit determination of lunar satellites

Application of two special orbits in the orbit determination of lunar satellites RAA 2014 Vol. 14 No. 10, 1307 1328 doi: 10.1088/1674 4527/14/10/010 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Application of two special orbits in

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dnamical Sstems and Space Mission Design Wang Koon, Martin Lo, Jerrold Marsden and Shane Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cds.caltech.edu Acknowledgements H. Poincaré, J. Moser

More information

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, November 13, 2000 shane@cds.caltech.edu http://www.cds.caltech.edu/

More information

STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT

STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT IAA-AAS-DyCoSS1-11-3 STATION KEEPING OF A SOLAR SAIL AROUND A HALO ORBIT Ariadna Farrés and Àngel Jorba INTRODUCTION Solar sails are a concept of spacecraft propulsion that takes advantage of solar radiation

More information

Connecting orbits and invariant manifolds in the spatial restricted three-body problem

Connecting orbits and invariant manifolds in the spatial restricted three-body problem INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1571 1606 NONLINEARITY PII: S0951-7715(04)67794-2 Connecting orbits and invariant manifolds in the spatial restricted three-body problem GGómez 1,WSKoon

More information

Design of Low Energy Space Missions using Dynamical Systems Theory

Design of Low Energy Space Missions using Dynamical Systems Theory Design of Low Energy Space Missions using Dynamical Systems Theory Koon, Lo, Marsden, and Ross W.S. Koon (Caltech) and S.D. Ross (USC) CIMMS Workshop, October 7, 24 Acknowledgements H. Poincaré, J. Moser

More information

I ve Got a Three-Body Problem

I ve Got a Three-Body Problem I ve Got a Three-Body Problem Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Mathematics Colloquium Fitchburg State College November 13, 2008 Roberts (Holy Cross)

More information

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS AAS 11-423 COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS Rodney L. Anderson and Jeffrey S. Parker INTRODUCTION In this study, transfer trajectories from the Earth to the Moon

More information

Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy

Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy Egemen Kolemen, N. Jeremy Kasdin and Pini Gurfil Mechanical and Aerospace Engineering, Princeton, NJ 08544, ekolemen@princeton.edu Mechanical

More information

The Three Body Problem

The Three Body Problem The Three Body Problem Joakim Hirvonen Grützelius Karlstad University December 26, 2004 Department of Engineeringsciences, Physics and Mathematics 5p Examinator: Prof Jürgen Füchs Abstract The main topic

More information

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Wang Sang Koon Control and Dynamical Systems and JPL Caltech 17-81, Pasadena, CA 91125 koon@cds.caltech.edu

More information

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics CHAOS VOLUME 10, NUMBER 2 JUNE 2000 Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics Wang Sang Koon a) Control and Dynamical Systems, Caltech 107-81, Pasadena,

More information

We are interested in the motion of a small particle in some regions of the Earth-Moon

We are interested in the motion of a small particle in some regions of the Earth-Moon NONLINEAR DYNAMICS IN AN ETENDED NEIGHBOURHOOD OF THE TRANSLUNAR EQUILIBRIUM POINT ANGEL JORBA AND JOSEP MASDEMONT Departament de Matematica Aplicada I (ETSEIB) Universitat Politecnica de Catalunya Diagonal

More information

Interplanetary Trajectory Design using Dynamical Systems Theory

Interplanetary Trajectory Design using Dynamical Systems Theory Interplanetary Trajectory Design using Dynamical Systems Theory THESIS REPORT by Linda van der Ham 8 February 2012 The image on the front is an artist impression of the Interplanetary Superhighway [NASA,

More information

What is the InterPlanetary Superhighway?

What is the InterPlanetary Superhighway? What is the InterPlanetary Superhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway

More information

Chaotic transport through the solar system

Chaotic transport through the solar system The Interplanetary Superhighway Chaotic transport through the solar system Richard Taylor rtaylor@tru.ca TRU Math Seminar, April 12, 2006 p. 1 The N -Body Problem N masses interact via mutual gravitational

More information

Design and Control of Solar Radiation Pressure Assisted Missions in the Sun-Earth System

Design and Control of Solar Radiation Pressure Assisted Missions in the Sun-Earth System Design and Control of Solar Radiation Pressure Assisted Missions in the Sun-Earth System By Stefania Soldini 1) 1) Institute of Space and Astronautical Science/JAXA, Sagamihara, Japan (Received 8 th Feb,

More information

Towards stability results for planetary problems with more than three bodies

Towards stability results for planetary problems with more than three bodies Towards stability results for planetary problems with more than three bodies Ugo Locatelli [a] and Marco Sansottera [b] [a] Math. Dep. of Università degli Studi di Roma Tor Vergata [b] Math. Dep. of Università

More information

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology Asymptotic Analysis of Displaced Lunar Orbits Jules Simo and Colin R. McInnes University of Strathclyde, Glasgow, G1 1XJ, United Kingdom I. Introduction The design of spacecraft trajectories is a crucial

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

DYNAMICS: THE PRAGMATIC POINT OF VIEW

DYNAMICS: THE PRAGMATIC POINT OF VIEW SPACE MANIFOLD DYNAMICS: THE PRAGMATIC POINT OF VIEW Ettore Perozzi Telespazio, Roma (Italy) Workshop on Stability and Instability in Mechanical Systems Barcellona, 1-5 December 2008 Being Pragmatic: Kaguya

More information

Design of low energy space missions using dynamical systems theory

Design of low energy space missions using dynamical systems theory C C Dynamical A L T E C S H Design of low energy space missions using dynamical systems theory Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Collaborators: J.E. Marsden

More information

NUMERICAL STUDY OF THE GEOMETRY OF THE PHASE SPACE OF THE AUGMENTED HILL THREE-BODY PROBLEM

NUMERICAL STUDY OF THE GEOMETRY OF THE PHASE SPACE OF THE AUGMENTED HILL THREE-BODY PROBLEM This is a preprint of: Numerical study of the geometry of the phase space of the augmented ill three-body problem, Ariadna Farrés, Àngel Jorba, Josep Maria Mondelo, Celestial Mech. Dynam. Astronom., 17.

More information

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the EARTH TO HALO ORBIT TRANSFER TRAJECTORIES A Thesis Submitted to the Faculty of Purdue University by Raoul R. Rausch In Partial Fulfillment of the Requirements for the Degree of Master of Science August

More information

The 3D restricted three-body problem under angular velocity variation. K. E. Papadakis

The 3D restricted three-body problem under angular velocity variation. K. E. Papadakis A&A 425, 11 1142 (2004) DOI: 10.1051/0004-661:20041216 c ESO 2004 Astronomy & Astrophysics The D restricted three-body problem under angular velocity variation K. E. Papadakis Department of Engineering

More information

Natural Motion around the Martian Moon Phobos

Natural Motion around the Martian Moon Phobos Natural Motion around the Martian Moon Phobos The Dynamical Substitutes of the Libration Point Orbits in an Elliptic Three-Body Problem with Gravity Harmonics M. Zamaro J.D. Biggs Abstract The Martian

More information

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: 1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: ẋ = y x 2, ẏ = z + xy, ż = y z + x 2 xy + y 2 + z 2 x 4. (ii) Determine

More information

Stability of the Lagrange Points, L 4 and L 5

Stability of the Lagrange Points, L 4 and L 5 Stability of the Lagrange Points, L 4 and L 5 Thomas Greenspan January 7, 014 Abstract A proof of the stability of the non collinear Lagrange Points, L 4 and L 5. We will start by covering the basics of

More information

SPACE MANIFOLD DYNAMICS

SPACE MANIFOLD DYNAMICS SPACE MANIFOLD DYNAMICS Gerard Gómez Muntané Universitat de Barcelona, Spain Esther Barrabés Vera Universitat de Girona, Spain Keywords: spacecraft mission analysis, restricted three-body problem, equilibrium

More information

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits FRANCESCO TOPPUTO, MASSIMILIANO VASILE, AND FRANCO BERNELLI-ZAZZERA Aerospace Engineering Department, Politecnico di Milano, Milan,

More information

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0 ON THE HAMILTONIAN ANDRONOV-HOPF BIFURCATION M. Olle, J. Villanueva 2 and J. R. Pacha 3 2 3 Departament de Matematica Aplicada I (UPC), Barcelona, Spain In this contribution, we consider an specic type

More information

The Higgins-Selkov oscillator

The Higgins-Selkov oscillator The Higgins-Selkov oscillator May 14, 2014 Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The system is ẋ = k 0 k 1 xy 2, (1 ẏ = k 1 xy 2 k 2 y. (2 The unknowns x and y, being

More information

Optimal control and applications to aerospace problems

Optimal control and applications to aerospace problems Optimal control and applications to aerospace problems E. Trélat Université Pierre et Marie Curie (Paris 6), Laboratoire J.-L. Lions and Institut Universitaire de France 6th European Congress of Mathematics,

More information

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Alessandra Celletti Department of Mathematics University of Roma Tor Vergata Sevilla, 25-27 January 2016 Outline 1. Introduction 2.

More information

Dynamics in the centre manifold of the collinear points of the Restricted Three Body Problem Angel Jorba (1) and Josep Masdemont (2) April 21st, 1997

Dynamics in the centre manifold of the collinear points of the Restricted Three Body Problem Angel Jorba (1) and Josep Masdemont (2) April 21st, 1997 Dynamics in the centre manifold of the collinear points of the Restricted Three Body Problem Angel Jorba () and Josep Masdemont (2) April 2st, 997 () Departament de Matematica Aplicada i Analisi, Universitat

More information

Invariant Manifold Dynamics

Invariant Manifold Dynamics Invariant Manifold Dynamics Advanced Aspects of Spacecraft Control and Mission Design AstroNet-II Summer Training School and Annual Meeting G. Gómez 1 J.J. Masdemont 2 1 IEEC & Dept de Matemàtica Aplicada

More information

Earth-Mars Halo to Halo Low Thrust

Earth-Mars Halo to Halo Low Thrust Earth-Mars Halo to Halo Low Thrust Manifold Transfers P. Pergola, C. Casaregola, K. Geurts, M. Andrenucci New Trends in Astrodynamics and Applications V 3 June / -2 July, 28 Milan, Italy Outline o Introduction

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Publ. Astron. Obs. Belgrade No. 96 (2017), COMPUTATION OF TRANSIT ORBITS IN THE THREE-BODY-PROBLEM WITH FAST LYAPUNOV INDICATORS

Publ. Astron. Obs. Belgrade No. 96 (2017), COMPUTATION OF TRANSIT ORBITS IN THE THREE-BODY-PROBLEM WITH FAST LYAPUNOV INDICATORS Publ. Astron. Obs. Belgrade No. 96 (017), 71-78 Invited Lecture COMPUTATION OF TRANSIT ORBITS IN THE THREE-BODY-PROBLEM ITH FAST LYAPUNOV INDICATORS M. GUZZO 1 and E. LEGA 1 Università degli Studi di Padova,

More information

TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS. A Thesis. Submitted to the Faculty.

TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS. A Thesis. Submitted to the Faculty. TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS A Thesis Submitted to the Faculty of Purdue University by Dawn Perry Gordon In Partial Fulfillment of the Requirements

More information

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS K.C. Howell an B.G. Marchan Purue University 1 Previous Work on Formation Flight Multi-S/C Formations in the 2BP Small Relative

More information

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists Final Summer Undergraduate Research Fellowship Report September 25, 2009 Natasha Bosanac Mentor: Professor Jerrold

More information

Periodic and quasi-periodic motions of a solar sail close to in the Earth Sun system

Periodic and quasi-periodic motions of a solar sail close to in the Earth Sun system Periodic and quasi-periodic motions of a solar sail close to in the Earth Sun system Ariadna Farrés, Àngel Jorba To cite this version: Ariadna Farrés, Àngel Jorba. Periodic and quasi-periodic motions of

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

IAC-07-C SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS

IAC-07-C SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS 58th International Astronautical Congress, Hyderabad, India, 24-28 September 2007. Copyright IAF/IAA. All rights reserved. IAC-07-C1.4.04 SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS Ariadna

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Sang Koon and Martin Lo Shane Ross Control and Dynamical Systems, Caltech shane@cds.caltech.edu Constructing Orbits of Prescribed Itineraries:

More information

Copyright. Jean-Philippe Munoz

Copyright. Jean-Philippe Munoz Copyright by Jean-Philippe Munoz 2008 The Dissertation Committee for Jean-Philippe Munoz certifies that this is the approved version of the following dissertation: Sun-Perturbed Dynamics of a Particle

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Gerard Gómez, Manuel Marcote IEEC & Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, Gran Via 545, 87 Barcelona,

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

The Coupled Three-Body Problem and Ballistic Lunar Capture

The Coupled Three-Body Problem and Ballistic Lunar Capture The Coupled Three-Bod Problem and Ballistic Lunar Capture Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) Control and Dnamical Sstems California Institute of Technolog Three Bod

More information

Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Wang Sang Koon Control and Dynamical Systems, Caltech

Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Wang Sang Koon Control and Dynamical Systems, Caltech Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Gabern, Koon, Marsden, and Ross Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu Outline

More information

Effective computation of the dynamics around a two-dimensional torus of a Hamiltonian system

Effective computation of the dynamics around a two-dimensional torus of a Hamiltonian system Effective computation of the dynamics around a two-dimensional torus of a Hamiltonian system F. Gabern and À. Jorba Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona Gran Via 585, 08007

More information

/

/ n Mingotti, G., Heiligers, J., and McInnes, C. (215) Optimal Solar Sail Interplanetary Heteroclinic Transfers for Novel Space Applications. In: AIAA/AAS Astrodynamics Specialist Conference, San Diego,

More information

Accepted Manuscript. The end-of-life disposal of satellites in Libration-point orbits using solar radiation

Accepted Manuscript. The end-of-life disposal of satellites in Libration-point orbits using solar radiation Accepted Manuscript The end-of-life disposal of satellites in Libration-point orbits using solar radiation pressure Stefania Soldini, Camilla Colombo, Scott Walker PII: S273-1177(15)47- DOI: http://dx.doi.org/1.11/j.asr.215..33

More information

CELESTIAL MECHANICS. Celestial Mechanics No. of Pages: 520 ISBN: (ebook) ISBN: (Print Volume)

CELESTIAL MECHANICS. Celestial Mechanics No. of Pages: 520 ISBN: (ebook) ISBN: (Print Volume) CELESTIAL MECHANICS Celestial Mechanics No. of Pages: 520 ISBN: 978-1-78021-019-3 (ebook) ISBN: 978-1-78021-519-8 (Print Volume) For more information of e-book and Print Volume(s) order, please click here

More information

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia,

Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, Regular n-gon as a model of discrete gravitational system Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, E-mail: hegem@mail.ru Introduction A system of N points, each having mass m, forming a planar regular

More information

Periodic orbits high above the ecliptic plane in the solar sail 3-body problem

Periodic orbits high above the ecliptic plane in the solar sail 3-body problem Periodic orbits high above the ecliptic plane in the solar sail 3-body problem Thomas Waters Department of Mechanical Engineering, University of Strathclyde, Glasgow. 4th October 2006 In conjunction with

More information

Study of the Transfer Between Libration Point Orbits and Lunar Orbits in Earth-Moon System

Study of the Transfer Between Libration Point Orbits and Lunar Orbits in Earth-Moon System Noname manuscript No. (will be inserted by the editor) Study of the Transfer Between Libration Point Orbits and Lunar Orbits in Earth-Moon System Yu Cheng, Gerard Gómez Josep J. Masdemont 3 Jianping Yuan

More information

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA

A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA ISTS 26-d-2 A DYNAMICAL SYSTEMS APPROACH TO THE DESIGN OF THE SCIENCE ORBIT AROUND EUROPA Gerard Gomez Dept. Matematica Aplicada i Analisi, Universitat de Barcelona, 8 7 Barcelona, Spain (gerard@maia.ub.es)

More information

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1,

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1, 2.8.7. Poincaré-Andronov-Hopf Bifurcation. In the previous section, we have given a rather detailed method for determining the periodic orbits of a two dimensional system which is the perturbation of a

More information

The Pennsylvania State University The Graduate School College of Engineering OPTIMAL EARTH RETURN TRANSFERS FROM LAGRANGE

The Pennsylvania State University The Graduate School College of Engineering OPTIMAL EARTH RETURN TRANSFERS FROM LAGRANGE The Pennsylvania State University The Graduate School College of Engineering OPTIMAL EARTH RETURN TRANSFERS FROM LAGRANGE POINT ORBITS USING PARTICLE SWARM OPTIMIZATION A Thesis in Aerospace Engineering

More information

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 Orbiting L 2 Observation Point in Space Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 LIBRATION (LANGRANGE) POINTS IN THE SUN-EARTH SYSTEM Libration Points: 5 Lagrange Points L 1 and

More information

TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION

TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION TWO APPROACHES UTILIZING INVARIANT MANIFOLDS TO DESIGN TRAJECTORIES FOR DMOC OPTIMIZATION INTRODUCTION Ashley Moore Invariant manifolds of the planar circular restricted 3-body problem are used to design

More information

Transcendental cases in stability problem. Hamiltonian systems

Transcendental cases in stability problem. Hamiltonian systems of Hamiltonian systems Boris S. Bardin Moscow Aviation Institute (Technical University) Faculty of Applied Mathematics and Physics Department of Theoretical Mechanics Hamiltonian Dynamics and Celestial

More information

Eulerian equilibria of a rigid body in the three body problem

Eulerian equilibria of a rigid body in the three body problem Proceedings of the nd WSEAS Int. Conference on Applied and Theoretical Mechanics, Venice, Italy, November 0-, 006 68 Eulerian equilibria of a rigid body in the three body problem J.A. VERA Universidad

More information

This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections

This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections between bicircular restricted four-body problems] Published

More information

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Francesco Topputo Massimiliano Vasile Franco Bernelli-Zazzera Aerospace Engineering Department, Politecnico di Milano Via La Masa,

More information

Bridges between the Generalized Sitnikov Family and the Lyapunov Family of Periodic Orbits*

Bridges between the Generalized Sitnikov Family and the Lyapunov Family of Periodic Orbits* journal of differential equations 154, 140156 (1999) Article ID jdeq.1998.3565, available online at http:www.idealibrary.com on Bridges between the Generalized Sitnikov Family and the Lyapunov Family of

More information

A LaSalle version of Matrosov theorem

A LaSalle version of Matrosov theorem 5th IEEE Conference on Decision Control European Control Conference (CDC-ECC) Orlo, FL, USA, December -5, A LaSalle version of Matrosov theorem Alessro Astolfi Laurent Praly Abstract A weak version of

More information

Evolution of the L 1 halo family in the radial solar sail CRTBP

Evolution of the L 1 halo family in the radial solar sail CRTBP Celestial Mechanics and Dynamical Astronomy manuscript No. (will be inserted by the editor) Evolution of the L 1 halo family in the radial solar sail CRTBP Patricia Verrier Thomas Waters Jan Sieber Received:

More information