Dynamical Systems and Space Mission Design

Size: px
Start display at page:

Download "Dynamical Systems and Space Mission Design"

Transcription

1 Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech

2 Halo Orbit and Its Computation From now on, we will focus on 3D CR3BP. We will put more emphasis on numerical computations, especially issues concerning halo orbit missions, such as Genesis Discovery Mission Outline of Lecture 5A and 5B: Importance of halo orbits. Finding periodic solutions of the linearized equations. Highlights on 3rd order approximation of a halo orbit. Using a textbook example to illustrate Lindstedt-Poincarémethod. Use L.P. method to find a 3rd order approximation of a halo orbit. Finding a halo orbit numerically via differential correction. Orbit structure near L 1 and L 2

3 Importance of Halo Orbits: Genesis Discovery Mission Genesis spacecraft will collect solar wind from a L 1 halo orbit for 2 years, return those samples to Earth in 23 for analysis. Will contribute to understanding of origin of Solar system. 1E+6 5 y(km) L 1 L z 1E+6-1E+6-1E+6 1E+6 x(km) 1E+6 5 y -5-1E+6 x Y Z X 1E+6 1E z(km) L 1 L 2 z(km) E+6-1E+6-1E+6 1E+6 x(km) -1E+6 1E+6 y(km)

4 Important of Halo Orbits: Genesis Discovery Mission A L 1 halo orbit (1.5 million km from Earth) provides uninterrupted access to solar wind beyond Earth s magnetoshphere. 1E+6 5 y(km) L 1 L z 1E+6-1E+6-1E+6 1E+6 x(km) 1E+6 5 y -5-1E+6 x Y Z X 1E+6 1E z(km) L 1 L 2 z(km) E+6-1E+6-1E+6 1E+6 x(km) -1E+6 1E+6 y(km)

5 Importance of Halo Orbits: ISEE-3 Mission Since halo orbit is ideal for studying solar effects on Earth, NASA has had and will continue to have great interest in these missions. The first halo orbit mission, ISEE-3, was launched in ISEE-3 spacecraft monitored solar wind and other solar-induced phenomena, such as solar radio bursts and solar flares, about a hour prior to disturbance of space enviroment near Earth.

6 Importance of Halo Orbits: Terrestial Planet Finder JPL has begun studies of a TPF misson at L 2 involving 4 free flying optical elements and a combiner spacecraft. Interferometry: achieve high resolution by distributing small optical elements along a lengthy baseline or pattern. Look into using a L 2 halo orbit and its nearby quasi-halo orbits for formation flight.

7 Importance of Halo Orbits: Terrestial Planet Finder The L 2 option offer several advantages: Additional spacecraft can be launched into formation later. The L 2 offers a larger payload capacity. Communications are more efficient at L 2. Observations and mission operations are simpler at L 2.

8 Importance of Halo Orbits: 3D Dynamical Channels In 3D dynamical channels theory, invariant manifolds of a solid torus of quasi-halo orbits could play similar role as invariant manifold tubes of a Lyapunov orbit. Halo, quasi-halos and their invariant manifolds could be key in understanding material transport throughout Solar system, constructing 3D orbits with desired characteristics..6 Unstable Manifold Forbidden Region.4 Stable Manifold y (rotating frame) Sun L 1 Periodic Orbit Stable Manifold x (rotating frame) Forbidden Region Unstable Manifold

9 3D Equations of Motion Recall equations of CR3BP: Ẍ 2Ẏ =Ω X Ÿ +2Ẋ =Ω Y Z=Ω Z where Ω = (X 2 + Y 2 )/2+(1 µ)d 1 1 +µd 1 2. z S/C d 2 d 1 E x S y 1 µ µ

10 3D Equations of Motion Equations for satellite moving in vicinity of L 1 can be obtained by translating the origin to the location of L 1 : x =(X 1+µ+γ)/γ, y = Y/γ, z = Z/γ, where γ = d(m 2,L 1 ) In new coordinate sytem, variables x, y, z are scale so that the distance between L 1 and small primary is 1. New independent variable is introduced such that s = γ 3/2 t. y (nondimensional units, rotating frame) L 3 S L 1 J m S = 1 - µ m J = µ L 4 L 5 comet L 2 Jupiter's orbit x (nondimensional units, rotating frame)

11 3D Equations of Motion CR3BP equations can be developed using Legendre polynomial P n ẍ 2ẏ (1 + 2c 2 )x = c n ρ n P n ( x x ρ ) n 3 ÿ +2ẋ+(c 2 1)y = c n ρ n P n ( x y ρ ) z + c 2 z = z n 3 n 3 c n ρ n P n ( x ρ ) where ρ = x 2 +y 2 +z 2,andc n =γ 3 (µ+( 1) n (1 µ)( γ 1 γ )n+1 ). Useful if successive approximation solution procedure is carried to high order via algebraic manipulation software programs.

12 Analytic and Numerical Methods: Overview Lack of general solution motivated researchers to develop semi-analytical method. ISEE-3 halo was designed in this way. See Farquhar and Kamel [1973], and Richardson [198]. Linear analysis suggested existence of periodic (and quasi-periodic) orbits near L 1. 3rd order approximation, using Lindstedt-Poincaré method, provided further insight about these orbits. Differential corrector produced the desired orbit using 3rd order solution as initial guess.

13 Periodic Solutions of Linearized Equations Periodic nature of solution can be seen in linearized equations: ẍ 2ẏ (1 + 2c 2 )x = ÿ+2ẋ+(c 2 1)y = z+c 2 z= The z-axis solution is simple harmonic, does not depend on x or y. Motion in xy-plane is coupled, has (±α, ±iλ) as eigenvalues. General solutions are unbounded, but there is a periodic solution. y (nondimensional units, rotating frame) forbidden region interior region S Zero velocity curve bounding forbidden region L 1 exterior region J L 2 Jupiter region L y (nondimensional units, rotating frame) x (nondimensional units, rotating frame) (a) x (nondimensional units, rotating frame) (b)

14 Periodic Solutions of Linearized Equations Linearized equations has a bounded solution (Lissajous orbit) x = A x cos(λt + φ) y = ka x sin(λt + φ) z = A z sin(νt + ψ) with k =(λ c 2 )/2λ.(λ=2.86,ν =2.15,k =3.229.) Amplitudes, A x and A z, of in-plane and out-of-plane motion characterize the size of orbit.

15 Periodic Solutions of Linearized Equations If frequencies are equal (λ = ν), halo orbit is produced. But λ = ν only when amplitudes A x and A z are large enough that nonlinear contributions become significant. For ISEE3 halo, A z = 11, km, A x = 26, km and A y = ka x = 665, km.

16 Halo Orbits in 3rd Order Approximation Halo orbit is obtained only when amplitudes A x and A z are large enough that nonlinear contributions make λ = ν. Lindstedt-Poincaré procedure has been used to find periodic solution for a 3rd order approximation of PCR3BP system. ẍ 2ẏ (1 + 2c 2 )x = 3 2 c 3(2x 2 y 2 z 2 ) +2c 4 x(2x 2 3y 2 3z 2 )+o(4), ÿ +2ẋ+(c 2 1)y = 3c 3 xy 3 2 c 4y(4x 2 y 2 z 2 )+o(4), z + c 2 z = 3c 3 xz 3 2 c 4z(4x 2 y 2 z 2 )+o(4). Notice that for periodic solution, x, y, z are o(a z )witha z << 1 in normalized unit.

17 Halo Orbits in 3rd Order Approximation Lindstedt-Poincaré method: It is a successive approximation procedure. Periodic solution of linearized equation (with λ = ν) will form the first approximation. Richardson used this method to find the 3rd order solution. x = a 21 A 2 x + a 22 A 2 z A x cos τ 1 +(a 23 A 2 x a 24 A 2 z)cos2τ 1 +(a 31 A 3 x a 32 A x A 2 z)cos3τ 1, y = ka x sin τ 1 +(b 21 A 2 x b 22 A 2 z)sin2τ 1 +(b 31 A 3 x b 32 A x A 2 z)sin3τ 1, z = δ m A z cos τ 1 +δ m d 21 A x A z (cos 2τ 1 3) + δ m (d 32 A z A 2 x d 31A 3 z )cos3τ 1. where τ 1 = λτ + φ and δ m =2 m, m =1,3. Details will be given later. Here, we will provide some highlights.

18 Halo Orbit Amplitude Constraint Relationship For halo orbits, we have amplitude constraint relationship l 1 A 2 x + l 2 A 2 z + =. For halo orbits about L 1 in Sun-Earth system, l 1 = , l 2 = and = Halo orbit can be characterized completely by A z. ISEE-3 halo orbit had A z = 11, km.

19 Halo Orbit Amplitude Constraint Relationship For halo orbits, we have amplitude constraint relationship l 1 A 2 x + l 2 A 2 z + =. Minimim value for A x to have a halo orbit (A z > ) is /l1, which is about 2, km (14% of normalized distance).

20 Halo Orbit Phase-angle Relationship Bifurcation manifests through phase-angle relationship ψ φ = mπ/2, m =1,3. 2solution branches are obtained according to whether m =1orm=3.

21 Halo Orbit Phase-angle Relationship Bifurcation manifests through phase-angle relationship: For m =1,A z >. Northern halo. For m =3,A z <. Southern halo. Northern & southern halos are mirror images across xy-plane.

22 Lindstedt-Poincaré Method: Duffing Equation To illustrate L.P. method, let us study Duffing equation: First non-linear approximation of pendulum equation (with λ =1) q+q+ɛq 3 =. For ɛ =, it has a periodic solution q = a cos t if we assume the initial condition q() = a, q() =. For ɛ, suppose we would like to look for a periodic solution of the form q = ɛ n q n (t) =q (t)+ɛq 1 (t)+ɛ 2 q 2 (t)+ n=

23 Lindstedt-Poincaré Method: Duffing Equation Finding a periodic solution for Duffing equation: By substituting and equating terms having same power of ɛ, we have a system of successive differential equations: q + q =, q 1 +q 1 = q 3, q 2 +q 2 = 3q 2 q 1, and etc. Then q = acos t, forq () = a, q() =. Since q 1 + q 1 = q 3 = a3 cos 3 t = 1 4 a3 (cos 3t +3cos t), the solution has a secular term q 1 = 3 8 a3 t sin t a3 (cos 3t cos t).

24 Lindstedt-Poincaré Method: Duffing Equation Due to presence of secure terms, naivemethod suchas expansions of solution in a power series of ɛ would not work. To avoidsecure terms, Lindstedt-Poincaré method Notices that non-linearity alters frequency λ (corr. to linearized system) to λω(ɛ) (λ= 1 in our case). Introduce a new independent variable τ = ω(ɛ)t: t = τω 1 = τ(1 + ɛω 1 + ɛ 2 ω 2 + ). Expand the periodic solution in a power series of ɛ: q = ɛ n q n (τ) =q (τ)+ɛq 1 (τ)+ɛ 2 q 2 (τ)+ n= Rewrites Duffing equation using τ as independent variable: q +(1+ɛω 1 +ɛ 2 ω 2 + ) 2 (q+ɛq 3 )=.

25 Lindstedt-Poincaré Method: Duffing Equation By substituing q (in power series expansion) into Duffing equation (in new independent variable τ) and equating terms with same power of ɛ, we obtain equations for successive approximations: q + q =, q 1 + q 1 = q 3 2ω 1q, q 2 + q 2 = 3q 2 q 1 2ω 1 (q 1 + q 3 )+(ω2 1 +2ω 2)q, and etc. Potential secular terms can be gotten rid of by imposing suitable values on ω n. The general solution of 1st equation can be written as q = acos(τ + τ ). where a and τ are integration constants.

26 Lindstedt-Poincaré Method: Duffing Equation Potential secular terms can be gotten rid of by imposing suitable values on ω n. By substituting q = acos(τ + τ ) into 2nd equation, we get q 1 + q 1 = a 3 cos 3 (τ + τ ) 2ω 1 a cos(τ + τ ) = 1 4 a3 cos 3(τ + τ ) ( 3 4 a2 +2ω 1 )acos(τ + τ ). In previous naive method, we had ω 1 and a secular term caused by cos t term. Now if we set ω 1 = 3a 2 /8, we can get rid of cos(τ + τ ) term and the ensuing secular term. Then q 1 = 1 32 a3 cos 3(τ + τ ).

27 Lindstedt-Poincaré Method: Duffing Equation Potential secular terms can be gotten rid of by imposing suitable values on ω n. Similarly, by substituting q 1 = 32 1 a3 cos 3(τ + τ ) into 3rd equation, we get q 2 + q 2 =( a4 2ω 2 )acos(τ + τ ) + (terms not giving secular terms). Setting ω 2 =51a 4 /256, we obtain q 2 free of secular terms, and so on.

28 Lindstedt-Poincaré Method: Duffing Equation Therefore, to 1st order of ɛ, wehaveperiodic solution q = acos(τ + τ ) ɛ cos 3(τ + τ )+o(ɛ 2 ) = acos(ωt + τ ) ɛ cos 3(ωt + τ )+o(ɛ 2 ). Notice that ω =(1+ɛω 1 +ɛ 2 ω 2 + ) 1 = {1 ɛω ɛ2 (2ω 2 ω1 2 )+ } =(1 3 8 ɛa ɛ2 a 4 + o(ɛ 3 ). Lindstedt method consists in successive adjustments of frequencies.

29 Halo Orbit and Its Computation We have covered Importance of halo orbits. Finding periodic solutions of the linearized equations. Highlights on 3rd order approximation of a halo orbit. Using a textbook example to illustrate Lindstedt-Poincarémethod. In Lecture5B, we will cover Use L.P. method to find a 3rd order approximation of a halo orbit. Finding a halo orbit numerically via differential correction. Orbit structure near L 1 and L 2

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Koon and Martin Lo Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu The Flow near L and L 2 : Outline Outline

More information

Halo Orbit Mission Correction Maneuvers Using Optimal Control

Halo Orbit Mission Correction Maneuvers Using Optimal Control Halo Orbit Mission Correction Maneuvers Using Optimal Control Radu Serban and Linda Petzold (UCSB) Wang Koon, Jerrold Marsden and Shane Ross (Caltech) Martin Lo and Roby Wilson (JPL) Wang Sang Koon Control

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dynamical Systems and Space Mission Design Jerrold Marsden, Wang Sang Koon and Martin Lo Shane Ross Control and Dynamical Systems, Caltech shane@cds.caltech.edu Constructing Orbits of Prescribed Itineraries:

More information

Connecting orbits and invariant manifolds in the spatial three-body problem

Connecting orbits and invariant manifolds in the spatial three-body problem C C Dynamical A L T E C S H Connecting orbits and invariant manifolds in the spatial three-body problem Shane D. Ross Control and Dynamical Systems, Caltech Work with G. Gómez, W. Koon, M. Lo, J. Marsden,

More information

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem

Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Periodic Orbits and Transport: Some Interesting Dynamics in the Three-Body Problem Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, January 8, 2001 shane@cds.caltech.edu

More information

INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS. A Thesis. presented to

INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS. A Thesis. presented to INTERPLANETARY TRANSFER TRAJECTORIES USING THE INVARIANT MANIFOLDS OF HALO ORBITS A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of

More information

Design of Low Energy Space Missions using Dynamical Systems Theory

Design of Low Energy Space Missions using Dynamical Systems Theory Design of Low Energy Space Missions using Dynamical Systems Theory Koon, Lo, Marsden, and Ross W.S. Koon (Caltech) and S.D. Ross (USC) CIMMS Workshop, October 7, 24 Acknowledgements H. Poincaré, J. Moser

More information

Invariant Manifolds, Material Transport and Space Mission Design

Invariant Manifolds, Material Transport and Space Mission Design C A L T E C H Control & Dynamical Systems Invariant Manifolds, Material Transport and Space Mission Design Shane D. Ross Control and Dynamical Systems, Caltech Candidacy Exam, July 27, 2001 Acknowledgements

More information

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem

Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem C C Dynamical A L T E C S H Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane/pub/thesis/ April

More information

Periodic orbits high above the ecliptic plane in the solar sail 3-body problem

Periodic orbits high above the ecliptic plane in the solar sail 3-body problem Periodic orbits high above the ecliptic plane in the solar sail 3-body problem Thomas Waters Department of Mechanical Engineering, University of Strathclyde, Glasgow. 4th October 2006 In conjunction with

More information

Dynamical Systems and Space Mission Design

Dynamical Systems and Space Mission Design Dnamical Sstems and Space Mission Design Wang Koon, Martin Lo, Jerrold Marsden and Shane Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cds.caltech.edu Acknowledgements H. Poincaré, J. Moser

More information

The Coupled Three-Body Problem and Ballistic Lunar Capture

The Coupled Three-Body Problem and Ballistic Lunar Capture The Coupled Three-Bod Problem and Ballistic Lunar Capture Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) Control and Dnamical Sstems California Institute of Technolog Three Bod

More information

Bifurcations thresholds of halo orbits

Bifurcations thresholds of halo orbits 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 1/23 spazio Bifurcations thresholds of halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work

More information

What is the InterPlanetary Superhighway?

What is the InterPlanetary Superhighway? What is the InterPlanetary Superhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway

More information

Dynamical Systems and Control in Celestial Mechanics and Space Mission Design. Jerrold E. Marsden

Dynamical Systems and Control in Celestial Mechanics and Space Mission Design. Jerrold E. Marsden C A L T E C H Control & Dynamical Systems Dynamical Systems and Control in Celestial Mechanics and Space Mission Design Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/

More information

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics

Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Periodic Orbits and Transport: From the Three-Body Problem to Atomic Physics Shane Ross Martin Lo (JPL), Wang Sang Koon and Jerrold Marsden (Caltech) CDS 280, November 13, 2000 shane@cds.caltech.edu http://www.cds.caltech.edu/

More information

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design

Invariant Manifolds, Spatial 3-Body Problem and Space Mission Design Invariant Manifolds, Spatial 3-Bod Problem and Space Mission Design Góme, Koon, Lo, Marsden, Masdemont and Ross Wang Sang Koon Control and Dnamical Sstems, Caltech koon@cdscaltechedu Acknowledgements H

More information

TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS. A Thesis. Submitted to the Faculty.

TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS. A Thesis. Submitted to the Faculty. TRANSFERS TO EARTH-MOON L2 HALO ORBITS USING LUNAR PROXIMITY AND INVARIANT MANIFOLDS A Thesis Submitted to the Faculty of Purdue University by Dawn Perry Gordon In Partial Fulfillment of the Requirements

More information

Halo Orbits around Sun-Earth L1 in Photogravitational Restricted Three-Body Problem with Oblateness of Smaller Primary

Halo Orbits around Sun-Earth L1 in Photogravitational Restricted Three-Body Problem with Oblateness of Smaller Primary International Journal of Astronomy and Astrophysics 06 6 93-3 Published Online September 06 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/0.436/ijaa.06.6305 Halo Orbits around Sun-Earth

More information

Dynamical system theory and numerical methods applied to Astrodynamics

Dynamical system theory and numerical methods applied to Astrodynamics Dynamical system theory and numerical methods applied to Astrodynamics Roberto Castelli Institute for Industrial Mathematics University of Paderborn BCAM, Bilbao, 20th December, 2010 Introduction Introduction

More information

Dynamical Systems, the Three-Body Problem

Dynamical Systems, the Three-Body Problem Dynamical Systems, the Three-Body Problem and Space Mission Design Wang Sang Koon, Martin W. Lo, Jerrold E. Marsden, Shane D. Ross Control and Dynamical Systems, Caltech and JPL, Pasadena, California,

More information

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS

TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS TRANSFER ORBITS GUIDED BY THE UNSTABLE/STABLE MANIFOLDS OF THE LAGRANGIAN POINTS Annelisie Aiex Corrêa 1, Gerard Gómez 2, Teresinha J. Stuchi 3 1 DMC/INPE - São José dos Campos, Brazil 2 MAiA/UB - Barcelona,

More information

Formation Flying near the Libration Points in the Elliptic Restricted Three- Body Problem

Formation Flying near the Libration Points in the Elliptic Restricted Three- Body Problem Formation Flying near the Libration Points in the Elliptic Restricted Three- Body Problem Mai Bando Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan and Akira Ichikawa Nanzan University, Seto, Aichi

More information

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics CHAOS VOLUME 10, NUMBER 2 JUNE 2000 Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics Wang Sang Koon a) Control and Dynamical Systems, Caltech 107-81, Pasadena,

More information

Interplanetary Trajectory Design using Dynamical Systems Theory

Interplanetary Trajectory Design using Dynamical Systems Theory Interplanetary Trajectory Design using Dynamical Systems Theory THESIS REPORT by Linda van der Ham 8 February 2012 The image on the front is an artist impression of the Interplanetary Superhighway [NASA,

More information

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University

CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS. K.C. Howell and B.G. Marchand Purdue University CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS K.C. Howell an B.G. Marchan Purue University 1 Previous Work on Formation Flight Multi-S/C Formations in the 2BP Small Relative

More information

Design of a Multi-Moon Orbiter

Design of a Multi-Moon Orbiter C C Dynamical A L T E C S H Design of a Multi-Moon Orbiter Shane D. Ross Control and Dynamical Systems and JPL, Caltech W.S. Koon, M.W. Lo, J.E. Marsden AAS/AIAA Space Flight Mechanics Meeting Ponce, Puerto

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the EARTH TO HALO ORBIT TRANSFER TRAJECTORIES A Thesis Submitted to the Faculty of Purdue University by Raoul R. Rausch In Partial Fulfillment of the Requirements for the Degree of Master of Science August

More information

MIT Weakly Nonlinear Things: Oscillators.

MIT Weakly Nonlinear Things: Oscillators. 18.385 MIT Weakly Nonlinear Things: Oscillators. Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts MA 02139 Abstract When nonlinearities are small there are various

More information

MathematicS. In Action

MathematicS. In Action MathematicS In Action Grégory Archambeau, Philippe Augros & Emmanuel Trélat Eight-shaped Lissajous orbits in the Earth-Moon system Volume 4 (2011), p. 1-23.

More information

Lectures on Periodic Orbits

Lectures on Periodic Orbits Lectures on Periodic Orbits 11 February 2009 Most of the contents of these notes can found in any typical text on dynamical systems, most notably Strogatz [1994], Perko [2001] and Verhulst [1996]. Complete

More information

Regions Near the Libration Points Suitable to Maintain Multiple Spacecraft

Regions Near the Libration Points Suitable to Maintain Multiple Spacecraft AIAA/AAS Astrodynamics Specialist Conference 13-16 August 212, Minneapolis, Minnesota AIAA 212-4666 Regions Near the Libration Points Suitable to Maintain Multiple Spacecraft A. Héritier andk.c.howell

More information

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Natural Regions Near the Collinear Libration Points Ideal for Space Observations with Large Formations

Natural Regions Near the Collinear Libration Points Ideal for Space Observations with Large Formations DOI 10.1007/s40295-014-0027-8 Natural Regions Near the Collinear Libration Points Ideal for Space Observations with Large Formations Aurélie Héritier Kathleen C. Howell American Astronautical Society 2014

More information

BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem

BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem BINARY ASTEROID PAIRS A Systematic Investigation of the Full Two-Body Problem Michael Priolo Jerry Marsden, Ph.D., Mentor Shane Ross, Graduate Student, Co-Mentor Control and Dynamical Systems 107-81 Caltech,

More information

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS

COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS AAS 11-423 COMPARISON OF LOW-ENERGY LUNAR TRANSFER TRAJECTORIES TO INVARIANT MANIFOLDS Rodney L. Anderson and Jeffrey S. Parker INTRODUCTION In this study, transfer trajectories from the Earth to the Moon

More information

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics

Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics Wang Sang Koon Control and Dynamical Systems and JPL Caltech 17-81, Pasadena, CA 91125 koon@cds.caltech.edu

More information

Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy

Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy Quasi-Periodic Orbits of the Restricted Three-Body Problem Made Easy Egemen Kolemen, N. Jeremy Kasdin and Pini Gurfil Mechanical and Aerospace Engineering, Princeton, NJ 08544, ekolemen@princeton.edu Mechanical

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

Periodic orbits above the ecliptic in the solar sail. restricted 3-body problem

Periodic orbits above the ecliptic in the solar sail. restricted 3-body problem Periodic orbits above the ecliptic in the solar sail restricted 3-body problem Thomas J. Waters and Colin R. McInnes Department of Mechanical Engineering, University of Strathclyde, Glasgow, G1 1XJ, Scotland,

More information

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 10 SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID F. Gabern, W.S. Koon

More information

DYNAMICAL EVOLUTION OF NATURAL FORMATIONS IN LIBRATION POINT ORBITS IN A MULTI-BODY REGIME

DYNAMICAL EVOLUTION OF NATURAL FORMATIONS IN LIBRATION POINT ORBITS IN A MULTI-BODY REGIME DYNAMICAL EVOLUTION OF NATURAL FORMATIONS IN LIBRATION POINT ORBITS IN A MULTI-BODY REGIME Aurélie Héritier Advanced Concepts Team, ESTEC, PPC-PF, Keplerlaan 1-221 AZ Noordwijk - The Netherlands Kathleen

More information

Design of low energy space missions using dynamical systems theory

Design of low energy space missions using dynamical systems theory C C Dynamical A L T E C S H Design of low energy space missions using dynamical systems theory Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Collaborators: J.E. Marsden

More information

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits

Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Trajectory Correction manoeuvres in the Transfer to Libration Point Orbits Gerard Gómez, Manuel Marcote IEEC & Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, Gran Via 545, 87 Barcelona,

More information

Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Wang Sang Koon Control and Dynamical Systems, Caltech

Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Wang Sang Koon Control and Dynamical Systems, Caltech Theory and Computation of Non-RRKM Reaction Rates in Chemical Systems with 3 or More D.O.F. Gabern, Koon, Marsden, and Ross Wang Sang Koon Control and Dynamical Systems, Caltech koon@cds.caltech.edu Outline

More information

MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS

MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS AAS 5-6 MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS Prasenjit Sengupta and Srinivas R. Vadali The modeling and control of a Fizeau-type interferometer

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators

An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators An efficient homomtopy-based Poincaré-Lindstedt method for the periodic steady-state analysis of nonlinear autonomous oscillators Zhongming Chen, Kim Batselier, Haotian Liu, Ngai Wong The University of

More information

OPTIMAL CONTROL FOR HALO ORBIT MISSIONS

OPTIMAL CONTROL FOR HALO ORBIT MISSIONS z OPTIMAL CONTROL FOR HALO ORBIT MISSIONS Radu Serban Wang Sang Koon Martin Lo Jerrold E.Marsden Linda R.Petzold Shane D.Ross Roby S.Wilson Department of Mechanical and Environmental Engineering, University

More information

TEMPORARY SATELLITE CAPTURE OF SHORT-PERIOD JUPITER FAMILY COMETS FROM THE PERSPECTIVE OF DYNAMICAL SYSTEMS. AThesis. Submitted to the Faculty

TEMPORARY SATELLITE CAPTURE OF SHORT-PERIOD JUPITER FAMILY COMETS FROM THE PERSPECTIVE OF DYNAMICAL SYSTEMS. AThesis. Submitted to the Faculty TEMPORARY SATELLITE CAPTURE OF SHORT-PERIOD JUPITER FAMILY COMETS FROM THE PERSPECTIVE OF DYNAMICAL SYSTEMS AThesis Submitted to the Faculty of Purdue University by Belinda Marchand In Partial Fulfillment

More information

Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods

Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods Libration Orbit Mission Design: Applications Of Numerical And Dynamical Methods David Folta and Mark Beckman NASA - Goddard Space Flight Center Libration Point Orbits and Applications June 1-14, 22, Girona,

More information

Time-Dependent Invariant Manifolds Theory and Computation

Time-Dependent Invariant Manifolds Theory and Computation Time-Dependent Invariant Manifolds Theory and Computation Cole Lepine June 1, 2007 Abstract Due to the complex nature of dynamical systems, there are many tools that are used to understand the nature of

More information

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Exoplanet Detection and Characterization with Mid-Infrared Interferometry Exoplanet Detection and Characterization with Mid-Infrared Interferometry Rachel Akeson NASA Exoplanet Science Institute With thanks to Peter Lawson for providing material Sagan Workshop July 21, 2009

More information

A qualitative analysis of bifurcations to halo orbits

A qualitative analysis of bifurcations to halo orbits 1/28 spazio A qualitative analysis of bifurcations to halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work in collaboration with S. Bucciarelli, A. Celletti, G.

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report

Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. Final Summer Undergraduate Research Fellowship Report Optimal Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists Final Summer Undergraduate Research Fellowship Report September 25, 2009 Natasha Bosanac Mentor: Professor Jerrold

More information

The Higgins-Selkov oscillator

The Higgins-Selkov oscillator The Higgins-Selkov oscillator May 14, 2014 Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The system is ẋ = k 0 k 1 xy 2, (1 ẏ = k 1 xy 2 k 2 y. (2 The unknowns x and y, being

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Bifurcation of Fixed Points

Bifurcation of Fixed Points Bifurcation of Fixed Points CDS140B Lecturer: Wang Sang Koon Winter, 2005 1 Introduction ẏ = g(y, λ). where y R n, λ R p. Suppose it has a fixed point at (y 0, λ 0 ), i.e., g(y 0, λ 0 ) = 0. Two Questions:

More information

THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN

THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN AAS 4-288 THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST TRAJECTORY DESIGN Martin W. Lo *, Rodney L. Anderson, Gregory Whiffen *, Larry Romans * INTRODUCTION An initial study of techniques to be used in

More information

Design of a Multi-Moon Orbiter. Jerrold E. Marsden

Design of a Multi-Moon Orbiter. Jerrold E. Marsden C A L T E C H Control & Dynamical Systems Design of a Multi-Moon Orbiter Jerrold E. Marsden Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ marsden/ Wang Sang Koon (CDS), Martin Lo (JPL),

More information

An Introduction To Libration Point Orbits

An Introduction To Libration Point Orbits An Introduction To Libration Point Orbits Allan McInnes Last revised: July 5, 2009 Contents 1 Introduction 1 2 Background 2 2.1 The Circular Restricted Three-Body Problem..................... 2 2.2 Libration

More information

Periodic Orbits in Rotating Second Degree and Order Gravity Fields

Periodic Orbits in Rotating Second Degree and Order Gravity Fields Chin. J. Astron. Astrophys. Vol. 8 (28), No. 1, 18 118 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Periodic Orbits in Rotating Second Degree and Order Gravity Fields Wei-Duo Hu

More information

Natural Motion around the Martian Moon Phobos

Natural Motion around the Martian Moon Phobos Natural Motion around the Martian Moon Phobos The Dynamical Substitutes of the Libration Point Orbits in an Elliptic Three-Body Problem with Gravity Harmonics M. Zamaro J.D. Biggs Abstract The Martian

More information

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space

Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space Noname manuscript No. (will be inserted by the editor) Initial Condition Maps of Subsets of the Circular Restricted Three Body Problem Phase Space L. Hagen A. Utku P. Palmer Received: date / Accepted:

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Earth-to-Halo Transfers in the Sun Earth Moon Scenario

Earth-to-Halo Transfers in the Sun Earth Moon Scenario Earth-to-Halo Transfers in the Sun Earth Moon Scenario Anna Zanzottera Giorgio Mingotti Roberto Castelli Michael Dellnitz IFIM, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany (e-mail:

More information

Spacecraft formation flight at sun-earth/moon libration points

Spacecraft formation flight at sun-earth/moon libration points Scholars' Mine Doctoral Dissertations Student Research & Creative Works Summer 2009 Spacecraft formation flight at sun-earth/moon libration points Douglas Robert Tolbert Follow this and additional works

More information

Connecting orbits and invariant manifolds in the spatial restricted three-body problem

Connecting orbits and invariant manifolds in the spatial restricted three-body problem INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1571 1606 NONLINEARITY PII: S0951-7715(04)67794-2 Connecting orbits and invariant manifolds in the spatial restricted three-body problem GGómez 1,WSKoon

More information

STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS

STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS IAA-AAS-DyCoSS2-05-08 STABILITY OF ORBITS NEAR LARGE MASS RATIO BINARY SYSTEMS Natasha Bosanac, Kathleen C. Howell and Ephraim Fischbach INTRODUCTION With recent scientific interest into the composition,

More information

Set oriented methods, invariant manifolds and transport

Set oriented methods, invariant manifolds and transport C C Dynamical A L T E C S H Set oriented methods, invariant manifolds and transport Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Caltech/MIT/NASA: W.S. Koon, F. Lekien,

More information

PERIODIC ORBITS AND FORMATION FLYING NEAR THE LIBRATION POINTS Mai Bando (1) and Akira Ichikawa (2)

PERIODIC ORBITS AND FORMATION FLYING NEAR THE LIBRATION POINTS Mai Bando (1) and Akira Ichikawa (2) PERIODIC ORBITS AND FORMATION FLYING NEAR THE LIBRATION POINTS Mai Bando (1) and Akira Ichikawa (2) (1) Kyoto University, Gokasho, Uji, Kyoto 611-11, +81-774-38-3848, m-bando@rish.kyoto-u.ac.jp (2) Nanzan

More information

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network

Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network C C Dynamical A L T E C S H Chaotic Motion in the Solar System: Mapping the Interplanetary Transport Network Shane D. Ross Control and Dynamical Systems, Caltech http://www.cds.caltech.edu/ shane W.S.

More information

Optimal Trajectory Control of an Occulter-Based Planet-Finding Telescope

Optimal Trajectory Control of an Occulter-Based Planet-Finding Telescope Optimal Trajectory Control of an Occulter-Based Planet-Finding Telescope Egemen Kolemen and N. Jeremy Kasdin Princeton University, Princeton, NJ, 08544, USA The optimal configuration of a satellite formation

More information

Answers to Problem Set Number MIT (Fall 2005).

Answers to Problem Set Number MIT (Fall 2005). Answers to Problem Set Number 6. 18.305 MIT (Fall 2005). D. Margetis and R. Rosales (MIT, Math. Dept., Cambridge, MA 02139). December 12, 2005. Course TA: Nikos Savva, MIT, Dept. of Mathematics, Cambridge,

More information

Stability of the Lagrange Points, L 4 and L 5

Stability of the Lagrange Points, L 4 and L 5 Stability of the Lagrange Points, L 4 and L 5 Thomas Greenspan January 7, 014 Abstract A proof of the stability of the non collinear Lagrange Points, L 4 and L 5. We will start by covering the basics of

More information

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration

Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Design of Low Fuel Trajectory in Interior Realm as a Backup Trajectory for Lunar Exploration Sato, Y.; Grover, P.; Yoshikawa, S. TR0- June

More information

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo A Toolbox for Preliminary Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo Mission Analysis and Design PAMSIT IMAGO ATOM-C EPIC Massimiliano Vasile, Stefano

More information

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University

DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University DESIGN AND CONTROL OF FORMATIONS NEAR THE LIBRATION POINTS OF THE SUN-EARTH/MOON EPHEMERIS SYSTEM * K. C. Howell and B. G. Marchand Purdue University ABSTRACT The concept of formation flight of multiple

More information

Dynamical Systems, the Three-Body Problem and Space Mission Design

Dynamical Systems, the Three-Body Problem and Space Mission Design Dynamical Systems, the Three-Body Problem and Space Mission Design Wang Sang Koon California Institute of Technology Martin W. Lo Jet Propulsion Laboratory Jerrold E. Marsden California Institute of Technology

More information

13 th AAS/AIAA Space Flight Mechanics Meeting

13 th AAS/AIAA Space Flight Mechanics Meeting Paper AAS 3-3 CONTROL STRATEGIES FOR FORMATION FLIGHT IN THE VICINITY OF THE LIBRATION POINTS K.C. Howell and B.G. Marchand School of Aeronautics and Astronautics Purdue University West Lafayette, IN 4797-8

More information

an author's

an author's an author's https://oatao.univ-toulouse.fr/21190 Beauregard, Laurent and Blazquez, Emmanuel and Lizy-Destrez, Stéphanie Optimized transfers between Quart- invariant manifolds.(2018) In: 7th International

More information

Identifying Safe Zones for Planetary Satellite Orbiters

Identifying Safe Zones for Planetary Satellite Orbiters AIAA/AAS Astrodynamics Specialist Conference and Exhibit 16-19 August 2004, Providence, Rhode Island AIAA 2004-4862 Identifying Safe Zones for Planetary Satellite Orbiters M.E. Paskowitz and D.J. Scheeres

More information

I ve Got a Three-Body Problem

I ve Got a Three-Body Problem I ve Got a Three-Body Problem Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Mathematics Colloquium Fitchburg State College November 13, 2008 Roberts (Holy Cross)

More information

Time frequency analysis of the restricted three-body problem: transport and resonance transitions

Time frequency analysis of the restricted three-body problem: transport and resonance transitions INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (24) S351 S375 CLASSICAL AND QUANTUM GRAVITY PII: S264-9381(4)7736-4 Time frequency analysis of the restricted three-body problem: transport and

More information

I. Dynamics and phase space around the Libration Points

I. Dynamics and phase space around the Libration Points Libration Point Orbits and Applications G. Gómez, M. W. Lo and J. J. Masdemont (eds.) c 23 World Scientific Publishing Company LIBRATION POINT ORBITS: A SURVEY FROM THE DYNAMICAL POINT OF VIEW G. GÓMEZ

More information

DETC DELAY DIFFERENTIAL EQUATIONS IN THE DYNAMICS OF GENE COPYING

DETC DELAY DIFFERENTIAL EQUATIONS IN THE DYNAMICS OF GENE COPYING Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA DETC2007-3424

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

The Pennsylvania State University. The Graduate School. College of Engineering HALO ORBIT DESIGN IN THE CIRCULAR RESTRICTED

The Pennsylvania State University. The Graduate School. College of Engineering HALO ORBIT DESIGN IN THE CIRCULAR RESTRICTED The Pennsylvania State University The Graduate School College of Engineering HALO ORBIT DESIGN IN THE CIRCULAR RESTRICTED THREE-BODY PROBLEM USING DIFFERENTIAL EVOLUTION A Thesis in Aerospace Engineering

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

This is an author-deposited version published in : Eprints ID : 13810

This is an author-deposited version published in :   Eprints ID : 13810 Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Operational Aspects of Space Weather-Related Missions

Operational Aspects of Space Weather-Related Missions Operational Aspects of Space Weather-Related Missions Richard G. Marsden, ESA/SCI-SH Outline SOHO: Example of Near-Earth Observatory-class Mission Ulysses: Example of Deep Space Monitor-class Mission Solar

More information

Answers to Problem Set Number MIT (Fall 2005).

Answers to Problem Set Number MIT (Fall 2005). Answers to Problem Set Number 5. 18.305 MIT Fall 2005). D. Margetis and R. Rosales MIT, Math. Dept., Cambridge, MA 02139). November 23, 2005. Course TA: Nikos Savva, MIT, Dept. of Mathematics, Cambridge,

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

Towards stability results for planetary problems with more than three bodies

Towards stability results for planetary problems with more than three bodies Towards stability results for planetary problems with more than three bodies Ugo Locatelli [a] and Marco Sansottera [b] [a] Math. Dep. of Università degli Studi di Roma Tor Vergata [b] Math. Dep. of Università

More information

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009

Orbiting L 2 Observation Point in Space. Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 Orbiting L 2 Observation Point in Space Herschel-Planck Mission Analysis Martin Hechler ESOC 19/03/2009 LIBRATION (LANGRANGE) POINTS IN THE SUN-EARTH SYSTEM Libration Points: 5 Lagrange Points L 1 and

More information

FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand

FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand 1 FORMATIONS NEAR THE LIBRATION POINTS: DESIGN STRATEGIES USING NATURAL AND NON-NATURAL ARCS K. C. Howell and B. G. Marchand Formations Near the Libration Points ŷ ˆx Moon L 2 Deputy S/C (Orbit Chief Vehicle)

More information