AP Physics C. Multiple Choice. Dynamics

Size: px
Start display at page:

Download "AP Physics C. Multiple Choice. Dynamics"

Transcription

1 Slide 1 / 36 P Physics C Multiple Choice ynamics

2 Slide 2 / 36 1 ball moves horizontally with an initial velocity v1, as shown above. It is then struck by a tennis racket. fter leaving the racket, the ball moves vertically with a velocity v2, which is smaller in magnitude than v1. Which of the following vectors best represents the direction of the average force that the stick exerts on the ball? < < double- click to edit> > < < double- double- < double- click click click to to edit> to edit> edit> > > > < < double- click to edit> > B C

3 Slide 3 / 36 2 satellite is orbiting the arth. If F is the magnitude of the force exerted by the arth on the satellite and FS is the magnitude of the force exerted by the satellite on the arth, then which of the following is true? F is much greater than F S. B F is slightly greater than F S. C F is equal to F S. F is slightly greater than F S F is much greater than F S

4 Slide 4 / 36 3 n object released from rest at time t = 0 slides down a frictionless incline 2 meters during the first 2 seconds. The distance traveled by the object during the time interval from t = 2 second to t = 3 seconds is approximately, B C 2.5 m 4.5 m 9 m 11 m 13 m

5 Slide 5 / 36 4 marble of mass m moves along a path with a speed defined by the function v = bt2 + c, where t is time and b and c are constants. What is the magnitude F of the net force on the particle at time t = t1? B bt c 3mbt 1 + 2c C mbt 1 mbt 1 + c 2mbt 1

6 Slide 6 / 36 5 force F is exerted by a broom handle on the head of the broom, which has a mass m. The handle is at an angle ( to the horizontal, as shown above. The work done by the force on the head of the broom as it moves a distance d across a horizontal floor is B C Fd sinθ Fd cosθ Fm cosθ Fm tanθ Fmd sinθ

7 Slide 7 / 36 6 body s position as it moves on a straight path is given by the equation x = 2t3 3t2 + 4t, where x is in meters and t is in seconds. The net force on the body is equal to zero when t is equal to B C zero 1/2 s 3 s 4/5 s 5 s

8 Slide 8 / 36 7 The parabola below is a graph of speed v as a function of time t for an object. Which of the following graphs best represents the magnitude F of the net force exerted on the object as a function of time t? V < < double- click to edit> > B < < double- click to edit> > C < < double- click to edit> > < < double- click to edit> > < < double- click to edit> > T

9 Slide 9 / 36 8 descending box of mass 500 kg is uniformly decelerated to rest over a distance of 4 m by a rope in which the tension is 6000 N. The speed vi of the elevator at the beginning of the 4 m descent is most nearly B C 4 m/s 10 m/s 12 m/s 16 m/s 22 m/s

10 Slide 10 / 36 9 When the frictionless system shown below is accelerated by an applied force of magnitude Fa, the tension in the string between the blocks is () 2 Fa (B) Fa (C) (3/5) Fa () (2/5) Fa () 3 Fa B < double- click to edit> > C < < < double- < < < double- click to edit> > < double- click click to click to edit> edit> to > edit> > >

11 Slide 11 / Two 0.5 kilogram blocks are connected by a string that passes over a frictionless pulley, as shown below. The blocks are initially held at rest. If a third block with a mass of 0.25 kilograms is added on top of one of the 0.5 kilogram blocks as shown and the objects are released, the magnitude of the acceleration of the 0.25 kilogram object is most nearly 10.0 m/s 2 B 6.0 m/s 2 C 4.0 m/s m/s m/s 2

12 Slide 12 / newton weight is suspended by two strings as shown below. The tension T in the slanted string is B C 50 N 100 N 150 N 200 N 250 N

13 Slide 13 / rubber band ball of mass m is attached to a string of length R as shown below. The ball is released from rest from position X where the string is horizontal, swings through position Y where the string is vertical, and reaches position Z where the string is again horizontal. What are the directions of the acceleration vectors of the ball at positions Y and Z? Position Y Position Z ownward ownward B ownward To the right C Upward ownward Upward To the left To the right To the left

14 Slide 14 / s shown below, two blocks are pushed along a horizontal frictionless surface by a 30 newton force to the right. The force that the 4kilogram block exerts on the 6kilogram block is B C 8 newtons to the left 8 newtons to the right 10 newtons to the left 12 newtons to the left 12 newtons to the right

15 Slide 15 / mass m moves on a curved path from point X to point Y. Which of the following diagrams indicates a possible combination of the net force F on the mass, and the velocity v and acceleration a of the mass at the location shown? B C

16 Slide 16 / Two identical massless springs are hung from the ceiling. The springs suspend a block of mass 2.4 kg, as shown below. When the block is in equilibrium, each spring is stretched an additional 0.3 meters. The force constant of each spring is most nearly: () 40 N/m (B) 48 N/m (C) 60 N/m () 80 N/m () 96 N/m B < < double- click to edit> > < < double- click to edit> > < < double- click to edit> > < < double- click to edit> > C < < double- click to edit> >

17 Slide 17 / kilogram block lies on an inclined plane. The incline is 8 meters wide and 6 meters tall. The coefficient of friction between the plane and the block is 0.3. The magnitude of the force F necessary to move the block up the plane with constant speed is most nearly B C 64 N 76 N 82 N 90 N 108 N

18 Slide 18 / figure of a dancer on a music box moves counterclockwise at constant speed around the path shown above. The path is such that the lengths of its segments, WX, XY, YZ, and ZW, are equal. rcs WX and YZ are semicircles. Which of the following best represents the magnitude of the dancer's acceleration as a function of time t during one trip around the path, beginning at point W? B C

19 Slide 19 / ball is released from rest at time t = 0 and falls in the presence of air, which exerts a resistant force. The acceleration a of the ball is given by a = g - bv, where v is the object's velocity and b is a constant. If limiting cases for large and small values of t are considered, which of the following is a possible expression for the speed of the object as an explicit function of time? B v = g(1-e -bt )/b V = (ge ht )/b C v = gt - bt 2 v = (g + a)t/b v = v 0 + gt, v 0 0

20 Slide 20 / s shown above, a block of mass m is pulled across a rough surface by a force F exerted at an angle Θ with the horizontal. The frictional force on the block exerted by the surface has magnitude f. What is the acceleration of the block? F/m B FcosΘ /m C (F-f)/m (FcosΘ-f)/m (FsinΘ-mg)/m

21 Slide 21 / s shown above, a block of mass m is pulled across a rough surface by a force F exerted at an angle Θ with the horizontal. The frictional force on the block exerted by the surface has magnitude f. What is the coefficient of friction between the block and the surface? B C f/mg mg/f (mg-fcosθ)/f f/(mg-fcosθ) f/(mg-fsinθ)

22 Slide 22 / kg object moves according to the function: x= 3t 2-4t+7. Which of the following represents the net force that acts on the object? B C 52 N 60N 67 N 78 N 84 N

23 Slide 23 / 36 Questions The system above consists of three blocks, m 1, m 2 and m 3 where m 1 and m 2 are attached to a virtually massless cord and m 3 sits on top of m 1. The system is attached to a massless pulley and accelerates downward. There is no friction between the surface and m 1 however there is friction between the m 1 and m 3. The coefficient of kinetic friction is µ however the coefficient of static friction is not given. Block m 3 does not slide off of block m Find the acceleration of m 2 m 1 g/(m 2 +m 3 ) B (m 1 +m 2 +m 3 )/m 2 g C m 2 g/(m 1 +m 2 +m 3 ) (m 1 +m 3 )g/m 2 (m 1 +m 3 )/m 2 g

24 Slide 24 / What coefficient of static friction must there be in order for m 3 not to slide off of block m 1? m 2 /(m 1 +m 2 +m 3 ) B m 1 /(m 2 +m 3 ) C (m 1 +m 3 )/m 2 (m 1 +m 2 +m 3 )/m 2 m 3 /(m 1 +m 2 +m 3 )

25 Slide 25 / Find the acceleration of block m 3. µg(m 1 +m 2 +m 3 )/m 3 B µm 3 g/m 1 C µg µg(m 1 +m 3 )/m 2 µgm 3 /(m 1 +m 2 +m 3 )

26 Slide 26 / What is the acceleration of block m 2? (m 2 -µm 3 )g/(m 1 +m 2 ) B m 2 g/µ(m 1 +m 3 ) C (m 1 +m 2 +m 3 )µ/3m 1 g (m 1 +m 3 ) µg (m 1 +m 3 )g/µ(m 1 +m 2 +m 3 )

27 Slide 27 / ball of mass m falls in the presence of air resistance. The resistive force is represented by F=bv 2 where b is a constant and v represents the ball s velocity. The acceleration of the ball is most nearly B C (mg)/v b-g (g-bv 2 )/m (bv+g)/m bvg

28 Slide 28 / rubber band ball is suspended by two strings of unequal lengths. Which of the following is true about T 1 and T 2 in the strings? T 1 < T 2 B T 1 > T 2 C T 1 = T 2 T 1 T 2 T 1 - T 2 =mg (T 1 +T 2 )sinѳ=mg

29 Slide 29 / Questions newton force is pushing a 5 kg box is being pushed up an incline at a 53 angle (cos53 =0.6, sin53 =0.8). The coefficient of kinetic friction is 0.5. Which diagram best represents the block s weight W, normal force F n and the friction force F r on the block? B C B C

30 Slide 30 / The normal force on the block is B C 10 N 20 N 30 N 40 N 50 N

31 Slide 31 / Calculate the block s acceleration as it moves up the incline 0.5 m/s 2 B 1.0 m/s 2 C 2.9 m/s m/s m/s 2

32 Slide 32 / truck of mass 5m collides head on with a car of mass 3m. F T represents the force the truck applies to the car. F C represents the force the car applies to the truck. Which of the following is true? B C F T > F C F T <F C F T =F C 3F T =5F C 5F T =3Fc

33 Slide 33 / car is traveling with velocity v and sees a kid playing with a ball in the street. The driver slams on the brakes with a force F and stops in time for the kid to move away safely. If the car was traveling twice as fast how much force would be required to stop at the same spot? F/4 B F/2 C F 2F 4F

34 Slide 34 / kg block and 10 kg block are set up on an incline plane using a pulley system (Friction is not negligible). The 30 kg block accelerates downward while the 10 kg block is accelerating up the incline. The acceleration is equal to 2m/s 2 etermine the tension in the string. B C 200 N 210 N 220 N 230 N 240 N

35 Slide 35 / kg block and 10 kg block are set up on an incline plane using a pulley system (Friction is not negligible). The 30 kg block accelerates downward while the 10 kg block is accelerating up the incline. The acceleration is equal to 2m/s 2 etermine the friction force acting on the 10 kg block. B C 75 N 100 N 140 N 160 N 175 N

36 Slide 36 / 36

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3 1. A sphere with a radius of 1.7 cm has a volume of: A) 2.1 10 5 m 3 B) 9.1 10 4 m 3 C) 3.6 10 3 m 3 D) 0.11 m 3 E) 21 m 3 2. A 25-N crate slides down a frictionless incline that is 25 above the horizontal.

More information

Chapter 2 Dynamics 51

Chapter 2 Dynamics 51 Chapter 2 Dynamics 51 52 AP Physics Multiple Choice Practice Dynamics SECTION A Linear Dynamics 1. A ball of mass m is suspended from two strings of unequal length as shown above. The magnitudes of the

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

Name: AP Physics C: Kinematics Exam Date:

Name: AP Physics C: Kinematics Exam Date: Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's

More information

AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

More information

Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date. Newton s Laws B FR Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

Webreview practice test. Forces (again)

Webreview practice test. Forces (again) Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

66 Chapter 6: FORCE AND MOTION II

66 Chapter 6: FORCE AND MOTION II Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the

More information

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105

(35+70) 35 g (m 1+m 2)a=m1g a = 35 a= =3.27 g 105 Coordinator: Dr. W. L-Basheer Monday, March 16, 2015 Page: 1 Q1. 70 N block and a 35 N block are connected by a massless inextendable string which is wrapped over a frictionless pulley as shown in Figure

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

More information

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

More information

AP Physics 1 - Test 05 - Force and Motion

AP Physics 1 - Test 05 - Force and Motion P Physics 1 - Test 05 - Force and Motion Score: 1. brick slides on a horizontal surface. Which of the following will increase the magnitude of the frictional force on it? Putting a second brick on top

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans:

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: N Ans: Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

AP Physics: Newton's Laws 2

AP Physics: Newton's Laws 2 Assignment Due Date: December 12, 2011 AP Physics: Newton's Laws 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A lamp with a mass m = 42.6 kg is hanging

More information

An Accelerating Hockey Puck

An Accelerating Hockey Puck Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY.

Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. Help Desk: 9:00-5:00 Monday-Thursday, 9:00-noon Friday, in the lobby of MPHY. SI (Supplemental Instructor): Thomas Leyden (thomasleyden@tamu.edu) 7:00-8:00pm, Sunday/Tuesday/Thursday, MPHY 333 Chapter

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Physics 53 Summer Exam I. Solutions

Physics 53 Summer Exam I. Solutions Exam I Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols for the quantities given, and standard constants such as g. In numerical questions

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.

B C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6. 1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (

More information

Physics Exam 2 October 11, 2007

Physics Exam 2 October 11, 2007 INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

More information

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1

Phys101 Second Major-162 Zero Version Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Coordinator: Dr. Kunwar S. Saturday, March 25, 2017 Page: 1 Q1. Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 20 N, acting due east, and the other

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Review: Advanced Applications of Newton's Laws

Review: Advanced Applications of Newton's Laws Review: Advanced Applications of Newton's Laws 1. The free-body diagram of a wagon being pulled along a horizontal surface is best represented by a. A d. D b. B e. E c. C 2. The free-body diagram of a

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

Friction is always opposite to the direction of motion.

Friction is always opposite to the direction of motion. 6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

Physics 2211 M Quiz #2 Solutions Summer 2017

Physics 2211 M Quiz #2 Solutions Summer 2017 Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant

More information

第 1 頁, 共 7 頁 Chap5 1. Test Bank, Question 9 The term "mass" refers to the same physical concept as: weight inertia force acceleration volume 2. Test Bank, Question 17 Acceleration is always in the direction:

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity

Chapter 4. Forces and Newton s Laws of Motion. F=ma; gravity Chapter 4 Forces and Newton s Laws of Motion F=ma; gravity 0) Background Galileo inertia (horizontal motion) constant acceleration (vertical motion) Descartes & Huygens Conservation of momentum: mass x

More information

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer

Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Phys101-T121-First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics Page of Solutionbank M Exercise A, Question A particle P of mass 0. kg is moving along a straight horizontal line with constant speed m s. Another particle Q of mass 0.8 kg is moving in the same direction

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. 1. Which statement describes the gravitational force and the electrostatic force between two charged particles? A) The gravitational force may be either attractive or repulsive, whereas the electrostatic

More information

University of Houston Mathematics Contest: Physics Exam 2017

University of Houston Mathematics Contest: Physics Exam 2017 Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)

Review 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information