Waves and Instabilities in Dusty Plasmas

Size: px
Start display at page:

Download "Waves and Instabilities in Dusty Plasmas"

Transcription

1 15 th Topical Conference on RF Power in Plasmas May 20 22, 2003 Jackson Hole, Wyoming Waves and Instabilities in Dusty Plasmas Bob Merlino University of Iowa

2 Outline What is a dusty plasma? Where are dusty plasmas? Charging of dust particles Waves in dusty plasmas

3 Dusty Plasmas Dust represents much of the solid matter in the universe and this component often coexists with the ionized matter forming a dusty plasma. Dust is often present in laboratory plasmas as well either by choice or circumstance.

4 What is a dusty plasma? plasma = electrons + ions - + Plasma small particle of solid matter absorbs electrons and ions becomes negatively charged Debye shielding D + + -

5 Importance of Charged Dust the dust acquires an electrical charge and thus is subject to electromagnetic as well as gravitational forces the charged dust particles participate in the collective plasma processes

6 DUSTY PLASMAS Natural 1. Solar nebula 2. planetary rings 3. interstellar medium 4. comet tails 5. noctilucent clouds 6. Lightning 7. snow Man-made 1. Microelectronic processing 2. rocket exhaust 3. flames 4. fusion devices 5. H bomb

7 Rosette Nebula Our solar system accumulated out of a dense cloud of gas and dust, forming everything that is now part of our world.

8 A flame is a very weakly ionized plasma that contains soot particles. An early temperature measurement in a dusty plasma.

9 Comet Hale-Bopp

10 Spokes in Saturn s B Ring Voyager 2 Nov Cassini- Huygens July 2004

11 Semiconductor Processing System MHz gas dust qe mg E substrate PUMP silane (SiH 4 ) + Ar + O 2 SiO 2 particles

12 Semiconductor Manufacturing Si dust

13 Physics Today August 1994

14 Dusty Plasma DUST

15 Dust Charging Processes electron and ion collection secondary emission UV induced photoelectron emission Total current to a grain = 0 Σ I = I e + I i + I sec + I pe = 0

16 The Charge on a Dust Grain In typical lab plasmas I sec = I pe = 0 Electron thermal speed >> ion thermal speed so the grains charge to a negative potential V S relative to the plasma, until the condition I e = I i is achieved. kte evs Ie = ene exp π a me kte kti evs Ii = eni 1 π a mi kti 2 2 electron repulsion ion enhancement a Q = (4πε o a) V S

17 Typical Lab Plasma For T e = T i = T in a hydrogen plasma V S = 2.5 (kt/e) If T 1 ev and a = 1 µm, Q 2000 e Mass: m m p

18 Dust Charge Measurements 2 Walch, Horanyi, & Robertson, Phys. Rev. Lett. 75, 838 (1995) Diameter (micron) Graphite Glass Electron Energy (ev)

19 Waves in dusty plasmas electrostatic dust ion-cyclotron waves (EDIC) dust ion acoustic waves (DIA) dust ion acoustic shocks (DIAS) dust acoustic waves (DA) Dust cyclotron mode Strongly coupled dusty plasmas

20 Effect of dust on plasma waves the presence of dust modifies the characteristics of the usual plasma modes, even at frequencies where the dust does not participate in the wave motion the dust provides an immobile charge neutralizing background n = n + Z n i e d d

21 Dust Modes new, low frequency (~ few Hz) modes in which the dust grains participate in the wave motion appear in the dispersion relations the dust dynamics can be observed visually since the dust motion can be imaged and recorded on tape

22 Quasineutrality in dusty plasmas For low frequency waves the condition holds in both zero and first order ni = ne + Zdnd defining: ε = n n do io we characterize the dusty plasma using the quantity εz d which is the fraction of negative charge on the dust grains

23 Fluid theory of Low frequency electrostatic waves in dusty plasmas Three component plasma: electrons, ions, negative dust nα I. + ( nαvα) = 0 t vα II. nαmα + nαmα( vα ) vα + qαnα ϕ t q n ( v B) = 0 α α α. i = e + d d III n n Z n

24 New Phenomena in Dusty Plasmas Unlike ordinary plasma, or plasmas containing negative ions, the charge on a dust grain is not constant, but fluctuates with the local plasma potential. This leads to new damping effects and new mechanisms for wave growth.

25 Fluid theory: mode frequencies for ion and electron modes we treat the dust as an immobile negative background for dust modes we can neglect the electron and ion inertia terms For excitation conditions (growth rates, critical drifts, etc.) we must use kinetic theory

26 Dust Ion Acoustic Mode DIA: ion-acoustic wave modified by dust v p Dispersion relation: ω kt kt = = + K m m Z i e i i 1 d ( ε ) 1 2 v p = 0 1 εζ C DIA

27 DIA Kinetic Theory Dust acoustic waves are normally heavily Landau damped in a plasma with T e = T i. However the presence of negatively charged dust can drastically reduce the damping T e δ π me Te 2T i γ = ωr δ δ e 8 + mi T i 1 δ = 1 = εz d - γ εz

28 Dust Ion Acoustic Wave Experiment Ta Hot Plate LANGMUIRPROBE rotating dust dispenser K oven end plate probe 1.5 DIA 1.0 DIA PHASE VELOCITY phase speed (a) ε Z d k i /k r Ki/K r (b) ε Z d

29 DIA - Conclusion Ion acoustic waves which would otherwise not propagate in a plasma with T e = T i can propagate in a plasma with a sufficient amount of negatively charged dust. In the presence of negative dust, the wave phase velocity increases, decreasing the effect of ion Landau damping.

30 Experimental setup Rotating Dust Dispenser HP Cs B EP G LP (a) PG n (b) z

31 DIA Shocks results

32 DIA Shocks results

33 EDIC: fluid theory Electrostatic ion-cyclotron waves excited by electron current along the magnetic field Propagate at large angle to B ω 2 kti kt =Ω + K e + m m (1 εz 2 2 ci =Ω ci K CDIA i i d

34 Electrostatic dust ion-cycloton instability (EDIC)

35 EDIC- kinetic theory results EIC instability driven by current along B As more negative charge is carried by the dust, the critical drift needed to excite the instability decreases the instability is easier to excite in a dusty plasma v de /v eth δ = 1/(1 εz d ) V. W. Chow & M. Rosenberg, Planet. Space Sci. 44, 465 (1996)

36 Dust acoustic waves Dust dynamics Electrons & Ions nd ( ndvd) + = 0 t x vd vd nd ϕ mn d d + vd ktd ezn d d 0 t x + = x x ne ϕ n+ ϕ kte ene = 0; kt+ + en+ = 0 x x x x Quasineutrality n = n + Z n + e d d

37 Combining the dust momentum equation with the plasma equations we see that (for the case of cold dust, T d =0). vd d d e mn = ( p+ p+ ) x x where p e + p + is the total pressure due to electrons and ions. In the dust acoustic wave the inertial is provided by the massive dust particles and the electrons and ions provide the restoring force

38 DA Dispersion relation Monochromatic plane wave solutions for T e = T i = T kt fλ = CDA = Zd md 1 1+ ε ε where ε = n do /n +o dust mass

39 DUST IN A GLOW DISCHARGE QE Anode Glow Plasma B E Anode N 2 mg Dust Tray Vacuum vessel Levitated Grains Dust: kaolin (aluminum silicate) PS +

40 Dust Acoustic Wave Image wavefronts DA Movie

41 Dust Acoustic Wave Dispersion Relation K (cm -1 ) theory ω (s -1 )

42 Electrostatic dust cyclotron mode EDIC involves cyclotron motion of the dust magnetized dust Dispersion relation: ω =Ω + K kt + εz d 2 cd d md + Ti Te ε Zd =Ω + KC cd DA 1 1 ( / )(1 )

43 Gyroradius of dust particles r d = mv d d d ez B kt 3 d md a, Zd a, vd = m d rd a 1 2

44 Gyroradius of dust particles 10 1 [Td=0.025 ev] [Td=1.0 ev] [Td = 0.1 ev] 0.1 B = 800 G dust radius (microns)

45 Solid state dusty plasmas In a typical plasma 2 ez 2 4πε od Γ = << 1 kt d In a dusty plasma the interaction energy is 2 multiplied by Z d which can be very large, so that Γ > 1 is possible The dust grains may then arrange themselves in a regular lattice.

46 Coulomb Crystal John Goree Univ. Iowa triangular lattice with hexagonal symmetry

47 Waves in strongly coupled dusty plasmas The presence of short scale correlations gives rise to novel modifications of the collective behavior Both compressional and transverse shear waves are possible

48 Compressional and shear waves

49 Summary/Conclusions Dusty plasmas are not uncommon in the lab and are ubiquitous in the Universe Presence of dust modifies both the excitation and propagation of plasma waves New, very low frequency dust modes Collective fluctuations in dusty plasmas may provide mechanism for structuring

Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI. MARLAM, September 27th, 2013

Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI. MARLAM, September 27th, 2013 Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI MARLAM, September 27th, 2013 1. Introduction OUTLINE 2. Waves in dusty plasmas: Effect of dust on collective processes Methods of analysis

More information

A DUSTY PLASMA PRIMER

A DUSTY PLASMA PRIMER A DUSTY PLASMA PRIMER What is a dusty plasma, where are dusty plasmas, and why do we study them Robert L. Merlino Department of Physics and Astronomy The University of Iowa, Iowa City IA, 52242 email:

More information

DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES

DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES 1 DESIGN CONSIDERATIONS FOR A LABORATORY DUSTY PLASMA WITH MAGNETIZED DUST PARTICLES Bob Merlino Department of Physics and Astronomy The University of Iowa Iowa City, IA 52242 October 15, 2009 The design

More information

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments.

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments. 53rd Annual Meeting of the APS Division of Plasma Physics BI2.00005 Monday November 14, 2011 Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma

More information

Laboratory studies of waves and instabilities in dusty plasmas*

Laboratory studies of waves and instabilities in dusty plasmas* PHYSICS OF PLASMAS VOLUME 5, NUMBER 5 MAY 1998 Laboratory studies of waves and instabilities in dusty plasmas* R. L. Merlino,,a) A. Barkan, C. Thompson, and N. D Angelo Department of Physics and Astronomy,

More information

Dust density waves: ion flows and finite temperature effects

Dust density waves: ion flows and finite temperature effects Dust density waves: ion flows and finite temperature effects Edward Thomas, Jr. Physics Department, Auburn University This work is supported by National Science Foundation and the US Department of Energy

More information

Development of the Magnetized Dusty Plasma Experiment (MDPX)

Development of the Magnetized Dusty Plasma Experiment (MDPX) Development of the Magnetized Dusty Plasma Experiment (MDPX) Edward Thomas, Jr., Ross Fisher, Keith Wood, Spencer LeBlanc, Kevin Gilmore, Darrick Artis Physics Department, Auburn University Robert Merlino,

More information

Electromagneic Waves in a non- Maxwellian Dusty Plasma

Electromagneic Waves in a non- Maxwellian Dusty Plasma Electromagneic Waves in a non- Maxwellian Dusty Plasma Nazish Rubab PhD student, KF University Graz IWF-OEAW Graz 26 January, 2011 Layout Dusty Plasma Non-Maxwellian Plasma Kinetic Alfven Waves Instability

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR

ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR 1 ELECTROSTATIC ION-CYCLOTRON WAVES DRIVEN BY PARALLEL VELOCITY SHEAR R. L. Merlino Department of Physics and Astronomy University of Iowa Iowa City, IA 52242 December 21, 2001 ABSTRACT Using a fluid treatment,

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas! The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas! Single particle motion

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Alex Samarian School of Physics, University of Sydney, NSW 2006, Australia

Alex Samarian School of Physics, University of Sydney, NSW 2006, Australia Alex Samarian School of Physics, University of Sydney, NSW 2006, Australia What is Dusty (Complex) Plasma? Laboratory Dusty Plasma Why Study Complex (Dusty) Plasma? Worldwide Research Activities Complex

More information

Introduction. Chapter Plasma: definitions

Introduction. Chapter Plasma: definitions Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

Effect of Dust Grain Parameters on Ion Beam Driven Ion Cyclotron Waves in a Magnetized Plasma

Effect of Dust Grain Parameters on Ion Beam Driven Ion Cyclotron Waves in a Magnetized Plasma Progress In Electromagnetics Research M, Vol. 36, 161 168, 2014 Effect of Dust Grain Parameters on Ion Beam Driven Ion Cyclotron Waves in a Magnetized Plasma Ved Prakash 1, 4, Suresh C. Sharma 2, Vijayshri

More information

Nonlinear processes associated with Alfvén waves in a laboratory plasma

Nonlinear processes associated with Alfvén waves in a laboratory plasma Nonlinear processes associated with Alfvén waves in a laboratory plasma Troy Carter Dept. Physics and Astronomy and Center for Multiscale Plasma Dynamics, UCLA acknowledgements: Brian Brugman, David Auerbach,

More information

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford

PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT. Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 1 PLASMA: WHAT IT IS, HOW TO MAKE IT AND HOW TO HOLD IT Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford 2 Overview Why do we need plasmas? For fusion, among other things

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

Effect of Positive Dust on Non-linear Properties of Ion-acoustic Waves

Effect of Positive Dust on Non-linear Properties of Ion-acoustic Waves Effect of Positive Dust on Non-linear Properties of Ion-acoustic Waves Sanjit Kumar Paul Department of Basic Sciences and Humanities, University of Asia Pacific,Green Road, Dhaka-1215, Bangladesh. Abstract-The

More information

Simulation results for magnetized plasmas

Simulation results for magnetized plasmas Chapter 4 Simulation results for magnetized plasmas In this chapter, we consider the dust charge fluctuation mode and lower hybrid wave damping in a magnetized plasma. Also, we consider plasma instabilities

More information

Beams and magnetized plasmas

Beams and magnetized plasmas Beams and magnetized plasmas 1 Jean-Pierre BOEUF LAboratoire PLAsma et Conversion d Energie LAPLACE/ CNRS, Université Paul SABATIER, TOULOUSE Beams and magnetized plasmas 2 Outline Ion acceleration and

More information

Optical Pumping of Rubidium

Optical Pumping of Rubidium Optical Pumping of Rubidium Janet Chao, Dean Henze, Patrick Smith, Kent Lee April 27, 2013 Abstract 1 INTRODUCTION Irving Langmuir coined the term plasma in a paper in 1928, ushering a whole new and exciting

More information

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) 1 POSTER JP1.00100 [Bull. APS 51, 165 (2006)] DPP06 Meeting of The American Physical Society Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) Su-Hyun Kim, Robert Merlino,

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

Structure formation and wave phenomena in moderately coupled dusty plasmas

Structure formation and wave phenomena in moderately coupled dusty plasmas University of Iowa Iowa Research Online Theses and Dissertations Fall 2011 Structure formation and wave phenomena in moderately coupled dusty plasmas Jonathon Robert Heinrich University of Iowa Copyright

More information

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS

ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS ELECTROHYDRODYNAMICS IN DUSTY AND DIRTY PLASMAS Gravito-Electrodynamics and EHD by HIROSHI KIKUCHI Institute for Environmental Electromagnetics, Tokyo, Japan KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Effect of parallel velocity shear on the excitation of electrostatic ion cyclotron waves

Effect of parallel velocity shear on the excitation of electrostatic ion cyclotron waves 4 February 2002 Physics Letters A 293 (2002) 260 265 www.elsevier.com/locate/pla Effect of parallel velocity shear on the excitation of electrostatic ion cyclotron waves E.P. Agrimson, N. D Angelo, R.L.

More information

Experiments with a Supported Dipole

Experiments with a Supported Dipole Experiments with a Supported Dipole Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force Introduction Ben Levitt and Dmitry Maslovsky Collisionless Terrella

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

COMPRESSIVE AND RAREFACTIVE DUST-ACOUSTIC SOLITARY STRUCTURES IN A MAGNETIZED TWO-ION-TEMPERATURE DUSTY PLASMA. 1. Introduction

COMPRESSIVE AND RAREFACTIVE DUST-ACOUSTIC SOLITARY STRUCTURES IN A MAGNETIZED TWO-ION-TEMPERATURE DUSTY PLASMA. 1. Introduction COMPRESSIVE AND RAREFACTIVE DUST-ACOUSTIC SOLITARY STRUCTURES IN A MAGNETIZED TWO-ION-TEMPERATURE DUSTY PLASMA A.A. MAMUN Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh E-mail:

More information

Dusty plasmas: Experiments on nonlinear dust acoustic waves, shocks, and structures

Dusty plasmas: Experiments on nonlinear dust acoustic waves, shocks, and structures 1 Dusty plasmas: Experiments on nonlinear dust acoustic waves, shocks, and structures R. L. Merlino, J. R. Heinrich, 1 S-H. Kim, and J. K. Meyer Department of Physics and Astronomy The University of Iowa,

More information

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh

Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh SOLITARY AND SHOCK WAVES IN DUSTY PLASMAS Dr. A A Mamun Professor of Physics Jahangirnagar University Dhaka, Bangladesh OUTLINE Introduction Static Dust: DIA Waves DIA Solitary Waves DIA Shock Waves Mobile

More information

Electrostatic Dust Transport On Airless Planetary Bodies

Electrostatic Dust Transport On Airless Planetary Bodies Electrostatic Dust Transport On Airless Planetary Bodies Joseph Schwan Xu Wang, Hsiang-Wen Hsu, Eberhard Grün, Mihály Horányi Laboratory for Atmospheric and Space Physics (LASP), NASA/SSERVI s Institute

More information

The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas

The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas Cent. Eur. J. Phys. 12(9) 214 71-76 DOI: 1.2478/s11534-14-495-2 Central European Journal of Physics The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas Research Article

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Nonlinear interaction of compressional waves in a 2D dusty. plasma crystal. Abstract

Nonlinear interaction of compressional waves in a 2D dusty. plasma crystal. Abstract Nonlinear interaction of compressional waves in a D dusty plasma crystal V. Nosenko,K.Avinash,J.Goree,andB.Liu Department of Physics and Astronomy, The University of Iowa, Iowa City Iowa 54 (May 30, 003)

More information

Dust Acoustic Solitary Waves in Saturn F-ring s Region

Dust Acoustic Solitary Waves in Saturn F-ring s Region Commun. Theor. Phys. 55 (011 143 150 Vol. 55, No. 1, January 15, 011 Dust Acoustic Solitary Waves in Saturn F-ring s Region E.K. El-Shewy, 1, M.I. Abo el Maaty, H.G. Abdelwahed, 1 and M.A. Elmessary 1

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Author's personal copy

Author's personal copy Physics Letters A 376 (2012) 3199 3203 Contents lists available at SciVerse ScienceDirect Physics Letters A www.elsevier.com/locate/pla Consequences of an attractive force on collective modes and dust

More information

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation

Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Langmuir Probes as a Diagnostic to Study Plasma Parameter Dependancies, and Ion Acoustic Wave Propogation Kent Lee, Dean Henze, Patrick Smith, and Janet Chao University of San Diego (Dated: May 1, 2013)

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties

Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties Dependency of Gabor Lens Focusing Characteristics on Nonneutral Plasma Properties Kathrin Schulte HIC for FAIR Workshop Riezlern, 14.03.2013 Outline 1. 2. 3. 4. 1. 1.1. Relevant to know about Gabor lenses...or

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

Plasma waves in the fluid picture I

Plasma waves in the fluid picture I Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation General dispersion equation Dielectric response

More information

Dynamic Phenomena in Complex Plasmas

Dynamic Phenomena in Complex Plasmas The University of Sydney Dynamic Phenomena in Complex Plasmas N.F. Cramer, S.V. Vladimirov, A.A. Samarian and B.W. James School of Physics, University of Sydney, Australia Dusty Plasmas at the University

More information

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators

Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators Kristoffer Menzel 13th WPDP 1 Modeling Dust-Density Wave Fields as a System of Coupled van der Pol Oscillators Kristoffer Ole Menzel, Tim Bockwoldt, Oliver Arp, Alexander Piel 13th WPDP, Waco May 21, 2012

More information

Shock Waves in a Dusty Plasma with Positive and Negative Dust where Ions are Non-Thermal

Shock Waves in a Dusty Plasma with Positive and Negative Dust where Ions are Non-Thermal Shock Waves in a Dusty Plasma with Positive and Negative Dust where Ions are Non-Thermal Gurudas Mandal a and Prasanta Chatterjee b, a Department of ECE, East West University Mohakhali, Dhaka-, Bangladesh

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Characteristic Behavior of Ion Acoustic Wave in A dusty Plasma

Characteristic Behavior of Ion Acoustic Wave in A dusty Plasma Characteristic Behavior of Ion Acoustic Wave in A dusty Plasma M. K. Jassim Department of physics College of Education Iben AL-Haitham University of Baghdad Abstract In this research we make an attempt

More information

MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT

MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT M.H.THOMA 1, H. HÖFNER 1, S. A. KHRAPAK 1, M. KRETSCHMER 1, R.A. QUINN 1, S. RATYNSKAIA 1, G.E. MORFILL 1, A. USACHEV,

More information

Fundamentals of Plasma Physics Basic concepts

Fundamentals of Plasma Physics Basic concepts Fundamentals of Plasma Physics Basic concepts APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra Since the dawn of Mankind men has tried to understand plasma physics...

More information

Space Plasma Physics Thomas Wiegelmann, 2012

Space Plasma Physics Thomas Wiegelmann, 2012 Space Plasma Physics Thomas Wiegelmann, 2012 1. Basic Plasma Physics concepts 2. Overview about solar system plasmas Plasma Models 3. Single particle motion, Test particle model 4. Statistic description

More information

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission )

Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Simulation Study of High-Frequency Magnetosonic Waves Excited by Energetic Ions in Association with Ion Cyclotron Emission ) Mieko TOIDA 1),KenjiSAITO 1), Hiroe IGAMI 1), Tsuyoshi AKIYAMA 1,2), Shuji KAMIO

More information

Cluster fusion in a high magnetic field

Cluster fusion in a high magnetic field Santa Fe July 28, 2009 Cluster fusion in a high magnetic field Roger Bengtson, Boris Breizman Institute for Fusion Studies, Fusion Research Center The University of Texas at Austin In collaboration with:

More information

Laboratory Studies of Lunar Dust Transport

Laboratory Studies of Lunar Dust Transport Laboratory Studies of Lunar Dust Transport X. Wang, M. Horanyi and S. Robertson Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) 4.15.2010 Lunar plasma Environment Evidence of electrostatic

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Wave-particle interactions in dispersive shear Alfvèn waves

Wave-particle interactions in dispersive shear Alfvèn waves Wave-particle interactions in dispersive shear Alfvèn waves R. Rankin and C. E. J. Watt Department of Physics, University of Alberta, Edmonton, Canada. Outline Auroral electron acceleration in short parallel

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Charging of particles in a plasma

Charging of particles in a plasma Plasma Sourcas Sci. Techno!. 3 (1994) 400-406. Printed in the UK Charging of particles in a plasma J Goree Department of Physics and Astronomy, The University of Iowa, Iowa City, la 52242, USA Received

More information

Formation of a trap in the dusty plasma of photovoltaic atomic battery

Formation of a trap in the dusty plasma of photovoltaic atomic battery nd International Symposium on Plasma Chemistry July 5-, 5; Antwerp, Belgium Formation of a trap in the dusty plasma of photovoltaic atomic battery A.V. Filippov, A.F. Pal, A.N. Starostin and V.. Cherkovets

More information

EP225 Lecture 31 Quantum Mechanical E ects 1

EP225 Lecture 31 Quantum Mechanical E ects 1 EP225 Lecture 31 Quantum Mechanical E ects 1 Why the Hydrogen Atom Is Stable In the classical model of the hydrogen atom, an electron revolves around a proton at a radius r = 5:3 10 11 m (Bohr radius)

More information

Shapes of agglomerates in plasma etching reactors

Shapes of agglomerates in plasma etching reactors Shapes of agglomerates in plasma etching reactors Fred Y. Huang a) and Mark J. Kushner b) University of Illinois, Department of Electrical and Computer Engineering, 1406 West Green Street, Urbana, Illinois

More information

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum

Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum Measuring velocity of ion acoustic waves through plasma Hannah Saddler, Adam Egbert, and Warren Mardoum (Dated: 11 December 2015) This experiment aimed to measure velocity of ion acoustic waves propagating

More information

Excitation of Ion Cyclotron Instability in. Inhomogeneous Rotating Dusty Plasma

Excitation of Ion Cyclotron Instability in. Inhomogeneous Rotating Dusty Plasma Adv. Studies Theor. Phys., Vol. 6, 2012, no. 18, 863-868 Excitation of Ion Cyclotron Instability in Inhomogeneous Rotating Dusty Plasma Atef A. El-bendary Physics Department, Faculty of Science, Tanta

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Many fundamental issues in classical condensed matter physics such as crystallization, liquid structure, phase separation, glassy states, etc. can be addressed experimentally using

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas

Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory plasmas The th meeting of study on Plasma Science for Young Scientists, Mar. 7-9 28, JAEA, Naka, Ibaraki, Japan Coexistence of the drift wave spectrum and low-frequency zonal flow potential in cylindrical laboratory

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

Lecture11: Plasma Physics 1. APPH E6101x Columbia University

Lecture11: Plasma Physics 1. APPH E6101x Columbia University Lecture11: Plasma Physics 1 APPH E6101x Columbia University 1 Last Lecture Introduction to plasma waves Basic review of electromagnetic waves in various media (conducting, dielectric, gyrotropic, ) Basic

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Is plasma important? Influence molecule formation?

Is plasma important? Influence molecule formation? Is plasma important? Influence molecule formation? Plasma Structure (space & time) Influence? Daan Schram Eindhoven University of Technology d.c.schram@tue.nl http://www.tue.nl/en/employee/ep/e/d/ep-uid/19780797/?no_cache=1&chash=e23e831cf0c6bebeac6023f04dd3c4b6

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Mitglied der Helmholtz-Gemeinschaft Introduction to Plasma Physics CERN School on Plasma Wave Acceleration 24-29 November 2014 Paul Gibbon Outline Lecture 1: Introduction Definitions and Concepts Lecture

More information

Experimental Investigations of Dusty Plasmas

Experimental Investigations of Dusty Plasmas Experimental Investigations of Dusty Plasmas Robert L. Merlino Department of Physics and Astronomy, The University of Iowa Iowa City, Iowa 52242 USA Abstract. This paper highlights some of the history

More information

Proportional Counters

Proportional Counters Proportional Counters 3 1 Introduction 3 2 Before we can look at individual radiation processes, we need to understand how the radiation is detected: Non-imaging detectors Detectors capable of detecting

More information

PIC-MCC simulations for complex plasmas

PIC-MCC simulations for complex plasmas GRADUATE SUMMER INSTITUTE "Complex Plasmas August 4, 008 PIC-MCC simulations for complex plasmas Irina Schweigert Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk Outline GRADUATE SUMMER

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

Theory of dust voids in plasmas

Theory of dust voids in plasmas PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999 Theory of dust voids in plasmas J. Goree,* G. E. Morfill, V. N. Tsytovich, and S. V. Vladimirov Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse,

More information

Spectroscopy and Molecular Emission. Fundamental Probes of Cold Gas

Spectroscopy and Molecular Emission. Fundamental Probes of Cold Gas Spectroscopy and Molecular Emission Fundamental Probes of Cold Gas Atomic Lines Few atoms have fine structure transitions at low enough energy levels to emit at radiofrequencies Important exceptions HI

More information

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference Science 30 Unit C Review Outline GCCHS Negatively charged Positively charged Coulomb Conductor Electric potential difference volt voltage Insulator Test body Gravitational field Field lines Solar wind

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion

Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion Kinetic Theory of Instability-Enhanced Collisions and Its Application to Langmuir s Paradox and the Multi-Species Bohm Criterion Scott D. Baalrud in collaboration with Chris C. Hegna and James D. Callen

More information

Spin Stability of Aysmmetrically Charged Plasma Dust. I.H. Hutchinson. February 2004

Spin Stability of Aysmmetrically Charged Plasma Dust. I.H. Hutchinson. February 2004 PSFC/JA-04-3 Spin Stability of Aysmmetrically Charged Plasma Dust I.H. Hutchinson February 2004 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 USA This work

More information

Magnetohydrodynamic waves in a plasma

Magnetohydrodynamic waves in a plasma Department of Physics Seminar 1b Magnetohydrodynamic waves in a plasma Author: Janez Kokalj Advisor: prof. dr. Tomaž Gyergyek Petelinje, April 2016 Abstract Plasma can sustain different wave phenomena.

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Basic plasma physics

Basic plasma physics Basic plasma physics SPAT PG Lectures Jonathan Eastwood 10-14 October 2016 Aims Provide new PhD students in SPAT and the SPC section with an overview of the most important principles in space plasma physics,

More information

Partial Energy Level Diagrams

Partial Energy Level Diagrams Partial Energy Level Diagrams 460 nm 323 nm 610 nm 330 nm 819 nm 404 nm 694 nm 671 nm 589 / 590 nm 767 / 769 nm Lithium Sodium Potassium Gas Mixtures Maximum Temperatures, C Air-Coal Gas 1825 Air-Propane

More information