Solutions to Assignment #01. (a) Use tail-to-head addition and the Parallelogram Law to nd the resultant, (a + b) = (b + a) :

Size: px
Start display at page:

Download "Solutions to Assignment #01. (a) Use tail-to-head addition and the Parallelogram Law to nd the resultant, (a + b) = (b + a) :"

Transcription

1 Solutions to Assignment # Puhalskii/Kawai Section 8. (I) Demonstrate the vector sums/di erences on separate aes on the graph paper side of our engineering pad. Let a = h; i = i j and b = h; i = i + j: (a) Use tail-to-head addition and the Parallelogram Law to nd the resultant, (a + b) = (b + a) : We place a and b tail-to-tail at rst. To form (a + b) ; we translate b so that its tail coincides with a s head. Similarl, we form (b + a) b translating the tail of a onto the head of b: We connect the tail of the rst vector to the head of the last vector to form the resultant h; i + h; i = h; i = i + j: - - (b) If a and b are tail-to-tail, then show the di erence vector (a b) : Connect the heads. The vector (a b) starts at the head of b and runs to the head of a:

2 (c) Geometricall form the sum (a + b) ; and then algebraicall evaluate ka + bk : We need two copies of a and one cop of b: Use tail-to-head addition h; i + h; i = h; 6i + h; i = h; i = i j: - - kh; ik = + ( ) = p 6: (d) Find the unit vector which has the same direction as v = a + b: Divide v b its magnitude. u = p 6 h; i : (II) Eamine the two pairs of vectors below. ONE pair of vectors is parallel. Which pair? EXPLAIN wh one pair is parallel and the other is not. First pair: u = h6; ; i and v = h; ; i Second pair: u = h 9; ; i and v = h ; ; i : The vectors in the SECOND pair are PARALLEL. The vector u is a scalar multiple of v : h 9; ; i = h ; ; i ) u = v :X In the rst pair, we have 6 = ; but ( ) = : The scalar multiplier is not the same for all three components. (III) Let A be the initial point and B be the terminal point of vector v = AB: Find the vector which has the same direction as v; but has magnitude. The two points are A (; 7) and B (; ) : We have AB = h; i and the unit vector is u = p h; i : Now stretch it out to the correct length b multipling b the scalar. [I just assumed that it was a force vector.] F = p h; i = p h; i = p Dp p E h; i = ; :

3 (IV) Complete Problem #9 on p. 69. The weight is a downward force (negative -ais component). w = h; 7i : Now add the other two forces. The resultant is the net unbalanced force on the crate. h 6; i + h77; 77i + h; 7i = h; 7i pounds. The magnitude is p + 7 = p 8 : = : pounds. The unit direction vector is p 8 h; 7i : (V) Complete Problem #9 on p. 69. [Same warning given as in the previous problem] If we diagram this on the standard aes, then let us assume that the banks of the river run verticall (north and south) and that the left bank is represented b the -ais. The still water velocit will be a vector which points to the right, and so I have designated that as the still water vector, s = h; i ft/sec. If we assume the river current runs from north to south (downward), then we have c = h; i ft/sec. Their vector sum is the actual velocit: v = s + c = h; i So in m set-up, the resultant velocit vector points into Quadrant IV The component vectors form the right triangle as seen here. The angle with respect to the -ais (the bank) is tan (=) = : = 76 : -

4 Section 8. (VI) We have two points in R : P ( ; ; ) and Q ( ; ; ) : (a) Find the distance between the points P and Q: This is the etended Pthagorean Theorem. ( ( )) + ( ( )) + ( ) = p + + = : (b) Find the component form of the vector P Q and its engineering form. Subtract the coordinates. [Terminal minus initial...] P Q = h ( ) ; ( ) ; i = h; ; i : (c) Find the unit vector which points in the opposite direction of P Q: Part (a) tells us that the magnitude of P Q is, so the unit vector in the same direction as P Q is h; ; i = ; ; ; but we want the vector in the opposite direction. Multipl b ( ) : h; ; i = ; ; :X (VII) This is similar to Problem #8 in this section. Write the given vector as the PRODUCT of its magnitude and its associated unit direction vector. v = h ; ; 6i : We have the magnitude: kh ; ; 6ik = ( ) + + ( 6) = 7: The unit vector is and thus, we can rewrite v as h ; ; 6i = 7 7 ; 7 ; 6 7 v = 7 7 ; 7 ; 6 :X 7 (VIII) This is similar to Problem # in this section. Identif the geometric shape described b the euation: + + z + z = : THIS IS A SPHERE Rewrite this euation in standard form [Complete the suare] If the coe cient of the suared term is one, then we simpl take one-half of the coe cient of the rst degree term and then suare that. + = :

5 Thus, in the rst case, we add to both sides. + + The center is located at C ( ) + to both side, and then, in the second case, we add + z + z + ; = + + z + = = : ; and its radius is R = : + (IX) Complete Problem # on p. 7. If the points are colinear (on the same line), then the vectors P Q and QR must be PARALLEL (scalar multiples of each other). P Q = h ; ; i = h ; ; i QR = h ; ; i = h; ; i : Clearl, the scalar multiplier is di erent for each component, so the are not parallel, and thus, the three points do NOT lie on the same line in D space. (X) Complete Problem # on p. 7. The weight vector points downward onl in the negative z direction. The net force on the crate is the resultant. w = h; ; i : F = h; ; i + h ; 8; 6i + h; ; i = h ; ; i : This is the net unbalanced force on the crate. Its magnitude is The unit direction vector is ( ) + + ( ) = p : = 9 pounds. p h ; ; i = p h ; ; i ; so the force vector points in this direction. [The answer in the back of the book was incorrect.] So we can sa that the general direction is h ; ; i ; since it has convenient integers as components.

Vectors in Two Dimensions

Vectors in Two Dimensions Vectors in Two Dimensions Introduction In engineering, phsics, and mathematics, vectors are a mathematical or graphical representation of a phsical quantit that has a magnitude as well as a direction.

More information

CHAPTER 2: VECTORS IN 3D

CHAPTER 2: VECTORS IN 3D CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

Analytic Geometry in Three Dimensions

Analytic Geometry in Three Dimensions Analtic Geometr in Three Dimensions. The Three-Dimensional Coordinate Sstem. Vectors in Space. The Cross Product of Two Vectors. Lines and Planes in Space The three-dimensional coordinate sstem is used

More information

Scalars distance speed mass time volume temperature work and energy

Scalars distance speed mass time volume temperature work and energy Scalars and Vectors scalar is a quantit which has no direction associated with it, such as mass, volume, time, and temperature. We sa that scalars have onl magnitude, or size. mass ma have a magnitude

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS

CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS CHAPTER 2: VECTORS IN 3D 2.1 DEFINITION AND REPRESENTATION OF VECTORS A vector in three dimensions is a quantity that is determined by its magnitude and direction. Vectors are added and multiplied by numbers

More information

Diagnostic Tests. (c) (sa sb )(sa sb ) Diagnostic Test: Algebra

Diagnostic Tests. (c) (sa sb )(sa sb ) Diagnostic Test: Algebra Diagnostic Tests Success in calculus depends to a large etent on knowledge of the mathematics that precedes calculus: algebra, analtic geometr, functions, and trigonometr. The following tests are intended

More information

1. Vectors in the Plane

1. Vectors in the Plane CHAPTER 10 Vectors and the Geometry of Space 1. Vectors in the Plane We denote the directed line segment from the point P (initial point) to the!! point Q (terminal point) as P Q. The length of P Q is

More information

DIAGNOSTIC TESTS. (c) (sa sb )(sa sb )

DIAGNOSTIC TESTS. (c) (sa sb )(sa sb ) DIAGNOSTIC TESTS Success in calculus depends to a large etent on knowledge of the mathematics that precedes calculus: algebra, analtic geometr, functions, and trigonometr. The following tests are intended

More information

7.7H The Arithmetic of Vectors A Solidify Understanding Task

7.7H The Arithmetic of Vectors A Solidify Understanding Task 7.7H The Arithmetic of Vectors A Solidify Understanding Task The following diagram shows a triangle that has been translated to a new location, and then translated again. Arrows have been used to indicate

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

Section 8.4 Vector and Parametric Equations of a Plane

Section 8.4 Vector and Parametric Equations of a Plane Section 8.4 Vector and Parametric Equations of a Plane In the previous section, the vector, parametric, and symmetric equations of lines in R 3 were developed. In this section, we will develop vector and

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Cumulative Review of Vectors

Cumulative Review of Vectors Cumulative Review of Vectors 1. For the vectors a! 1, 1, and b! 1, 4, 1, determine the following: a. the angle between the two vectors! the scalar and vector projections of a! on the scalar and vector

More information

Trigonometric Functions

Trigonometric Functions Trigonometric Functions This section reviews radian measure and the basic trigonometric functions. C ' θ r s ' ngles ngles are measured in degrees or radians. The number of radians in the central angle

More information

Math Notes on sections 7.8,9.1, and 9.3. Derivation of a solution in the repeated roots case: 3 4 A = 1 1. x =e t : + e t w 2.

Math Notes on sections 7.8,9.1, and 9.3. Derivation of a solution in the repeated roots case: 3 4 A = 1 1. x =e t : + e t w 2. Math 7 Notes on sections 7.8,9., and 9.3. Derivation of a solution in the repeated roots case We consider the eample = A where 3 4 A = The onl eigenvalue is = ; and there is onl one linearl independent

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

CHAPTER 1 MEASUREMENTS AND VECTORS

CHAPTER 1 MEASUREMENTS AND VECTORS CHPTER 1 MESUREMENTS ND VECTORS 1 CHPTER 1 MESUREMENTS ND VECTORS 1.1 UNITS ND STNDRDS n phsical quantit must have, besides its numerical value, a standard unit. It will be meaningless to sa that the distance

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems To locate a point in a plane, two numbers are necessary. We know that any point in the plane can be represented as an ordered pair (a, b) of real numbers, where a is the x-coordinate and b is the y-coordinate.

More information

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric

Trigonometric. equations. Topic: Periodic functions and applications. Simple trigonometric. equations. Equations using radians Further trigonometric Trigonometric equations 6 sllabusref eferenceence Topic: Periodic functions and applications In this cha 6A 6B 6C 6D 6E chapter Simple trigonometric equations Equations using radians Further trigonometric

More information

Space Coordinates and Vectors in Space. Coordinates in Space

Space Coordinates and Vectors in Space. Coordinates in Space 0_110.qd 11//0 : PM Page 77 SECTION 11. Space Coordinates and Vectors in Space 77 -plane Section 11. -plane -plane The three-dimensional coordinate sstem Figure 11.1 Space Coordinates and Vectors in Space

More information

Chapter 1 Graph of Functions

Chapter 1 Graph of Functions Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane

More information

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Figure 6.1: Some vectors.

Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Figure 6.1: Some vectors. Chapter 6 Vectors 6.1 Introduction Definition 6.1. A vector is a quantity with both a magnitude (size) and direction. Many quantities in engineering applications can be described by vectors, e.g. force,

More information

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 6. Additional Topics in Trigonometry. 6.6 Vectors. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 6 Additional Topics in Trigonometry 6.6 Vectors Copyright 2014, 2010, 2007 Pearson Education, Inc. 1 Obectives: Use magnitude and direction to show vectors are equal. Visualize scalar multiplication,

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. Will we call this the ABC form. Recall that the slope-intercept

More information

Review of Coordinate Systems

Review of Coordinate Systems Vector in 2 R and 3 R Review of Coordinate Systems Used to describe the position of a point in space Common coordinate systems are: Cartesian Polar Cartesian Coordinate System Also called rectangular coordinate

More information

Lecture 3. Motion in more than one dimension

Lecture 3. Motion in more than one dimension 4/9/19 Phsics 2 Olga Dudko UCSD Phsics Lecture 3 Toda: The vector description of motion. Relative Motion. The principle of Galilean relativit. Motion in more than one dimension 1D: position is specified

More information

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

10.1 Vectors. c Kun Wang. Math 150, Fall 2017 10.1 Vectors Definition. A vector is a quantity that has both magnitude and direction. A vector is often represented graphically as an arrow where the direction is the direction of the arrow, and the magnitude

More information

Lesson 9.1 Using the Distance Formula

Lesson 9.1 Using the Distance Formula Lesson. Using the Distance Formula. Find the eact distance between each pair of points. a. (0, 0) and (, ) b. (0, 0) and (7, ) c. (, 8) and (, ) d. (, ) and (, 7) e. (, 7) and (8, ) f. (8, ) and (, 0)

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Lesson 3: Free fall, Vectors, Motion in a plane (sections )

Lesson 3: Free fall, Vectors, Motion in a plane (sections ) Lesson 3: Free fall, Vectors, Motion in a plane (sections.6-3.5) Last time we looked at position s. time and acceleration s. time graphs. Since the instantaneous elocit is lim t 0 t the (instantaneous)

More information

Are You Ready? Find Area in the Coordinate Plane

Are You Ready? Find Area in the Coordinate Plane SKILL 38 Are You Read? Find Area in the Coordinate Plane Teaching Skill 38 Objective Find the areas of figures in the coordinate plane. Review with students the definition of area. Ask: Is the definition

More information

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I

APPENDIXES. B Coordinate Geometry and Lines C. D Trigonometry E F. G The Logarithm Defined as an Integral H Complex Numbers I APPENDIXES A Numbers, Inequalities, and Absolute Values B Coordinate Geometr and Lines C Graphs of Second-Degree Equations D Trigonometr E F Sigma Notation Proofs of Theorems G The Logarithm Defined as

More information

ZETA MATHS. Higher Mathematics Revision Checklist

ZETA MATHS. Higher Mathematics Revision Checklist ZETA MATHS Higher Mathematics Revision Checklist Contents: Epressions & Functions Page Logarithmic & Eponential Functions Addition Formulae. 3 Wave Function.... 4 Graphs of Functions. 5 Sets of Functions

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

y = f(x + 4) a) Example: A repeating X by using two linear equations y = ±x. b) Example: y = f(x - 3). The translation is

y = f(x + 4) a) Example: A repeating X by using two linear equations y = ±x. b) Example: y = f(x - 3). The translation is Answers Chapter Function Transformations. Horizontal and Vertical Translations, pages to. a h, k h, k - c h -, k d h 7, k - e h -, k. a A (-,, B (-,, C (-,, D (,, E (, A (-, -, B (-,, C (,, D (, -, E (,

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

5.3 Polynomials and Polynomial Functions

5.3 Polynomials and Polynomial Functions 70 CHAPTER 5 Eponents, Polnomials, and Polnomial Functions 5. Polnomials and Polnomial Functions S Identif Term, Constant, Polnomial, Monomial, Binomial, Trinomial, and the Degree of a Term and of a Polnomial.

More information

TRIGONOMETRIC RATIOS AND GRAPHS

TRIGONOMETRIC RATIOS AND GRAPHS Mathematics Revision Guides Trigonometric Ratios and Graphs Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 TRIGONOMETRIC RATIOS

More information

CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS. s K J =

CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS. s K J = CHPTER 1 INTRODUCTION ND MTHEMTICL CONCEPTS CONCEPTUL QUESTIONS 1. RESONING ND SOLUTION The quantit tan is dimensionless and has no units. The units of the ratio /v are m F = m s s (m / s) H G I m K J

More information

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole

Phys 221. Chapter 3. Vectors A. Dzyubenko Brooks/Cole Phs 221 Chapter 3 Vectors adzubenko@csub.edu http://www.csub.edu/~adzubenko 2014. Dzubenko 2014 rooks/cole 1 Coordinate Sstems Used to describe the position of a point in space Coordinate sstem consists

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

a b 0 a cos u, 0 u 180 :

a b 0 a  cos u, 0 u 180 : Section 7.3 The Dot Product of Two Geometric Vectors In hapter 6, the concept of multiplying a vector by a scalar was discussed. In this section, we introduce the dot product of two vectors and deal specifically

More information

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS

UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS Answer Ke Name: Date: UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS Part I Questions. For the quadratic function shown below, the coordinates of its verte are, (), 7 6,, 6 The verte is

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

5 Linear Graphs and Equations

5 Linear Graphs and Equations Linear Graphs and Equations. Coordinates Firstl, we recap the concept of (, ) coordinates, illustrated in the following eamples. Eample On a set of coordinate aes, plot the points A (, ), B (0, ), C (,

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Chapter 12 Vectors and the Geometr of Space Comments. What does multivariable mean in the name Multivariable Calculus? It means we stud functions that involve more than one variable in either the input

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space Chapter 13: Vectors and the Geometry of Space 13.1 3-Dimensional Coordinate System 13.2 Vectors 13.3 The Dot Product 13.4 The Cross Product 13.5 Equations of Lines and Planes 13.6 Cylinders and Quadratic

More information

Review of Essential Skills and Knowledge

Review of Essential Skills and Knowledge Review of Essential Skills and Knowledge R Eponent Laws...50 R Epanding and Simplifing Polnomial Epressions...5 R 3 Factoring Polnomial Epressions...5 R Working with Rational Epressions...55 R 5 Slope

More information

Section 8.1 Vector and Parametric Equations of a Line in

Section 8.1 Vector and Parametric Equations of a Line in Section 8.1 Vector and Parametric Equations of a Line in R 2 In this section, we begin with a discussion about how to find the vector and parametric equations of a line in R 2. To find the vector and parametric

More information

Vocabulary. The Pythagorean Identity. Lesson 4-3. Pythagorean Identity Theorem. Mental Math

Vocabulary. The Pythagorean Identity. Lesson 4-3. Pythagorean Identity Theorem. Mental Math Lesson 4-3 Basic Basic Trigonometric Identities Identities Vocabular identit BIG IDEA If ou know cos, ou can easil fi nd cos( ), cos(90º - ), cos(180º - ), and cos(180º + ) without a calculator, and similarl

More information

Notes: Vectors and Scalars

Notes: Vectors and Scalars A particle moving along a straight line can move in only two directions and we can specify which directions with a plus or negative sign. For a particle moving in three dimensions; however, a plus sign

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

Introduction to vectors

Introduction to vectors Lecture 4 Introduction to vectors Course website: http://facult.uml.edu/andri_danlov/teaching/phsicsi Lecture Capture: http://echo360.uml.edu/danlov2013/phsics1fall.html 95.141, Fall 2013, Lecture 3 Outline

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

different formulas, depending on whether or not the vector is in two dimensions or three dimensions.

different formulas, depending on whether or not the vector is in two dimensions or three dimensions. ectors The word ector comes from the Latin word ectus which means carried. It is best to think of a ector as the displacement from an initial point P to a terminal point Q. Such a ector is expressed as

More information

Writing Quadratic Functions in Standard Form

Writing Quadratic Functions in Standard Form Chapter Summar Ke Terms standard form (general form) of a quadratic function (.1) parabola (.1) leading coefficient (.) second differences (.) vertical motion model (.3) zeros (.3) interval (.3) open interval

More information

Day 1: Introduction to Vectors + Vector Arithmetic

Day 1: Introduction to Vectors + Vector Arithmetic Day 1: Introduction to Vectors + Vector Arithmetic A is a quantity that has magnitude but no direction. You can have signed scalar quantities as well. A is a quantity that has both magnitude and direction.

More information

MATH 021 UNIT 1 HOMEWORK ASSIGNMENTS

MATH 021 UNIT 1 HOMEWORK ASSIGNMENTS MATH 01 UNIT 1 HOMEWORK ASSIGNMENTS General Instructions You will notice that most of the homework assignments for a section have more than one part. Usuall, the part (A) questions ask for eplanations,

More information

LINEAR ALGEBRA - CHAPTER 1: VECTORS

LINEAR ALGEBRA - CHAPTER 1: VECTORS LINEAR ALGEBRA - CHAPTER 1: VECTORS A game to introduce Linear Algebra In measurement, there are many quantities whose description entirely rely on magnitude, i.e., length, area, volume, mass and temperature.

More information

Higher. Integration 1

Higher. Integration 1 Higher Mathematics Contents Indefinite Integrals RC Preparing to Integrate RC Differential Equations A Definite Integrals RC 7 Geometric Interpretation of A 8 Areas between Curves A 7 Integrating along

More information

7-1. Basic Trigonometric Identities

7-1. Basic Trigonometric Identities 7- BJECTIVE Identif and use reciprocal identities, quotient identities, Pthagorean identities, smmetr identities, and opposite-angle identities. Basic Trigonometric Identities PTICS Man sunglasses have

More information

12.1. Cartesian Space

12.1. Cartesian Space 12.1. Cartesian Space In most of your previous math classes, we worked with functions on the xy-plane only meaning we were working only in 2D. Now we will be working in space, or rather 3D. Now we will

More information

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem.

The standard form of the equation of a circle is based on the distance formula. The distance formula, in turn, is based on the Pythagorean Theorem. Unit, Lesson. Deriving the Equation of a Circle The graph of an equation in and is the set of all points (, ) in a coordinate plane that satisf the equation. Some equations have graphs with precise geometric

More information

Applications. 12 The Shapes of Algebra. 1. a. Write an equation that relates the coordinates x and y for points on the circle.

Applications. 12 The Shapes of Algebra. 1. a. Write an equation that relates the coordinates x and y for points on the circle. Applications 1. a. Write an equation that relates the coordinates and for points on the circle. 1 8 (, ) 1 8 O 8 1 8 1 (13, 0) b. Find the missing coordinates for each of these points on the circle. If

More information

Please Visit us at:

Please Visit us at: IMPORTANT QUESTIONS WITH ANSWERS Q # 1. Differentiate among scalars and vectors. Scalars Vectors (i) The physical quantities that are completely (i) The physical quantities that are completely described

More information

Cartesian coordinates in space (Sect. 12.1).

Cartesian coordinates in space (Sect. 12.1). Cartesian coordinates in space (Sect..). Overview of Multivariable Calculus. Cartesian coordinates in space. Right-handed, left-handed Cartesian coordinates. Distance formula between two points in space.

More information

9.4 Polar Coordinates

9.4 Polar Coordinates 9.4 Polar Coordinates Polar coordinates uses distance and direction to specify a location in a plane. The origin in a polar system is a fixed point from which a ray, O, is drawn and we call the ray the

More information

Vector components and motion

Vector components and motion Vector components and motion Objectives Distinguish between vectors and scalars and give examples of each. Use vector diagrams to interpret the relationships among vector quantities such as force and acceleration.

More information

Unit 10 - Graphing Quadratic Functions

Unit 10 - Graphing Quadratic Functions Unit - Graphing Quadratic Functions PREREQUISITE SKILLS: students should be able to add, subtract and multipl polnomials students should be able to factor polnomials students should be able to identif

More information

Chapter 2 (Operations with Integers) Bringing It All Together #1

Chapter 2 (Operations with Integers) Bringing It All Together #1 Chapter 2 (Operations with Integers) Bringing It All Together #1 Vocabulary Check Define the following vocabulary words: 1) Absolute Value: 2) Quadrant: State whether the statement is true or false. If

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level file://c:\users\buba\kaz\ouba\c_rev_a_.html Eercise A, Question Epand and simplify ( ) 5. ( ) 5 = + 5 ( ) + 0 ( ) + 0 ( ) + 5 ( ) + ( ) 5 = 5 + 0 0 + 5 5 Compare ( + ) n with ( ) n. Replace n by 5 and

More information

College Prep Math Final Exam Review Packet

College Prep Math Final Exam Review Packet College Prep Math Final Exam Review Packet Name: Date of Exam: In Class 1 Directions: Complete each assignment using the due dates given by the calendar below. If you are absent from school, you are still

More information

Eigenvectors and Eigenvalues 1

Eigenvectors and Eigenvalues 1 Ma 2015 page 1 Eigenvectors and Eigenvalues 1 In this handout, we will eplore eigenvectors and eigenvalues. We will begin with an eploration, then provide some direct eplanation and worked eamples, and

More information

2-6. _ k x and y = _ k. The Graph of. Vocabulary. Lesson

2-6. _ k x and y = _ k. The Graph of. Vocabulary. Lesson Chapter 2 Lesson 2-6 BIG IDEA The Graph of = _ k and = _ k 2 The graph of the set of points (, ) satisfing = k_, with k constant, is a hperbola with the - and -aes as asmptotes; the graph of the set of

More information

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents

Unit 3 NOTES Honors Common Core Math 2 1. Day 1: Properties of Exponents Unit NOTES Honors Common Core Math Da : Properties of Eponents Warm-Up: Before we begin toda s lesson, how much do ou remember about eponents? Use epanded form to write the rules for the eponents. OBJECTIVE

More information

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background

= x. Algebra II Notes Quadratic Functions Unit Graphing Quadratic Functions. Math Background Algebra II Notes Quadratic Functions Unit 3.1 3. Graphing Quadratic Functions Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 )

MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) MATH 120-Vectors, Law of Sinesw, Law of Cosines (20 ) *Before we get into solving for oblique triangles, let's have a quick refresher on solving for right triangles' problems: Solving a Right Triangle

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 1 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH SOME SOLUTIONS TO EXAM 1 Fall 018 Version A refers to the regular exam and Version B to the make-up 1. Version A. Find the center

More information

6. This sum can be rewritten as 4( ). We then recall the formula n =

6. This sum can be rewritten as 4( ). We then recall the formula n = . c = 9b = 3 b = 3 a 3 = a = = 6.. (3,, ) = 3 + + 3 = 9 + + 3 = 6 6. 3. We see that this is equal to. 3 = ( +.) 3. Using the fact that (x + ) 3 = x 3 + 3x + 3x + and replacing x with., we find that. 3

More information

Summary and Vocabulary

Summary and Vocabulary Chapter 2 Chapter 2 Summar and Vocabular The functions studied in this chapter are all based on direct and inverse variation. When k and n >, formulas of the form = k n define direct-variation functions,

More information

c) domain {x R, x 3}, range {y R}

c) domain {x R, x 3}, range {y R} Answers Chapter 1 Functions 1.1 Functions, Domain, and Range 1. a) Yes, no vertical line will pass through more than one point. b) No, an vertical line between = 6 and = 6 will pass through two points..

More information

A2 HW Imaginary Numbers

A2 HW Imaginary Numbers Name: A2 HW Imaginary Numbers Rewrite the following in terms of i and in simplest form: 1) 100 2) 289 3) 15 4) 4 81 5) 5 12 6) -8 72 Rewrite the following as a radical: 7) 12i 8) 20i Solve for x in simplest

More information

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract.

Find the component form of with initial point A(1, 3) and terminal point B(1, 3). Component form = 1 1, 3 ( 3) (x 1., y 1. ) = (1, 3) = 0, 6 Subtract. Express a Vector in Component Form Find the component form of with initial point A(1, 3) and terminal point B(1, 3). = x 2 x 1, y 2 y 1 Component form = 1 1, 3 ( 3) (x 1, y 1 ) = (1, 3) and ( x 2, y 2

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

MATHEMATICS Higher Grade - Paper I (Non~calculator)

MATHEMATICS Higher Grade - Paper I (Non~calculator) Higher Mathematics - Practice Eamination G Please note the format of this practice eamination is the same as the current format. The paper timings are the same, however, there are some differences in the

More information

Mathematics Numbers: Absolute Value of Functions I

Mathematics Numbers: Absolute Value of Functions I a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Numbers: Absolute Value of Functions I Science and Mathematics Education Research Group Supported by

More information

Parametric Equations for Circles and Ellipses

Parametric Equations for Circles and Ellipses Lesson 5-8 Parametric Equations for Circles and Ellipses BIG IDEA Parametric equations use separate functions to defi ne coordinates and and to produce graphs Vocabular parameter parametric equations equation

More information

Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTORS

Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTORS CS131 Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 3 VECTRS Vectors in two and three dimensional space are defined to be members of the sets R 2 and R 3 defined by: R 2 = {(x,

More information

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10

1.1 Laws of exponents Conversion between exponents and logarithms Logarithm laws Exponential and logarithmic equations 10 CNTENTS Algebra Chapter Chapter Chapter Eponents and logarithms. Laws of eponents. Conversion between eponents and logarithms 6. Logarithm laws 8. Eponential and logarithmic equations 0 Sequences and series.

More information