Pattern Recognition Techniques Applied to Biomedical Signal Processing

Size: px
Start display at page:

Download "Pattern Recognition Techniques Applied to Biomedical Signal Processing"

Transcription

1 Patter Recogitio Techiques Applied to Biomedical Sigal Processig PhD Course- Prague, October 3 Dr.Ig. David Cuesta Frau dcuesta@disca.upv.es Polytechic Uiversity o Valecia- Spai

2 Course Syllabus Patter Recogitio Systems. Amplitude samples Trace segmetatio Polygoal aprox. Wavelet Trasorm Max-Mi k-meas k-medias Sesors Preprocessig Feature Extractio Clusterig Wavelet Trasorm Dyamic Time Warpig Hidde Markov Models Dissimilarity Measures

3 Schedule 6//3 7//3 8//3 9//3 // :3 Wavelet trasorm Feature extractio Clusterig algorithms Hidde Markov Models 4.3 Dyamic Time Warpig 3//3 4//3 5//3 6//3 7//3 3

4 Course Structure Lectures. Laboratory exercises. Assigmets. Total Credits:- 4

5 Sigal Processig Itroductio to Wavelets Dr.Ig. David Cuesta Frau Polytechic Uiversity o Valecia(Spai) dcuesta@disca.upv.es

6 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 6

7 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 7

8 Sigal Processig..- Itroductio. Extract iormatio rom a sigal. Time domai is ot always the best choice. Frequecy domai: Fourier Trasorm: X ( ) x( t) jπt e dt Easily implemeted i computers: FFT. 8

9 x() t Fourier Aalysis..- Itroductio. Ca ot provide simultaeously time ad requecy iormatio:time iormatio is lost. Small chages i requecy domai cause chages everywhere i the time domai. For statioary sigals: the requecy cotet does ot chage i time, i.e.: X ( ) t 9

10 Fourier Aalysis..- Itroductio. Basis Fuctios are set: siusoids. May coeiciets eeded to describe a edge or discotiuity. I the sigal is a siusoid, it is better localized i the requecy domai. I the sigal is a square pulse, it is better localized i the time domai. x() t X ( ) t Short Time Fourier Trasorm.

11 .- Itroductio. Short Time Fourier Aalysis. Time-Frequecy Aalysis. Widowed Fourier Trasorm (STFT). FT Basis Fuctios STFT Basis Fuctios

12 .- Itroductio. Short Time Fourier Aalysis. ( t, ω ) ( t) g( t t ) ( ω t)dt STFT si Discrete versio very diicult to id. No ast trasorm. Fixed widow size (ixed resolutio): Large widows or low requecies. Small widows or high requecies. Wavelet Trasorm.

13 .- Itroductio. Wavelet Trasorm. Small wave. Eergy cocetrated i time: aalysis o ostatioary, trasiet or time-varyig pheomea. Allows simultaeous time ad requecy aalysis. 3

14 .- Itroductio. Wavelet Trasorm. Fourier: localized i requecy but ot i time. Wavelet: local i both requecy/scale (via dilatios) ad i time (via traslatios). May uctios are represeted i a more compact way. For example: uctios with discotiuities ad/or sharp spikes. Fourier trasorm: O(log ()). Wavelet trasorm: O(). 4

15 Wavelet Trasorm..- Itroductio. WT t b a ( a, b) ( t) dt STFT Basis Fuctios WT Basis Fuctios 5

16 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 6

17 .- Deiitios. Mathematical Backgroud. Topic o pure mathematics, but great applicability i may ields. Liear decompositio o a uctio: i () t c () i t i Iteger idex or the iite or iiite sum ci Expasio Coeiciets () t Expasio Set i Decompositio Uique: { () t } Basis or ( t) i 7 i

18 .- Deiitios. Mathematical Backgroud. Basis orthogoal: () t, () t () t () l k l t () t () t dt k dt k l k, The the coeiciets ca be calculated by : c Sice: k k l, l () t, () t () t () t k k dt () t () () () k t dt ci i t k t dt c i 8 i k k

19 .- Deiitios. Mathematical Backgroud. Liear decompositio o a vector: a r a r ( 3,, ) (,, ) (,, ) + (, ) 3, {(,, )(,,, )(,,, )} ( 3, ), Coordiates i R 3 Geerator system i R 3 Idepedet Orthogoal Normal Basis i R 3 9

20 .- Deiitios. Mathematical Backgroud. () t, () t () t () t I dt,where m m m { () t } Orthogoal Basis or ( t) i c Otherwise : i () t, () t () t () t i { () t, () t } Biorthogoal Basis or ( t) i ~ i () t, () t () t c i () t ci ~ i i i i

21 () t.- Deiitios. Mathematical Backgroud. Example o liear decompositio o a uctio: 3 t () t i t () t ( t i)... i i + t () t () t m dt δ m m * () t () t () t dt m m

22 .- Deiitios. Mathematical Backgroud. Example o liear decompositio o a uctio: () t 3 t () t () t + ( t ) ( t ) c c c c i, otherwise

23 3.- Deiitios. Itroductio to Wavelets Example: Four dimesioal space (our o-ull coeiciets). Sythesis Formula: () () i i c i t t () () ( ) () () () ( ) () () () ( ) () () () ( ) () () () ( ) () c c c c

24 4.- Deiitios. Itroductio to Wavelets Example: () () ( ) () () () () () () () () () ( ) ( ) ( ) ( ) () () () () c c c c c

25 5.- Deiitios. Itroductio to Wavelets Example: () () () () () () () () () () () () () () () () () () ( ) () c c c c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ c ~ T

26 .- Deiitios. Example: c ~ T ~ T ~ T c I colums are orthoormal: T T I Dual Basis T ~ T Sigle Basis 6

27 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 7

28 3.- Multiresolutio Aalysis. Problem deiitio: Time scale chage. ( t)? () t t t 8

29 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Ratioale: i a set o sigals ca be represeted by a weighted sum o ϕ(t-k), a larger set (icludig the origial), ca be represeted by a weighted sum o ϕ(t-k). Sigal aalysis at dieret requecies with dieret resolutios. Good time resolutio ad poor requecy resolutio at high requecies. Good requecy resolutio ad poor time resolutio at low requecies. Used to deie ad costruct orthoormal wavelet basis or L. Two uctios eeded: the Wavelet ad a scalig uctio. 9

30 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Eect o chagig the scale. Scalig uctio: To decompose a sigal ito ier ad ier details. Subspace : ν () t L { ()} t spa ϕ k L k () t c ϕ () () k k t t ν k Icrease the size o the subspace chagig the time scale o the scalig uctios: ϕ jk j () ( ) j t ϕ t k 3 ϕ () t

31 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Subspace : ν j { ( )} j ϕ t spa () t { } spa ϕ L 3 k () ( ) j t c () kϕ t + k t ν j k The spaed spaces are ested: ν ν ν L... ν ν... ϕ () t ν ( ) j t ν j+ () t h( ) ϕ ( t ), Z jk

32 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Example: Haar Scalig Fuctio. ϕ ϕ() t () t ϕ( t) + ϕ( t ) h () () h ϕ ( t) ϕ( t ) 3

33 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Icreasig j, the size o the subspace spaed by the scalig uctio, is also icreased. Wavelets spa the diereces betwee spaces w i. More suitable to describe sigals. Wavelets ad scalig uctios should be orthogoal: simple calculatio o coeiciets. ν ν w ν... L ν ν w w w w... 33

34 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. w w w ν () t h [] ( t ), ℵ jk ϕ j () ( ) j t t k [] h[] l ϕ[ l] ϕ, l Z l Mother Wavelet Scale Fuctio 34

35 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. g g + h h ( ) ( ) ( ) h( ) scalig uctio coeiciets accouts or orm () t g() t dt g() t + t t dt ( t) g( t) dt g( t) dt g( u) g() t u t t du 35

36 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Example: Haar Wavelet (the oldest ad simplest!). h h h h () () () () () t φ( t) φ( t ) 36

37 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. Haar Wavelet ad Scalig Fuctio: () t, t, t [, [ [,[ ϕ jk () t, t [,[ j () ( ) j t t k {, j Z, k Z} jk { ϕ j j, k Z} jk, jk, Orthoormal basis o L 37

38 3.- Multiresolutio Aalysis. Multiresolutio Formulatio. L ν w w... () t c ϕ () t + d () t k k k j k jk jk Scale Fuctio Wavelet c k () t, ϕ () t Approximatio k d jk () t, () t jk Details 38

39 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 39

40 4.- Discrete Wavelet Trasorm. Wavelet Trasorm: Buildig blocks to represet a sigal. Two dimesioal expasio. Wavelet set: c jk jk Time-Frequecy localizatio o the sigal. The calculatio o the coeiciets ca be doe eicietly. 4 () t () t c () jk t Discrete Wavelet k j jk Trasorm o () t

41 4.- Discrete Wavelet Trasorm. Wavelet Trasorm: Wavelet Systems are geerated rom a mother Wavelet by scalig ad traslatio. jk j () ( ) j t t k, j, k Z Multiresolutio coditios satisied. Filter bak: the lower resolutio coeiciets ca be calculated rom the higher resolutio coeiciets by a tree-structured algorithm. 4

42 4.- Discrete Wavelet Trasorm. Wavelet Trasorm: The eect o the Wavelet Trasorm is a covolutio to measure the similarity betwee a traslated ad scaled versio o the Wavelet ad the sigal uder aalysis. 4

43 4.- Discrete Wavelet Trasorm. Wavelet Trasorm: Wavelet Trasorm represetatio: Time-Scale Plae: 43

44 4.- Discrete Wavelet Trasorm. Wavelet Trasorm: Scale Sigal Time-Scale Plae t 44

45 4.- Discrete Wavelet Trasorm. Some Mother Wavelets: Compact Support 45

46 4.- Discrete Wavelet Trasorm. Eect o choosig dieret Mother Wavelets: The Wavelet trasorm i essece perorms a correlatio aalysis, thereore the output is expected to be maximal whe the iput sigal most resembles the mother wavelet. Depedig o the applicatio, mother wavelet should be as similar as possible to the sigal or to the sigal portio uder aalysis. For example, the Mexica Hat Wavelet is the optimal detector to id a Gaussia. 46

47 4.- Discrete Wavelet Trasorm. Eect o choosig dieret Mother Wavelets: xˆ () t x() t t xˆ () t t Adaptive Approach. t 47

48 4.- Discrete Wavelet Trasorm. Wavelet Trasorm Calculatio:. Choose a mother wavelet.. Give two values o j ad k, calculate the coeiciet accordig to: WT ( () t ) c ( t) ( jk jk t)dt t k jk j j () t 3. Traslate the Wavelet ad repeat step util the whole sigal is aalyzed. 4. Scale the Wavelet ad repeat steps ad 3. 48

49 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Follow steps -4 deied previously. Chage the expressios: DWT c jk [] [] jk jk j [] [ ] j k DWT [] c [] jk j N k N jk 49

50 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Usig Multiresolutio Aalysis: DWT ( [] ) h c d k jk [], ϕ [] [] ϕ [] [], [] [] [] 5 k jk [] h [] l ϕ[ l] l, l [] l ( ) h[ l] [] h[] l ϕ[ l] l l Z ϕ, l Z k jk

51 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Usig Multiresolutio Aalysis: DWT IDWT [] c ϕ [] + d [] k k k j k jk jk DWT IDWT Dyadic grid: [] c ϕ [] + d [] k j k,, 4,... j k, 4, 8, j k j k j j k jk jk

52 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Example: [] {,,,, 3,,,, } Haar Scalig Fuctio: ϕ() t ϕ [] δ [] + δ [ ] t 5

53 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Haar Wavelet: h h h h () () () () ϕ[ ] [] ϕ[ ] ϕ[ ] [] 53

54 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: d d d d 4 6 DWT ( [] ) For j, k,, 4, 6 c d k jk [], ϕ [] [] ϕ [] [], [] [] [] [] ( δ[] δ[ ] ) [] [] [] ( δ[ ] δ[ 3] ) [] [] 3 [] 4 [] 5 3 [] 6 [] 7 54 k jk [] {,,,, 3,,, } [] δ [] δ [ ] k jk

55 55 Itroductio to Wavelets Discrete Wavelet Trasorm Calculatio: [] [] [ ] ( ) [] [] [] [ ] [ ] ( ) [] [] [] [ ] [ ] ( ) [] [] [] [ ] [ ] ( ) [] [] c c c c δ δ δ δ δ δ δ δ [] { } 3,,,,,,, [] [] [ ] + δ δ ϕ 4.- Discrete Wavelet Trasorm. 4 6,,,, For k j

56 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: [] c k d k 56

57 57 Itroductio to Wavelets Discrete Wavelet Trasorm Calculatio: 4.- Discrete Wavelet Trasorm. 4,, For k j [] [] [ ] [ ] [ ] ( ) [] [] [] [] [ ] [ ] [ ] [ ] [ ] ( ) [] [] [] [] d d δ δ δ δ δ δ δ δ [] [ ] [] [ ] k j jk j

58 58 Itroductio to Wavelets Discrete Wavelet Trasorm Calculatio: 4.- Discrete Wavelet Trasorm. [] ϕ [ ] ϕ 3 [] [ ] k j jk j ϕ ϕ 4,, For k j [] [] [ ] [ ] [ ] ( ) [ ] [ ] [ ] [ ] [ ] ( ) c c δ δ δ δ δ δ δ δ

59 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: j Complete Decompositio (without actor ): [] 3 c k d k c k d k c k d k 59

60 6 Itroductio to Wavelets Discrete Wavelet Trasorm Calculatio: Recostructio: 4.- Discrete Wavelet Trasorm. From level j: [] [] [] ( ) [] d c k k k k k k ,,,,,,, ),,,,,,, ( ),,,,,,, (,,,,,, ϕ [] [] [] + j j k jk jk k k j k j d c ϕ

61 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Wavelet Haar.. Daubechies-4 ( 3) + ( 3 3 ) + ( 3 3 ) ( ) Daubechies Order o the Wavelet: umber o ozero coeiciets. Value o wavelet coeiciets is determied by costraits o orthogoality ad ormalizatio. 6

62 4.- Discrete Wavelet Trasorm. Discrete Wavelet Trasorm Calculatio: Calculatio to be implemeted i a computer. Is there ay method, such as FFT, or DWT eiciet calculatio? Pyramid Algorithm Basic Idea: DWT (direct ad iverse) ca be thought o as a ilterig process. 6

63 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: DWT Filterig: ( [] ) c d k jk [] h[] [][ k h k] k [], ϕ [] [] ϕ [] k [], [] [] [] jk k jk Sigal is passed through a halbad lowpass ilter Sigal is passed through a halbad highpass ilter Samplig Frequecy: π Badwidth:π 63

64 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: Ater ilterig, hal o the samples ca be elimiated: subsample the sigal by two. Subsamplig: Scale is doubled. Filterig: Resolutio is halved. Decompositio is obtaied by successive highpass ad lowpass ilterig. y y high low [] [][ k g k] k [] [][ k h k] k 64

65 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: Filters h ad g are ot idepedet. Relatio betwee ilters: g [ ] L ( ) h[] ( L ilter legth) Quadrature Mirror Filters. Sigal legth must be a power o (due to dowsamplig by ). Maximum decompositio level depeds o sigal legth. 65

66 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: [] Details Level [] g h[] [] g h[] Approximatio Level Details Level Approximatio Level

67 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: Operators otatio. G H k k [][ k g k] [][ k h k] 67

68 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: X [ Ω] A A A 4 D 4 D 3 D D A 3 π 4 π π Ω 68

69 4.- Discrete Wavelet Trasorm. Pyramid Algorithm: Recostructio. [] Details Level Details Level g [] h [] g [] h []... Approximatio Level 69

70 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 7

71 5..- Deoisig. Fiite Legth Sigal with Additive Noise: y [] x[] + σ r[], N Observatios o x + oise Noise : r [] ~ N(, ) Sigal Stadard Deviatio 7

72 5..- Deoisig. I the Trasormatio Domai: Y X + σ R where: Y Wy (W trasorm matrix). Xˆ estimate o X rom Y Diagoal liear projectio: Estimate: ( δ, δ,..., δ ), δ [ ] diag N i, xˆ W ˆ X W Y W Wy 7

73 5..- Deoisig. Geeral Method: ) Compute Y Wy ) Perorm Thresholdig i the Wavelet Domai. 3) Compute Questios: xˆ W Xˆ Which Thresholdig Method? Which Threshold? 73

74 5..- Deoisig. Thresholdig Method (Diagoal Liear Projectio): 74

75 5..- Deoisig. Threshold: Stei s Ubiased Risk Estimate (SURE). Dooho: :Sample size λ σ log( ) σ:oise scale Miimax Adaptive: based o sigular or smooth regios (i practice, heuristic idep. o sample size) 75

76 5..- Deoisig. Practical cosideratios: Sigal ormalizatio to avoid amplitude iluece over the process. Noise ca vary alog the sigal: widowed threshold. 76

77 5..- Deoisig. 77

78 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 78

79 5..- Abrupt Chage Detectio. Low level details cotai iormatio o high requecy compoets. Small support wavelets are better suited to detect such chages. Noise makes it diicult. Applicatio: QRS complex detectio. 79

80 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 8

81 5.3.- Log-Term Evolutio. Foudatios: Slow chages which take place i the sigal, i.e., low requecy variatios. I the time domai: Wavelet trasorm has high resolutio i time at low requecies. I the requecy domai: the higher the approximatio level, the arrower the low pass ilter is. Problem: depedig o the baselie(tred) requecy, the approximatio level may chage. The baselie is cosidered as additive oise. 8

82 5.3.- Log-Term Evolutio. Fiite Legth Sigal with baselie variatio: y [] x[] + b[], N Observatios o x + baselie Baselie Sigal 8

83 5.3.- Log-Term Evolutio. With the Wavelet Approximatio o certai level, we estimate the baselie. It ca be used as extra iormatio about the sigal or to reduce the baselie oscillatio. WT xˆ ( y[] ) bˆ [] [] y[] bˆ [] 83

84 5.3.- Log-Term Evolutio. Applicatio: Electrocardiogram baselie waderig reductio x 4 84

85 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 85

86 Methods: Compressio. Quatizatio i the Wavelet domai. The set o possible coeiciets values is reduced: ĉ j c j 86

87 Methods: Compressio. Discard those coeiciets cosidered isigiicat : Threshold. Basis choice is very importat. Coeiciets Histogram: 87

88 5.4.- Compressio. Applicatio: ECG compressio. 88

89 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 89

90 6.- The Matlab Wavelet Toolbox. Matlab: GUI (type wavemeu). 9

91 6.- The Matlab Wavelet Toolbox. Matlab: Commad Lie. 9

92 6.- The Matlab Wavelet Toolbox. Fuctios: DWT: Sigle-level -D wavelet decompositio. [CA,CD] DWT(X,'wame'); Approximatio Coeiciets Detail Coeiciets Sigal Mother Wavelet Example: X[ ]; [CA,CD] DWT(X, haar'); CA CD

93 6.- The Matlab Wavelet Toolbox. Fuctios: IDWT: Sigle-level -D wavelet recostructio. X IDWT(CA,CD,'wame'); WAVEINFO: Provides iormatio about the wavelets i the toolbox. WAVEINFO( wame'); DWTMODE: Sets extesio mode to hadle border distortio. DWTMODE( status'); sym,zpd,sp,sp,ppd 93

94 6.- The Matlab Wavelet Toolbox. Fuctios: WAVEDEC: Multiple-level -D wavelet decompositio. [C,L] WAVEDEC(X,N,'wame') APPCOEF: Extracts -D approximatio coeiciets. A APPCOEF(C,L,'wame',N) DETCOEF: Extracts -D detail coeiciets. D DETCOEF(C,L,N) 94

95 6.- The Matlab Wavelet Toolbox. Fuctios: WRCOEF: Recostructs sigle brach rom -D coeiciets. X WRCOEF('type',C,L,'wame',N) WDEN: Automatic -D deoisig usig wavelets. [XD,CXD,LXD] WDEN(X,TPTR,SORH,SCAL,N,'wame') Deoised sigal Noisy sigal Threshold selectio rule: rigrsure heursure sqtwolog Threshold rescalig oe sl ml Mother Wavelet Decompositio Level Sot s or hard h thresholdig 95

96 6.- The Matlab Wavelet Toolbox. Example: Deoisig a ECG sigal usig Wavelets (WaveletExample). 96

97 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 97

98 Wavelet Packets. 7.- Other Topics. 98

99 7.- Other Topics. D Wavelet Trasorm. Applicatio to bidimesioal sigals: images. Noise reductio, compressio, etc. Image is cosidered a matrix: Wavelet trasorm is applied o rows ad colums. 99

100 Computer Graphics. 7.- Other Topics. Image illumiatio computatio. Figure aimatio. Surace modellig. Image compressio. Image query. Etc.

101 7.- Other Topics. Sel-Similarity Detectio(Fractals).

102 Feature Extractio. 7.- Other Topics. DWT ( [] ) c d k jk [], ϕ [] [] ϕ [] k [], [] [] [] jk k jk Approximatio o the iput sigal [] [], [],..., [ N ] { } c ( c N ) k k <<

103 7.- Other Topics. Applicatios i electrocardiology: ECG Compressio. ECG Patter Recogitio: detectio ad classiicatio o ECG waves, discrimiatig ormal ad abormal cardiac patters. ST segmet aalysis. Chage detectio. Heart rate variability: ECG is assumed to be ostatioary. High resolutio electrocardiography: detectio o late potetials. 3

104 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 4

105 8.- Summary. Fourier trasorm is ot suitable to obtai time ad requecy iormatio: Wavelet Trasorm. Multiresolutio aalysis. It is possible to chage time ad scale. Discrete Wavelet Trasorm. Pyramidal Algorithm: Eiciet algorithm to calculate the Wavelet Trasorm i a computer. Applicatios i sigal processig: oise reductio, log-term evolutio, compressio, abrupt chages. Very importat to the aalysis o biological sigals sice most o the statistical characteristics o such sigals are ostatioary- Matlab Wavelet Toolbox: deiitios ad uctios to work with Wavelets. May other topics: Wavelet packets, Computer graphics, etc. 5

106 Idex.- Itroductio..- Deiitios. 3.- Multiresolutio Aalysis. 4.- Discrete Wavelet Trasorm. 5.- Applicatios i Sigal Processig Deoisig Abrupt Chage Detectio Log-Term Evolutio Compressio. 6.- The Matlab Wavelet Toolbox. 7.- Other Topics. 8.- Summary. 9.- Bibliography. 6

107 9.- Bibliography.. C.S.Burrus et al. Itroductio to Wavelets ad Wavelet Trasorms. Pretice Hall (998).. The Wavelet Tutorial. Robi Polikar T. Edwards. Discrete Wavelet Trasorms: Theory ad Implemetatio. (99) 4. Michael L. Hilto, "Wavelet ad Wavelet Packet Compressio o Electrocardiograms", IEEE Tras. o Biomedical Egieerig, Vol. 44, pp.394 4, (997). 5. Matlab Wavelet Toolbox User s Maual. 6. I.Provazik et al., Wavelet Trasorm i ECG sigal Processig. Proceedigs o the 5th Bieial Eurasip Coerece BIOSIGNAL. pp. -5, (). 7. M. User, Wavelets, statistics, ad biomedical applicatios. Proceedigs o 8th IEEE Sigal Processig Workshop o Statistical Sigal ad Array Processig. pp , (996) 8. Cuiwei Liyet al., Detectio o ECG Characteristic Poits Usig Wavelet Trasorms, IEEE Trasactios o Biomedical Egieerig, vol. 4, o., pp. -8. (995) 9. A. Bezarieas et al. Selective Noise ilterig o High Resolutio ECG Through Wavelet Trasorm, Computers i Cardiology pp , (996). H. Ioue; A. Miyazaki, A Noise Reductio Method or ECG Sigals Usig the Dyadic Wavelet Trasorm, IEICE Trasactios o Fudametals o Electroics, Commuicatios ad Computer Scieces, pp. -7, (998). Dooho D., De-oisig by sot-thresholdig, IEEE Tras. Iormatio Theory, vol. 4, o. 3, pp.6-67, (995) 7

108 9.- Bibliography.. B.Vidakovic ad P. Müller, Wavelets or Kids. A Tutorial Itroductio. Duke Uiversity. 3. J.P. Couderc ad W. Zareba, Cotributio o the Wavelet Aalysis to the No-Ivasive Electrocardiology. Uiversity o Rochester. 4. M.V. Wickerhauser, Lectures o Wavelet Packet Algorithms. Departmet o Mathematics, Washigto Uiversity (99). 5. K.Berker ad R.O.Wells, Wavelet Trasorms ad Deoisig Algorithms. Departmet o Mathematics, Rice Uiversity. IEEE (998). 6. L.V.Novikov, Adaptive Wavelet Aalysis o Sigals. 7. M. Kaapathipillai et al., Adaptive Wavelet Represetatio ad Classiicatio o ECG Sigals. IEEE (994). 8. B.Jawerth ad W.Sweldes, A Overview o Wavelet Based Multiresolutio Aalysis. Departmet o Mathematics, Uiversity o South Carolia. 9. R.R.Coima ad M.V. Wickerhauser, Etropy-Based Algorithms or Best Basis Selectio. Departmet o Mathematics, Yale Uiversity. 8

109 Sigal Processig Itroductio to Wavelets Laboratory Exercises Assigmets 9

Image pyramid example

Image pyramid example Multiresolutio image processig Laplacia pyramids Discrete Wavelet Trasform (DWT) Quadrature mirror filters ad cojugate quadrature filters Liftig ad reversible wavelet trasform Wavelet theory Berd Girod:

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton

Wavelet Transform Theory. Prof. Mark Fowler Department of Electrical Engineering State University of New York at Binghamton Wavelet Trasfor Theory Prof. Mark Fowler Departet of Electrical Egieerig State Uiversity of New York at Bighato What is a Wavelet Trasfor? Decopositio of a sigal ito costituet parts Note that there are

More information

Multiresolution coding and wavelets. Interpolation error coding, I

Multiresolution coding and wavelets. Interpolation error coding, I Multiresolutio codig ad wavelets Predictive (closed-loop) pyramids Ope-loop ( Laplacia ) pyramids Discrete Wavelet Trasform (DWT) Quadrature mirror filters ad cojugate quadrature filters Liftig ad reversible

More information

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error

Sensitivity Analysis of Daubechies 4 Wavelet Coefficients for Reduction of Reconstructed Image Error Proceedigs of the 6th WSEAS Iteratioal Coferece o SIGNAL PROCESSING, Dallas, Texas, USA, March -4, 7 67 Sesitivity Aalysis of Daubechies 4 Wavelet Coefficiets for Reductio of Recostructed Image Error DEVINDER

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway?

Where do eigenvalues/eigenvectors/eigenfunctions come from, and why are they important anyway? Where do eigevalues/eigevectors/eigeuctios come rom, ad why are they importat ayway? I. Bacgroud (rom Ordiary Dieretial Equatios} Cosider the simplest example o a harmoic oscillator (thi o a vibratig strig)

More information

Lab 1 - Wavelet-based biomedical signal processing. Lab Task 1.1 (need 1 week) What & Why is wavelet?

Lab 1 - Wavelet-based biomedical signal processing. Lab Task 1.1 (need 1 week) What & Why is wavelet? Lab - avelet-based bioedical sigal processig Lab Task. eed week hat & hy is wavelet? Learig goal: avelet tutorial; Cotet: Use Haar or other basic other wavelets to study the Tie-Frequecy doai eatures o

More information

FIR Filter Design: Part I

FIR Filter Design: Part I EEL3: Discrete-Time Sigals ad Systems FIR Filter Desig: Part I. Itroductio FIR Filter Desig: Part I I this set o otes, we cotiue our exploratio o the requecy respose o FIR ilters. First, we cosider some

More information

Signals, Instruments, and Systems W4 An Introduction to Signal Processing

Signals, Instruments, and Systems W4 An Introduction to Signal Processing Sigals, Istrumets, ad Systems W4 A Itroductio to Sigal Processig Logitude Height y [Pixel] [m] [m] Sigal Amplitude Temperature [ C] Sigal Deiitio A sigal is ay time-varyig or spatial-varyig quatity 0 8

More information

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

The Discrete-Time Fourier Transform (DTFT)

The Discrete-Time Fourier Transform (DTFT) EEL: Discrete-Time Sigals ad Systems The Discrete-Time Fourier Trasorm (DTFT) The Discrete-Time Fourier Trasorm (DTFT). Itroductio I these otes, we itroduce the discrete-time Fourier trasorm (DTFT) ad

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement Practical Spectral Aaysis (cotiue) (from Boaz Porat s book) Frequecy Measuremet Oe of the most importat applicatios of the DFT is the measuremet of frequecies of periodic sigals (eg., siusoidal sigals),

More information

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed

Week 10. f2 j=2 2 j k ; j; k 2 Zg is an orthonormal basis for L 2 (R). This function is called mother wavelet, which can be often constructed Wee 0 A Itroductio to Wavelet regressio. De itio: Wavelet is a fuctio such that f j= j ; j; Zg is a orthoormal basis for L (R). This fuctio is called mother wavelet, which ca be ofte costructed from father

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

ADVANCED TOPICS ON VIDEO PROCESSING

ADVANCED TOPICS ON VIDEO PROCESSING ADVANCED TOPICS ON VIDEO PROCESSING Image Spatial Processig FILTERING EXAMPLES FOURIER INTERPRETATION FILTERING EXAMPLES FOURIER INTERPRETATION FILTERING EXAMPLES FILTERING EXAMPLES FOURIER INTERPRETATION

More information

5. Fast NLMS-OCF Algorithm

5. Fast NLMS-OCF Algorithm 5. Fast LMS-OCF Algorithm The LMS-OCF algorithm preseted i Chapter, which relies o Gram-Schmidt orthogoalizatio, has a compleity O ( M ). The square-law depedece o computatioal requiremets o the umber

More information

Sheng, Y. Wavelet Transform. The Transforms and Applications Handbook: Second Edition. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, 2000

Sheng, Y. Wavelet Transform. The Transforms and Applications Handbook: Second Edition. Ed. Alexander D. Poularikas Boca Raton: CRC Press LLC, 2000 Sheg, Y. Wavelet Trasform. The Trasforms ad Applicatios Hadboo: Secod Editio. Ed. Alexader D. Poularias Boca Rato: CRC Press LLC, Wavelet Trasform Yulog Sheg Laval Uiversity. Itroductio Cotiuous Wavelet

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

DE-NOISING KIDNEY ULTRASOUND ANALYSIS USING HAAR WAVELETS

DE-NOISING KIDNEY ULTRASOUND ANALYSIS USING HAAR WAVELETS Joural of Sciece ad Arts Year 10, No. (13), pp. 365-370, 010 DE-NOISING KIDNEY ULTRASOUND ANALYSIS USING HAAR WAVELETS MOLDOVANU SIMONA 1, LUMINITA MORARU 1 High School Dumitru Motoc, 800514, Galati, Romaia

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processig Biary dilatio ad erosio Set-theoretic iterpretatio Opeig, closig, morphological edge detectors Hit-miss filter Morphological filters for gray-level images Cascadig dilatios

More information

Phys. 201 Mathematical Physics 1 Dr. Nidal M. Ershaidat Doc. 12

Phys. 201 Mathematical Physics 1 Dr. Nidal M. Ershaidat Doc. 12 Physics Departmet, Yarmouk Uiversity, Irbid Jorda Phys. Mathematical Physics Dr. Nidal M. Ershaidat Doc. Fourier Series Deiitio A Fourier series is a expasio o a periodic uctio (x) i terms o a iiite sum

More information

Linear time invariant systems

Linear time invariant systems Liear time ivariat systems Alejadro Ribeiro Dept. of Electrical ad Systems Egieerig Uiversity of Pesylvaia aribeiro@seas.upe.edu http://www.seas.upe.edu/users/~aribeiro/ February 25, 2016 Sigal ad Iformatio

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Orthogonal Gaussian Filters for Signal Processing

Orthogonal Gaussian Filters for Signal Processing Orthogoal Gaussia Filters for Sigal Processig Mark Mackezie ad Kiet Tieu Mechaical Egieerig Uiversity of Wollogog.S.W. Australia Abstract A Gaussia filter usig the Hermite orthoormal series of fuctios

More information

Gernot Hoffmann Windowed Sinc Interpolation

Gernot Hoffmann Windowed Sinc Interpolation Gerot Homa Widowed Sic Iterpolatio Zoom 100% Weak Gauss Origial Weak Gauss Gabriel (Turkowski) Cotets 1. Itroductio 2 2. Formulas 4 3. Rectagle 5 4. Laczos 6 5. Vo Ha 8 6. Blackma 10 7. Code 12 8. Reereces

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 5 Miki Lustig, UCB September 14, 211 Miki Lustig, UCB Motivatios for Discrete Fourier Trasform Sampled represetatio i time ad frequecy umerical Fourier aalysis requires a Fourier represetatio that

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c 4th Iteratioal Coferece o Advaced Materials ad Iformatio Techology Processig (AMITP 06) Directio of Arrival Estimatio Method i Uderdetermied Coditio Zhag Youzhi a, Li eibo b, ag Hali c Naval Aeroautical

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Wavelets and Multiresolution. Processing. Multiresolution analysis. New basis functions called wavelets. Good old Fourier transform

Wavelets and Multiresolution. Processing. Multiresolution analysis. New basis functions called wavelets. Good old Fourier transform Digital Image Processig d ed. www.imageprocessigboo.com Wavelets ad Multiresolutio Processig Preview ood old Fourier trasform A trasform were te basis fuctios are siusoids ece localied i frequecy but ot

More information

Wavelet Transform and its relation to multirate filter banks

Wavelet Transform and its relation to multirate filter banks Wavelet Trasform ad its relatio to multirate filter bas Christia Walliger ASP Semiar th Jue 007 Graz Uiversity of Techology, Austria Professor Georg Holzma, Horst Cerja, Christia 9..005 Walliger.06.07

More information

Chapter 2 Systems and Signals

Chapter 2 Systems and Signals Chapter 2 Systems ad Sigals 1 Itroductio Discrete-Time Sigals: Sequeces Discrete-Time Systems Properties of Liear Time-Ivariat Systems Liear Costat-Coefficiet Differece Equatios Frequecy-Domai Represetatio

More information

Optimum LMSE Discrete Transform

Optimum LMSE Discrete Transform Image Trasformatio Two-dimesioal image trasforms are extremely importat areas of study i image processig. The image output i the trasformed space may be aalyzed, iterpreted, ad further processed for implemetig

More information

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima

A new iterative algorithm for reconstructing a signal from its dyadic wavelet transform modulus maxima ol 46 No 6 SCIENCE IN CHINA (Series F) December 3 A ew iterative algorithm for recostructig a sigal from its dyadic wavelet trasform modulus maxima ZHANG Zhuosheg ( u ), LIU Guizhog ( q) & LIU Feg ( )

More information

Riesz-Fischer Sequences and Lower Frame Bounds

Riesz-Fischer Sequences and Lower Frame Bounds Zeitschrift für Aalysis ud ihre Aweduge Joural for Aalysis ad its Applicatios Volume 1 (00), No., 305 314 Riesz-Fischer Sequeces ad Lower Frame Bouds P. Casazza, O. Christese, S. Li ad A. Lider Abstract.

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The iscrete Fourier Trasform The discrete-time Fourier trasform (TFT) of a sequece is a cotiuous fuctio of!, ad repeats with period. I practice we usually wat to obtai the Fourier compoets usig digital

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

Noise Reduction Algorithm Based on Complex Wavelet Transform of Digital Gamma Ray Spectroscopy

Noise Reduction Algorithm Based on Complex Wavelet Transform of Digital Gamma Ray Spectroscopy ICI 215 he 7 th Iteratioal Coferece o Iformatio echology doi:1.15849/icit.215.11 ICI 215 (http://icit.zuj.edu.jo/ici15) Noise Reductio Algorithm Based o Complex Wavelet rasform of Digital Gamma Ray Spectroscopy

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Processig, Fall 26 Lecture 1: Itroductio, Discrete-time sigals ad systems Zheg-Hua Ta Departmet of Electroic Systems Aalborg Uiversity, Demark zt@kom.aau.dk 1 Part I: Itroductio Itroductio

More information

Free Space Optical Wireless Communications under Turbulence Channel Effect

Free Space Optical Wireless Communications under Turbulence Channel Effect IOSR Joural of Electroics ad Commuicatio Egieerig (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue 3, Ver. III (May - Ju. 014), PP 01-08 Free Space Optical Wireless Commuicatios uder Turbulece

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations -6.3 Digital Sigal Processig ad Filterig..8 Discrete-ime Sigals ad Systems ime-domai Represetatios of Discrete-ime Sigals ad Systems ime-domai represetatio of a discrete-time sigal as a sequece of umbers

More information

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare

Spectral Analysis. This week in lab. Next classes: 3/26 and 3/28. Your next experiment Homework is to prepare Spectral Aalysis This week i lab Your ext experimet Homework is to prepare Next classes: 3/26 ad 3/28 Aero Testig, Fracture Toughess Testig Read the Experimets 5 ad 7 sectios of the course maual Spectral

More information

A THRESHOLD DENOISING METHOD BASED ON EMD

A THRESHOLD DENOISING METHOD BASED ON EMD Joural of Theoretical ad Applied Iformatio Techology 1 th Jauary 13. Vol. 47 No.1-13 JATIT & LLS. All rights reserved. ISSN: 199-864 www.jatit.org E-ISSN: 1817-319 A THRESHOLD DENOISING METHOD BASED ON

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

A new statistical-dynamical downscaling technique

A new statistical-dynamical downscaling technique A ew statistical-dyamical dowscalig techique Yosvay Martiez Wei Yu Hai Li Meteorological Research Brach Eviromet Caada Outlie Backgroud ad Motivatio Methodology Applicatios Discussio Future Work Page 2

More information

CS276A Practice Problem Set 1 Solutions

CS276A Practice Problem Set 1 Solutions CS76A Practice Problem Set Solutios Problem. (i) (ii) 8 (iii) 6 Compute the gamma-codes for the followig itegers: (i) (ii) 8 (iii) 6 Problem. For this problem, we will be dealig with a collectio of millio

More information

Lecture 14. Discrete Fourier Transforms (cont d) The Discrete Cosine Transform (DCT) (cont d)

Lecture 14. Discrete Fourier Transforms (cont d) The Discrete Cosine Transform (DCT) (cont d) Lecture 14 Discrete Fourier Trasforms (cot d) The Discrete Cosie Trasform (DCT) (cot d) I the previous lecture, we arrived at the followig formula for the discrete cosie trasform (DCT) of a -dimesioal

More information

An Improved Algorithm and It s Application to Sinusoid Wave Frequency Estimation

An Improved Algorithm and It s Application to Sinusoid Wave Frequency Estimation Iteratioal Coerece o Iormatio ad Itelliget Computig IPCSI vol.8 () () IACSI Press, Sigapore A Improved Algorithm ad It s Applicatio to Siusoid Wave Frequecy Estimatio iaohog Huag ad Li Zhag College o Iormatio

More information

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25)

2(25) Mean / average / expected value of a stochastic variable X: Variance of a stochastic variable X: 1(25) Lecture 5: Codig of Aalog Sources Samplig ad Quatizatio Images ad souds are ot origially digital! The are cotiuous sigals i space/time as well as amplitude Typical model of a aalog source: A statioary

More information

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal. x[ ] x[ ] x[] x[] x[] x[] 9 8 7 6 5 4 3 3 4 5 6 7 8 9 Figure. Graphical represetatio of a discrete-time sigal. From Discrete-Time Sigal Processig, e by Oppeheim, Schafer, ad Buck 999- Pretice Hall, Ic.

More information

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE

OPTIMAL PIECEWISE UNIFORM VECTOR QUANTIZATION OF THE MEMORYLESS LAPLACIAN SOURCE Joural of ELECTRICAL EGIEERIG, VOL. 56, O. 7-8, 2005, 200 204 OPTIMAL PIECEWISE UIFORM VECTOR QUATIZATIO OF THE MEMORYLESS LAPLACIA SOURCE Zora H. Perić Veljo Lj. Staović Alesadra Z. Jovaović Srdja M.

More information

Abstract Vector Spaces. Abstract Vector Spaces

Abstract Vector Spaces. Abstract Vector Spaces Astract Vector Spaces The process of astractio is critical i egieerig! Physical Device Data Storage Vector Space MRI machie Optical receiver 0 0 1 0 1 0 0 1 Icreasig astractio 6.1 Astract Vector Spaces

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

HARMONIC ANALYSIS FOR OPTICALLY MODULATING BODIES USING THE HARMONIC STRUCTURE FUNCTION (HSF) Lockheed Martin Hawaii

HARMONIC ANALYSIS FOR OPTICALLY MODULATING BODIES USING THE HARMONIC STRUCTURE FUNCTION (HSF) Lockheed Martin Hawaii HARMONIC ANALYSIS FOR OPTICALLY MODULATING BODIES USING THE HARMONIC STRUCTURE FUNCTION (HSF) Dr. R. David Dikema Chief Scietist Mr. Scot Seto Chief Egieer Lockheed Marti Hawaii Abstract Lockheed Marti

More information

Structuring Element Representation of an Image and Its Applications

Structuring Element Representation of an Image and Its Applications Iteratioal Joural of Cotrol Structurig Automatio Elemet ad Represetatio Systems vol. of a o. Image 4 pp. ad 50955 Its Applicatios December 004 509 Structurig Elemet Represetatio of a Image ad Its Applicatios

More information

Complex Algorithms for Lattice Adaptive IIR Notch Filter

Complex Algorithms for Lattice Adaptive IIR Notch Filter 4th Iteratioal Coferece o Sigal Processig Systems (ICSPS ) IPCSIT vol. 58 () () IACSIT Press, Sigapore DOI:.7763/IPCSIT..V58. Complex Algorithms for Lattice Adaptive IIR Notch Filter Hog Liag +, Nig Jia

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

Mon Apr Second derivative test, and maybe another conic diagonalization example. Announcements: Warm-up Exercise:

Mon Apr Second derivative test, and maybe another conic diagonalization example. Announcements: Warm-up Exercise: Math 2270-004 Week 15 otes We will ot ecessarily iish the material rom a give day's otes o that day We may also add or subtract some material as the week progresses, but these otes represet a i-depth outlie

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

R is a scalar defined as follows:

R is a scalar defined as follows: Math 8. Notes o Dot Product, Cross Product, Plaes, Area, ad Volumes This lecture focuses primarily o the dot product ad its may applicatios, especially i the measuremet of agles ad scalar projectio ad

More information

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1 Mathematical Descriptio of Discrete-Time Sigals 9/10/16 M. J. Roberts - All Rights Reserved 1 Samplig ad Discrete Time Samplig is the acquisitio of the values of a cotiuous-time sigal at discrete poits

More information

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice 0//008 Liear Discrimiat Fuctios Jacob Hays Amit Pillay James DeFelice 5.8, 5.9, 5. Miimum Squared Error Previous methods oly worked o liear separable cases, by lookig at misclassified samples to correct

More information

Design of 6-Band Tight Frame Wavelets With Limited Redundancy

Design of 6-Band Tight Frame Wavelets With Limited Redundancy Desig of 6-Bad Tight Frame Wavelets With Limited Redudacy A. Farras Abdelour Medical Physics Memorial Sloa-Ketterig Cacer Ceter New York, NY Email: abdeloa@mskcc.org Telephoe: () 639-68 Abstract I this

More information

From deterministic regular waves to a random field. From a determinstic regular wave to a deterministic irregular solution

From deterministic regular waves to a random field. From a determinstic regular wave to a deterministic irregular solution Classiicatio: Iteral Status: Drat z ξ(x,y, w& x w u u& h Particle ositio From determiistic regular waves to a radom ield Sverre Haver, StatoilHydro, Jauary 8 From a determistic regular wave to a determiistic

More information

State Space Representation

State Space Representation Optimal Cotrol, Guidace ad Estimatio Lecture 2 Overview of SS Approach ad Matrix heory Prof. Radhakat Padhi Dept. of Aerospace Egieerig Idia Istitute of Sciece - Bagalore State Space Represetatio Prof.

More information

REPRESENTING MARKOV CHAINS WITH TRANSITION DIAGRAMS

REPRESENTING MARKOV CHAINS WITH TRANSITION DIAGRAMS Joural o Mathematics ad Statistics, 9 (3): 49-54, 3 ISSN 549-36 3 Sciece Publicatios doi:.38/jmssp.3.49.54 Published Olie 9 (3) 3 (http://www.thescipub.com/jmss.toc) REPRESENTING MARKOV CHAINS WITH TRANSITION

More information

DIGITAL FILTER ORDER REDUCTION

DIGITAL FILTER ORDER REDUCTION DIGITAL FILTER RDER REDUTI VAHID RAISSI DEHKRDI, McGILL UIVERSITY, AADA, vahid@cim.mcgill.ca AMIR G. AGHDAM, RDIA UIVERSITY, AADA, aghdam@ece.cocordia.ca ABSTRAT I this paper, a method is proposed to reduce

More information

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

More information

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II Solid State Pheomea Vol. 89 (003) pp 343-348 (003) Tras Tech Publicatios, Switzerlad doi:0.408/www.scietific.et/ssp.89.343 A New Impulse Mechaical Spectrometer to Study the Dyamic Mechaical Properties

More information

1 Adiabatic and diabatic representations

1 Adiabatic and diabatic representations 1 Adiabatic ad diabatic represetatios 1.1 Bor-Oppeheimer approximatio The time-idepedet Schrödiger equatio for both electroic ad uclear degrees of freedom is Ĥ Ψ(r, R) = E Ψ(r, R), (1) where the full molecular

More information

Chapter 2. Simulation Techniques. References:

Chapter 2. Simulation Techniques. References: Simulatio Techiques Refereces: Chapter 2 S.M.Kay, Fudametals of Statistical Sigal Processig: Estimatio Theory, Pretice Hall, 993 C.L.Nikias ad M.Shao, Sigal Processig with Alpha-Stable Distributio ad Applicatios,

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

Fourier Series and Transforms

Fourier Series and Transforms Fourier Series ad rasorms Orthogoal uctios Fourier Series Discrete Fourier Series Fourier rasorm Chebyshev polyomials Scope: wearetryigto approimate a arbitrary uctio ad obtai basis uctios with appropriate

More information

Statistical Noise Models and Diagnostics

Statistical Noise Models and Diagnostics L. Yaroslavsky: Advaced Image Processig Lab: A Tutorial, EUSIPCO2 LECTURE 2 Statistical oise Models ad Diagostics 2. Statistical models of radom iterfereces: (i) Additive sigal idepedet oise model: r =

More information

An Extension of the Szász-Mirakjan Operators

An Extension of the Szász-Mirakjan Operators A. Şt. Uiv. Ovidius Costaţa Vol. 7(), 009, 37 44 A Extesio o the Szász-Mirakja Operators C. MORTICI Abstract The paper is devoted to deiig a ew class o liear ad positive operators depedig o a certai uctio

More information

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals Itroductio to Digital Sigal Processig Chapter : Itroductio Aalog ad Digital Sigals aalog = cotiuous-time cotiuous amplitude digital = discrete-time discrete amplitude cotiuous amplitude discrete amplitude

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

Question1 Multiple choices (circle the most appropriate one):

Question1 Multiple choices (circle the most appropriate one): Philadelphia Uiversity Studet Name: Faculty of Egieerig Studet Number: Dept. of Computer Egieerig Fial Exam, First Semester: 2014/2015 Course Title: Digital Sigal Aalysis ad Processig Date: 01/02/2015

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics

Accuracy. Computational Fluid Dynamics. Computational Fluid Dynamics. Computational Fluid Dynamics http://www.d.edu/~gtryggva/cfd-course/ Computatioal Fluid Dyamics Lecture Jauary 3, 7 Grétar Tryggvaso It is clear that although the umerical solutio is qualitatively similar to the aalytical solutio,

More information

Lecture 24: Variable selection in linear models

Lecture 24: Variable selection in linear models Lecture 24: Variable selectio i liear models Cosider liear model X = Z β + ε, β R p ad Varε = σ 2 I. Like the LSE, the ridge regressio estimator does ot give 0 estimate to a compoet of β eve if that compoet

More information

Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers

Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers Ope Joural o Discrete Mathematics,,, - http://dxdoiorg/46/odm6 Published Olie Jauary (http://wwwscirporg/oural/odm) Polyomial Geeralizatios ad Combiatorial Iterpretatios or Seueces Icludig the Fiboacci

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

to use a pyramidal structure for signal of the wavelet transform.

to use a pyramidal structure for signal of the wavelet transform. [lecture otes] A. Eis Ceti ad Mohammad ofighi Projectio-Based Wavelet Deoisig I this lecture ote, e describe a avelet domai deoisig method cosistig of makig orthogoal projectios of avelet (subbads) sigals

More information