Advanced 7 Bio-Inspired System

Size: px
Start display at page:

Download "Advanced 7 Bio-Inspired System"

Transcription

1 Advanced 7 Bio-Inspired System Dept. of Mechanical Science and Engineering Nagoya University

2 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. New method for Slippage Degree Estimation 4. Experimental Results 5. Conclusion

3 Background Grasp of object by robot hand Unknown Physical quantities Weight Friction coefficient Tactile information Grip force Slippage degree Collapsing Unknown Object Object Acceptable range Calculation Perfect sticking Partial slippage Macroscopic slippage Grip force Humans : Large Acceptable force Small Control grip force by tactile information of slippage. Can estimate from slippage degree

4 Purpose Conventional method estimates the slippage degree in simply cases. Obinata, G., Ashis, D., Watanabe, N., and Moriyama, N. (2007). Vision Based Tactile Sensor Using Transparent Elastic Fingertip for Dexterous Handling. In Kolski, S. (ed.) Mobile Robots: Perception & Navigation, pp when Extend Estimation of slippage degree in following cases Case Case2 Case3 sticking occurred on deformed surface moment is applied normal force is changed Noises on images used for estimation Reduction of accuracy Reduction of effect of noises

5 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. New method for Slippage Degree Estimation 4. Experimental Results 5. Conclusion

6 Structure of Vision-Based Tactile Sensor LED lights CCD camera Transparent acrylic plate Elastic body Object Calculation of dot positions, 2 contact Columnsarea 2 Rows Acquisition of tactile information Contact force (normal, tangential, moment) Transparent silicon rubber Slippage degree

7 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. New method for Slippage Degree Estimation 4. Experimental Results 5. Conclusion

8 Estimation of Slippage Degree Partial slippage by non linear pressure distribution Sensor Object Normal force N Tangential force F Contact region S c Stick region S s F<N S Incipient slippage region F>N Stick ratio indicates slippage degree. Stick ratio S s c = = =0. 0 =0 0 Perfect sticking Partial slippage Macroscopic slippage Keeping > 0 Preventing object from slipping

9 Conventional Method to Estimate Stick Ratio Discrimination of stick/slippage region d Contact region Initial image Displacement d k : Each dot d 0 : Central dot Object d 0 d 0 d k d k Current image In stick region In slippage region

10 Estimation of with Distorted Stick Region (Case) The stick region is distorted. After the macroscopic slippage Change of moving direction of object Increase of the normal force Reference image : STATIC UPDATED d d Incorrect Correct Initial image (static) Current image Updated Reference image Reference image is selected from repository image I R (i) Current image is newly stored as the I R (i+) when d i U ( i 2,, 3 ) max min,... d max (i) : Maximum displacement of dot between I R (i) and current image U min : Threshold R

11 Estimation of with Distorted Stick Region (Case) First point : Required size of displacement Prob bable ra ange of d 0 d k k Dots in slippage region are hardly detected. U max d 0 d 0 Displacement of Object d k d k Reference image is selected such that In stick region In slippage region data variation of dots d max : Maximum displacement of dot in stick region d max U max d max > U max (threshold)

12 Estimation of with Distorted Stick Region (Case) Second point : Change of moving direction y Current image I R () I R (2) d max (i) Movement trajectory of object N i : Largest number of I R y I R (N i ) I R (i C ) I R (N i ) d max (i) I I R (N i -) R (i) I R R( (i) Stick region is reconstructed (a) Rectilinear movement x d N d N d N 2 d N d N d i d i max i max i max i max i (b) Moving direction changes max i max C max Reference image is selected such that moving direction of object doesn t change significantly during interval of two images. Selection of reference image I(i ref ) i ref i i sup : d U, i max max i C N i x C

13 Estimation of with Applied Moment (Case2) Displacements in stick region are not equable. d k : large d k : small :Reference image :Current image :Central dot d 0 Cancel of Rotation In stick region d 0 and d k are greatly different. Condition in stick region d Not satisfied d 0 k 2 Estimation of Rotation angle Rotation of all dots in current image Condition in stick region d d Satisfied d 0 k

14 Flow Chart of New Method to Estimate Capture Measure Current image Contact region, Dot positions Canceling Rotation No Yes Calculate Calculation Displacements of dots of dots between between reference and current images Second point If d max >U Calculation d 0 d k Ss N s S c N c First point Reference image Current image

15 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. New method for Slippage Degree Estimation 4. Experimental Results 5. Conclusion

16 Experimental Description LED lights CCD camera Transparent acrylic plate Normal force Transparent elastic body Moment Tangential force Object Apply Normal force Estimation of Tangential force stick ratio Moment

17 Estimation of with Distorted Stick Region (Case) Increase of stick ratio Good in the opposite direction central dot Not good in the same direction continuously Slippage direction macroscopic slippage Elastic body was severely deformed. Dots can hardly move to that direction.

18 Experimental Movie with Distorted Stick Region

19 Estimation of with Applied Moment (Case2) Can estimate Good in the opposite direction central dot Slippage direction Not good in the same direction continuously macroscopic slippage

20 Experimental Movie with Applied Moment Indicates rotation angle of object

21 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. New method for Slippage Degree Estimation 4. Experimental Results 5. Conclusion

22 Conclusion This paper proposed Estimation method of stick ratio in some major situations Denoising method to decrease data variation of dots Our sensor was developed to a practical level. Sense Slippage degree in many cases Normal force Tangential force Moment Future work Implementation of developed sensor to robot hand to verify proposed method

23 Thank you for your kind attention.

24 Another Approach for Estimation of Slippage Degree Not good in the same direction continuously Slippage direction Another approach When macroscopic slippage F 0 : Tangential force F0 0 N F F0 0 : Normal force N0 N N 0 Current F : Tangential force F F F 0 N : Normal force N N N0 Prediction of macroscopic slippage Perfect contact or partial slippage Macroscopic slippage

25 Estimation of with Normal Force Changed (Case3) Change of normal force Contact surface Change of distance CCD camera In perspective transformation spread toward outside. Dots gather toward inside. Compensation of perspective transformation ti p post k p c c pre k : Scale parameter between two images c : Central position of image p pre : dot position before compensation p post : dot position after compensation Increase of normal force

26 Calculation of Scale Parameter Sum of all distances of adjacent two dots in contact region Comparing pref p ( x, y) (,),(0,),(,),(,0) k, l ( x, y ) (,),(0,),(,),(,0),,, ) k, l p k, l curk, l p ref kx, l y curkx, l y Reference image Current image Influence by deformation of contact region Line segment Average direction of between two dots displacement Parallel : High-influence Vertical : Low-influence Unit vector of displacement direction q x, y p pref p pref curk, l k, l curkx, l y kx, l y pcur pref p pref k, l k, l curkx, l y kx, l y Elimination of parallel component Decrease of influence ( x, y) (,),(0,),(,),(,0) k, l p ref k, l ref kx, l y p p curk, l curk x, l y ( x, y) (,),(0,),(,),(,0) k, l p q q x, y x, y

27 Estimation of with Normal Force Changed (Case3) Increase of stick region with contact region central dot

28 Experimental Movie with a Normal Force Changed

29 Reference dot d 0 d k Displacement of central dot Displacement of reference dot Reference dot:the nearest dot from the center of the stick region The central dot is not always in the stick region. Since the reference dot moves along the stick region movement, we easily obtain the stick ratio even when the contact surface is moving.

30 Detail of d U max d max U In order to discriminate stick and slippage regions in stable sensitivity, d max should be considered to define. d d 0 k 0 d U max Probab ble rang ge of d 0 d k 0 U d 0 d k d k 0 Difference between reference and current images d 0 In stick region In slippage region d max U d max

31 Method to decrease of data variation of dots Variations in the dot positions from noises weighted average of target dot and the adjacent 8 dots 2,,2,, l and k p w p k l k k m l l m n pre m n m l k post ,,,,,, S S S S S S S S S w w w w w w w w w l k l k l k l k l k l k,2,2,,, l or k p w p l pre k k m l m n m l k post 3 2 3,,, S S S w w w l k l k l k Weight target dot Experimental Results target dot Standard deviation of relative dot position in reference to central dot Maximum 0.4 pixel 0.06 pixel p p

32 Selection of 0 0 is small. The sensitivity of estimation is good. 0 > dot variations To minimize the effect of the dot variations Regardless ess reference e e dot standard < 0.06 pixel deviation max = 0.06 pixel 95.44% Relative displacement < 0.24 pixel (±2 max ) 0 = 4 max = 0.24 pixel

33 Selection of U Two measures for U S n s i i The earlier the decrease of is, the smaller S is. Fast response of f estimation U should be small. D ns i2 i i 0 n s : the step number (58) ( ) i ( Regarded as the level e of estimation error Desirable U, S and D are small. i i i i ) Nearly constant D S U = 2.0 pixel

34 Estimation of Friction Coefficient k ratio atio ated stick stic ra mated estima s estim Polypropylene (=.0) Polyethylene (=.5) Stick ratio to ratio between two forces tangential force / normal force tangential force / normal force Estimation? Leather (=.33) Friction coefficient

35 Example of Application of Reference Image Second point the image captured several steps before Reference image stick ra atio Initial image Initial 初期画像 image step before 4 ステップ前 steps before stick ra atio 初期画像 0.2 ステップ前 step step o stick rati Initial 初期画像 image 6ステップ前 0.8 初期画像 6 steps before Initial image 0 ステップ前 0.6 stick ratio 0 steps before step 0.4 Not appropriate step

36 Forecasted Question Size of sensor Curvature factor :3mm Height :3mm Elastic body Equation of Rotation p postk cos0 sin sin0 cos 0 0 p p pre p 0 pre0 pre k p k : Each dot position p 0 : Central dot position pre: Before rotation post: After rotation Processing speed The processing speed depends on spec of PC. Currently, the processing speed about 4Hz.

37 Forecasted Question Selection of material Selection points Hard (for measure of contact force in wide range) Transparent (for capture of image from reverse side) Flexible (for increase of moving range of dots) Silicon rubber

38 Experimental Movie with Forces and a Moment

39 Measurement of Contact Force Normal force Tangential force Moment Contact radius (Contact t region is circle.) Relation between normal force and contact t radius Refrence Xydas, Kao:Modeling of contact mechanics and friction limit surface for soft fingers in robotics with experimental results,international te a Journal of Robotics Research,Vol.8,,No. 8,pp (999).

40 Measurement of Contact Force Normal force Tangential force Moment nom malized displ acement (m mm) tangential force (N) displacements Relation between tangential force and ddisplacements of fdots

41 Measurement of Contact Force Normal force Tangential force Moment 2 rotation angle nom malized an ngle (deg.) torque (Nmm) Relation between moment and rotation ti angle of contact t surface

42 Forecasted Question 省略した内容も説明して 連続した同じ方向の巨視滑りに対する解決策は? 閾値はどうやって決めたの? 閾値は可変にしなくていいの? 物性に依存しないの? 対象物との摩擦係数で φ の検出可能範囲が変わるよね? 力と変位の関係は弾性体の物性に依存するよね? 固着率の真値は? 摩擦係数は取得できるの? 摩擦係数じゃ器用な把持は出来ないの? 接触方向は垂直のみに限られるの? 転がり動作は無理? 他研究のセンサの滑り検出も 限られた場合しか出来ないの? 並進と回転が同時に起こっても測定できるの? なぜ滑り予知の推定が必要なの? 回転の中心はどうやって求めるの? 何故中心ドットとの相対変位なの? 物体の表面は平面じゃないと駄目なの? 動画にmacroscopic slippage が起こらないのでは?

43 Forecasted Question 力と変位の関係は弾性体の物性に依存するよね? The relation between tangential force/moment and the displacement of dot depends on the elastic coefficient of the elastic body. 対象物との摩擦係数で φ の検出可能範囲が変わるよね? The smaller the friction coefficient is, the bigger the minimum value of the estimated stick ratio is. It is one of the future works. However, the previous research shows that the range of the stick ratio is not so decreased if the friction coefficient is large in some measure (more than ). 摩擦係数じゃ器用な把持は出来ないの? I think that robot can grasp the unknown object by using the friction coefficient in some measure. However, we cannot use the coulomb friction law for the elastic body. And it is difficult to use the law when a moment is applied. Moreover, it is well known that the friction coefficient is sensitive to several factors such as conditions of contact surface.

44 Forecasted Question 閾値は可変にしなくていいの? 物性に依存しないの? (It is desirable that 0 is small because the sensitivity of the slippage becomes higher.) It is enough if 0 is a size that the effect of the dot variations is hardly occurred. Therefore, 0 depends on the image resolution and number of pixels of the image, but doesn t depend on the property of the object. The results of two measures for selection of U depend on the grasped object, but we obtain similar results from other objects. The estimated stick ratio is not so different even though U is changed. Therefore, these thresholds are not variable. However, It is considered that the thresholds become variable to change of the sensitivity for any purpose. 固着率の真値は? For example, in nanometer scale, all region of the contact surface should slip even if macroscopic slippage doesn t occur. So as to use the slippage degree effectively for the grip force control of hands, we have to define the border between sticking and slipping. Therefore, the true value is not exist and we should consider the optimal definition of the slippage degree for dexterous handling.

45 Forecasted Question 他研究のセンサの滑り検出も 限られた場合しか出来ないの? There are not many researches which consider the slippage degree. And as far as I can see, only our sensor can estimate the slippage degree in many cases introduced in this presentation. In addition, only our sensor can estimate the contact force and slippage degree simultaneously. なぜ滑り予知の推定が必要なの? When the sensor cannot estimate the slippage degree, the robots may drop the grasped object due to delay of the control because the sensor cannot respond until macroscopic slippage occurs. In addition, after the macroscopic slippage, the bigger grip force is required to stop the slippage since the friction coefficient decreases in the dynamic situation. It is desirable to respond before the macroscopic slippage occurs.

46 Forecasted Question 回転の中心はどうやって求めるの? In the stick region, we obtain the same rotation angle regardless of used dots because dots in the stick region move and rotate uniformly. And it is considered that the central dot remains in the stick region to the last moment until the stick ratio becomes to 0. Therefore, we obtain the rotation angle in reference to central dot 何故中心ドットとの相対変位なの? It is considered that the central dot remains in the stick region to the last moment until the stick ratio becomes to 0. Therefore, we estimate t the slippage degree from the displacements of dots to the central dot. (However, This is conventional concept. In this paper, we propose the reference dot instead of the central dot.) 物体の表面は平面じゃないと駄目なのな? For the curved surface whose curvature factor is small, we can estimate. For the surface whose curvature factor is large, we will try as the future work.

47 Forecasted Question 動画に macroscopic slippage が起こらないのでは? Yes. There are two reasons why the stick ratio doesn t become 0. First reason is that N s doesn t become 0 because N s includes the central dot. Second reason is the accuracy of the estimation. The dots close to central dot hardly move in reference to central dot. However, the important thing is that we should control the grip force before the stick ratio becomes too small. Ss N S c N s c

48 Estimation of with Distorted Stick Region (Case) Second point : Estimation timing Estimate t only when d max >U d max : Maximum displacement of dot in stick region U : threshold value d max : grows bigger when contact surface moves faster tangentially d 0 d k Hardly satisfied, when d max is small

49 Estimation of with Applied Moment (Case2) A long stick picking task Sensor body and the stick rotate together Most dots are regarded in slippage region ( d d ) 0 k After canceling the rotation component obtain SD in the same way Rotation angle 0 4 Rotation equation p post k cos0 sin0 sin 0 cos 0 p pre k p pre p 0 post0 3 :Reference image :Current image :Rotation center 4 2 p k : Each dot position p 0 : Central dot position pre: Before rotation post: After rotation

50 Another Approach for Estimation of Slippage Degree Not good in the same direction continuously Slippage direction Another approach Comparing Measure when macroscopic slippage F 0 F Normal force N F :Current tangential force 0 N0 N N :Current normal force Tangential force F 0 Prediction of macroscopic slippage

51 Shape Sensing by Vision-Based Tactile Sensor for Dexterous Handling of Robot Hands

52 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Shape Sensing Method 4. Experimental Results 5. Conclusion

53 Background Dexterous handling of object by robot hand Tactile information Contact force Slippage Shape/irregularity Temperature etc Tactile Tactile Sense Sense Object receptors sensor Feed back Object Temperature etc Actuator Vision-based tactile sensor has desirable structure.* Object Elastic body Camera capturing deformation Tactile information Analyzing Problems of other sensors (resistive, capacitive, piezoelectric, etc) Many devices and wiring are needed. Elastic body decreases sensitivity. Vision-based sensors doesn t have such problems. *:K. Kamiyama (IEEE Computer Graphics and Applications, 2005), S. Saga (Sensor Review, 2007)

54 Purpose Sense of object shape/irregularity allows to... Archive tasks requiring shape recognition Choose grasping strategy Provide detailed d information to methods sensing other tactile information etc Captured image Image processing 2D deformation Unstable Stable 3D shape of Outshoot contact surface Sensing method Helpful to sense Tactile information Problem of shape sensing by vision-based sensor Using only single camera for compactness Purpose Obtain 3D information of contact surface from 2D single image Estimating 3D shape/irregularity of objects by single camera

55 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Shape Sensing Method 4. Experimental Results 5. Conclusion

56 Structure of Vision-Based Tactile Sensor One-way mirror CCD camera LED lights Touch pad Transparent acrylic plate Translucent red water Object Analysis of dot positions contact region Metal plate Two-layered elastic membranes Outer : Black color Inner : White color, Printed dotted pattern Acquisition of tactile information Contact force* (normal, tangential, moment) Slippage degree** Object shape/irregularity *:G. Obinata (Mobile Robots: Perception & Navigation, 2007), **:Y. Ito (IEEE SENSORS, 2009)

57 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Shape Sensing Method 4. Experimental Results 5. Conclusion

58 Fundamental Principle of Shape Sensing Color in image changes depending on shape of touch pad. Captured image Change of color Side view of touch pad Change of shape

59 Fundamental Principle of Shape Sensing Main content of shape sensing Definition : Region V i is projected on Pixel P i in image. Significant relationship Depth of touch pad Dependency Light intensity in V i (Input signal of CCD) Proportionality Color intensities (RGB values) of P i CCD camera Refraction acto LED light Acrylic plate We can calculate shape of pad from RGB values. V i Depth Membrane

60 Formulation of Shape Sensing Method. Finding relationship among color, light intensity and depth 2. Eliminating parameters 3. Determining unknown parameters 4. Compensating Approximation errors

61 Relationship among Color, Light Intensity and Depth LED light reflects off membrane and travels into CCD I 0, I 2, I 3, I 4 : Intensity per unit area of LED light LED light Acrylic plate I 0 I 3 into CCD I 4 c : Extinction coefficient in colored water l l 2 coefficient R 2 : Transmission I I 2 z axis to acrylic plate R (,b) : Reflection coefficient to membrane b : Color of inner membrane Membrane

62 Relationship among Color, Light Intensity and Depth LED light reflects off red pigment and travels into CCD I 2, I 3, I 4 : Intensity per unit area of LED light into CCD LED light I 4 Acrylic plate Intensity of scattered/absorbed light II I 0 3 z 2 I 2 z 2 I z I z dz Particle of red pigment z R 2 : Transmission coefficient to acrylic plate R ( ) : Scattering coefficient to red pigment Membrane

63 Relationship among Color, Light Intensity and Depth Sum of light intensity I sum in region V i S : Area on membrane in V i S (z) : Area on plane vertical to z axis in V i at z h 2 CCD camera Geometrical relationship (Detail is abbreviated.) LED light h s : Proportional constant h 2 : Obtained from h Applying to RGB components V i z S (z) b R, b G, b B :RGB values in image R, G, B, R, G, B : Propotional constants t S Membrane l l z axis

64 Formulation of Shape Sensing Method. Finding relationship among color, light intensity and depth 2. Eliminating parameters 3. Determining unknown parameters 4. Compensating Approximation errors

65 Eliminating Parameters Approximation of scattering coefficients R ( ) R component of light is scattered. G/B component of light is absorbed. Red pigment Elimination of R depending angle and color b of membrane Solving simultaneous equations of R and G components (R and B) z axis Membrane Q, Q 2 : Polynomial function of, c R, h 2 and k

66 Formulation of Shape Sensing Method. Finding relationship among color, light intensity and depth 2. Eliminating parameters 3. Determining unknown parameters 4. Compensating Approximation errors

67 Determining Unknown Parameters Determining g( ) by using measured values Parameter identification of c R, c G and Known l (t 0 ), b R (t 0 ), b G (t 0 ) : Previously measured initial values Previously measured Solving simultaneous equations c R, c G and are obtained. Equation to calculate pad depth l from color intensities b R, b G

68 Formulation of Shape Sensing Method. Finding relationship among color, light intensity and depth 2. Eliminating parameters 3. Determining unknown parameters 4. Compensating Approximation errors

69 Compensation for Approximation Error Effect of neighboring light Initial shape Deformed shape Light in V i Neighboring light l z axis Neighboring light increases light intensity in V i. l z axis Neighboring light travels in different direction. Calculating in reference to initial shape Assumption : Error of depth l depends on Deformation of membrane Pad depth in reference to initial shape

70 Compensation for Approximation Error Parameters to represent degree of deformation/depth z axis Direction to line CCD B line C sum : Deformation of membrane Small area : Difference from initial shape line B line A line A r : Threshold value m : Scale parameter depending on depth Difference from initial shape Effect of neighboring light is maximized. Equation to compensate depth l Compensated depth : m 0 0, n : Threshold value

71 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Shape Sensing Method 4. Experimental Results 5. Conclusion

72 Experimental Description Tactile Sensor Estimation of shape of touch pad Estimated shape Object Side view Touch pad Comparing Actual shape Side camera

73 Result of Shape of Non-Contact Touch Pad Pa ad de epth l [mm m] At Actual shape Estimated shape Estimated shape with compensation x [mm] Mean error [mm] Standard deviation [mm] Without compensation With compensation

74 Result of Shape of Contacting Touch Pad () Pa ad de epth l [mm m] At Actual shape Estimated shape Estimated shape with compensation x [mm] Mean error [mm] Standard deviation [mm] Without compensation With compensation

75 mm] Pad depth l [ Result of Shape of Contacting Touch Pad (2) Actual shape Estimated shape Estimated shape with compensation x [mm] Without compensation With compensation Mean error [mm] Standard deviation [mm] [mm] Pad depth l Actual shape Estimated shape Estimated shape with compensation x [mm] Without compensation With compensation Mean Standard error deviation [mm] [mm]

76 Experimental Movie

77 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Shape Sensing Method 4. Experimental Results 5. Conclusion

78 Conclusion This paper proposed Method to obtain shape/irregularity of object by using only single camera Our sensor was developed to practical level. Sense Normal force Tangential force Moment Slippage degree Shape/irregularity Future work Implementation of developed sensor to robot hand to verify proposed method

79 Thank you for your kind attention.

80 Estimation Result of Irregularity of Object l [mm] Es stimated depth Stand dard devi iation [m mm] Contact with flat surface Contact with asperity Contact with flat surface Contact with asperity x [mm]

81 Limitation of Shape of Object Pad depth l [mm m] Actual shape Estimated shape Estimated edshape pewith compensation o x [mm] Without compensation Mean error [mm] With compensation Standard deviation [mm]

82 Limitation of Shape of Object Pad depth l [mm m] Actual shape Estimated shape Estimated shape with compensation x [mm] Without compensation Mean error [mm] With compensation Standard deviation [mm]

83 Limitation of Shape of Object Pad depth l [mm m] Actual shape Estimated shape Estimated shape with compensation x [mm] Without compensation Mean error [mm] With compensation Standard deviation [mm]

84 Calculation of Area S (z) h 2 CCD camera C Similar triangle h Acrylic plate z 2 l 2 V i z S (z) is proportional to square of (z+h 2 ). S z s z 2 h 2 S Membrane S (z) l z axis

85 Calculation of Area S (z) S z sz 2 h 2 h 2 is obtained by these relations. h x 22 cos 2 cos 2 n f h cos cos sin 2 sin 2 sin 2 cos 2 sin cos cos 2 sin 2 cos sin sin 2 2 cos 2 sin cos n f : the relative refractive coefficient between the air and the colored water h 2 h 2 2 x 2 V i similar triangle C CCD camera Refraction of light Acrylic plate

86 Parameter Identification of c R, c G, c R, c G, : 3 Unknown parameters b Q G exp cg kl br exp cr kl c expc kl Q l, c R t, b t b t f l 0 R 0, R 2 R G 0 Solving by numerical analytical approach such as Newton method Preliminarily measured l l l t, b t, b t R G t2, br t2, bg t2 t, b t b t 3 R 3, G 3 c R, c G and are set to mm -, mm - and , respectively.

87 Parameter Identification of r, m 0, n, y, t x, y, t x, y, t 2 2 m sum x k k k k 0 k m expnl x, y, t l x, y t lx y, t l x, y, t m sum x, y, t 0, 0 x k x, y k y r l x, y, t la x, y, t m sum x, y, t Comparing with ln ln S Transformed into double logarithmic equation l a : actual depth l x, y, t la x, y, t L m x, y, t ln x, y, t ln m nl x, y, t l x, y, t F sum 2 L F sum The least-square method (changing r from to 50) r, m , and n are set to mm/rad, 30 pixel and mm. 0 0

88 Solving Equation for l kl c b kl c b exp exp 0 0 0,,,, t b t b t l f g t b t b t l f G R G R R R R R R G G G R c l Q kl c c Q kl c b kl c b b b l f, exp exp exp,, 2 We approximate l by using bisection method. 0 t, l app,,, max i t f l i t l i t l sig i app app,,, t b t b i t l f G R app, 2,, f sig i app app 0 0 0,,, t b t b i t l f t b t b t l f i t f G R G R G R app sig l d N tt 4 d6 ti l 0 0 0,,,,, t b t b t l f t b t b i t l f G R G R app N t l t l app, l max and N are set to 4 mm and 6, respectively.

89 Measurement of Contact Force Normal force Tangential force Moment Contact radius (Contact t region is circle.) Relation between normal force and contact t radius Refrence Xydas, Kao:Modeling of contact mechanics and friction limit surface for soft fingers in robotics with experimental results,international te a Journal of Robotics Research,Vol.8,,No. 8,pp (999).

90 Measurement of Contact Force Normal force Tangential force Moment nom malized displ acement (m mm) tangential force (N) displacements Relation between tangential force and ddisplacements of fdots

91 Measurement of Contact Force Normal force Tangential force Moment 2 rotation angle nom malized an ngle (deg.) torque (Nmm) Relation between moment and rotation ti angle of contact t surface

92 Estimation of Slippage Degree Partial slippage by non linear pressure distribution Sensor Object Normal force N Tangential force F Contact region S c Stick region S s F<N S Incipient slippage region F>N Stick ratio indicates slippage degree. Stick ratio S s c = =0 0.5 =0 0. =0 0 Perfect sticking Partial slippage Macroscopic slippage Keeping > 0 Preventing object from slipping

93 Stick Ratio Estimation Method Discrimination of stick/slippage region d Contact region Initial image Current image Displacement d k : Each dot d 0 : Central dot Object d 0 d 0 d k d k In stick region In slippage region Stick ratio Ss S c N N s c N s : Number of dots in stick region N c : Number of dots in contact region

94 Forecasted Question Size of sensor 640 pixel CCD camera : mm pixel LED light : mm Processing speed Curvature radious : 20 mm Height : 3 mm Thickness of membrane : mm The processing speed depends on spec of PC. Although the processing speed is about Hz currently, we can process the method faster by using high spec PC in the future.

95 Forecasted Question 水平方向の分解能は? どれくらいの形状まで測れるの? 接触領域内しか推定できないんじゃないの? 接触領域はどうやって推定するの? 何故赤色にしたの? 液体じゃないと駄目なの? 同軸照明じゃないと駄目なの? なぜシリコーンゴム? 膜の厚みはどう影響する? Vision-based 以外のセンサってどんなのがあるの?electrical resistance, capacitance, electromagnetic component, piezoelectric/ ultrasonic/ component, strain gauge

96 Forecasted Question 接触領域内しか推定できないんじゃないの? Although we can estimate the entire shape of the touch pad, the estimation of the object shape is confined to the contact region. Therefore, the estimation of the contact region is also important. 接触領域はどうやって推定するの? We can estimate the contact region by using the shape of the touch pad. We will present the method to estimate the contact region at the IEEE international conference IROS in October. 何故赤色にしたの? We can estimate if we use blue or green water. However, If we use the other colored water, it is difficult to estimate, because we want to eliminate the two scattering coefficient by approximation. And the resolution depends on the difference between cr and cg. Therefore, it is desirable that cr is small and cg is large. なぜシリコーンゴム? The silicon rubber is hardly influenced by the environment.

97 Forecasted Question Vision-based 以外のセンサってどんなのがあるの? electrical resistance, capacitance, electromagnetic component, piezoelectric/ ultrasonic/ component, strain gauge. 分解能は? The resolution of br and bg are 0.00 (0~255 value ) by using smoothing (filter mask is pixel). When depth changes.7 mm, br and bg changes 8 and 3.5. Therefore, the resolution of depth is about.7/(3.5/0.00)= )= [mm]. However the actual resolution is not determined because of

98 Theory for Intensity of Light Sum of light intensity I sum in region V i S : Area on membrane in V i S (z) ) : Area on plane vertical to z axis in V i at z Geometrical relationship s : Proportional constant h 2 : Obtained from h Definition of parameter (Detail is abbreviated.) LED light h 2 h CCD camera Acrylic plate z 2 l 2 V i S (z) z S Membrane l l z axis

99 Modification of Equation Substitution of RGB values in the image Q exp I sum SR, b R2I 0 exp ckl sr R2 I0 Q c : Extinction coefficient c ckl 2 l, c exp ckl Absorbedb c R c G c B Scattered R, G, B, R, G, B : Propotional constants b R, b G, b B:RGB values in image

100 Modification of Equation Elimination of R (, b) depending and b b b R G, b R 2 I 0 R R exp crkl Qc R exp crkl R 2I 0 R R Q2 l, cr exp crkl, b R I exp c kl SR exp kl sr R SR 2 0 G G p G Solving simultaneous equations : Angle of membrane b : Color of inner membrane

101 Modification of Equation Equation to obtain pad depth l from color intensities b R, b G b R expc Rkl bg exp cg kl g Q cr expckl Q2l, cr Solving for g( ) : Calculated from position of P i k, h 2 : Obtained from, h c R, c G, : Preliminarily calculated (abbreviation) Relation between pad depth l and color intensities b R, b G l (t 0 ), b R (t 0 ), b G (t 0 ) : Preliminarily measured

102 Compensating Approximation Error Effect of neighboring light Initial shape Deformed shape Light in V i l z axis Neighboring light increases light intensity in V i. l z axis Neighboring light travels in different direction. Neighboring light Error of l depends on shape of membrane and pad depth. Equation to compensate depth l (Detail is abbreviated.) sum : Function of shape of membrane l : Compensated depth m : Function of pad depth

103 Acquisition of Tactile Information by Vision-based Tactile Sensor for Dexterous Handling of Robot Hands

104 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

105 Background Dexterous handling of object by robot hand Tactile information Contact force Slippage Shape/irregularity Temperature etc Tactile Tactile Sense Sense Object receptors sensor Feed back Object Temperature etc Actuator Requirement of tactile sensors Simultaneous acquisition iti of multifunctional/compact many types of tactile information robot hand Many sensors and other conventional devices can obtain only single type of tactile information. cannot obtain Our method can obtain. contact region on sensor even if shape/movement 2. location of contacted object of object are complex.

106 Purpose Contact region on sensor allows to... evaluate grasp task stability estimate object shape in accurate manner evaluate contact t pressure Force Sensor Which is object shape? = Contact pressure Shape-sensing Contact region Contact region Large pressure may Stable injure sensor Unstable or object. Location of contacted t object is needed d because... manipulation tasks require exact position/angle of object deformation of elastic sensor body makes object location uncertain Purpose Efficient method to Acquire contact region and location of object

107 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

108 Structure of Vision-Based Tactile Sensor One-way mirror CCD camera LED lights Touch pad Transparent acrylic plate Translucent red water Object Analysis of dot positions color intensity Metal plate Two-layered elastic membranes Outer : Black color Inner : White color, Printed dotted pattern Acquisition of tactile information Contact force* (normal, tangential, moment) Degree of slippage** Shape/irregularity of object *:G. Obinata (Mobile Robots: Perception & Navigation, 2007), **:Y. Ito (IEEE SENSORS, 2009)

109 Shape-sensing Method by Our Proposed Sensor Principle of shape-sensing method*** Significant relationship Depth of touch pad Dependency Light intensity in V i (Input signal of CCD) Proportionality Color intensities (RGB values) Calculation of pad shape from RGB values. ***:Y. Ito (IEEE CASE, 200) CCD camera Refraction LED light Acrylic plate Region V i Depth Shape-sensing method is used in this study. Membrane

110 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

111 Theory of Contact Region Estimation Difficulty to estimate contact region from shape information Pad shapes are similar. Contact t regions are different. Analysis of small segment of membrane () () R() p Definition : R =RR Segment of membrane R() () ( ) () Equilibrium equation of segment () () () Center of segment P s () 2 R R 2 p p : inner pressure : tensional forces per unit length R : curvature radius 0 2 rad

112 Theory of Contact Region Estimation Curvature radius of small segment P Concave/flat segment R() () () p R =RR 0 R 2 R R 2 R 0 R() () () ( ) p 0 p 0 Not satisfied P is in contact region Necessary and sufficient condition for P to belong to contact region Touch pad Convex segment () P R =R R () R() p () () R() Assumption : Object surfaces are convex/flat. R 0 Ex) R Flat Convex P is in non-contact region 0 0 rad

113 Calculation of Curvature Radius Curvature radius defined by three reference points y z (x P, y P, 0) P 2 x P v Acrylic plate u-v plane : perpendicular to x-y plane C (x :originofu P, y P, 0) of u-v coordinate R Assumption : u P Shape of segment around P is spherical in u-v plane. Pad shape : obtained by shape-sensing method R r P 2 (r, v(r)) C (c u,, c v, ) v r : constant parameter v(u) ( ) : v value at u r u P (r, v(r)) P(0, v(0)) Substituting 3 reference points P, P, P 2 u c 2 v c 2 R x, y 2 u, v, P P, Discrimination of convex/concave shape R R R v v 0 0 cv, 0 cv, Calculation of R of all segments in various u-v planes

114 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

115 Estimation of Object Position Analysis of dots painted on sensor surface : contacting dot : non-contacting dot Contacting dots move/rotate with object. Contact reference dot (CR dot) is always in contact. CR dot : whose displacement from initial position is biggest. CR dot Biggest displacement When CR dot doesn t slip to object, Object s CR dot s displacement = displacement rotation angle = rotation angle Initial pad shape Deformed pad shape Dot s positions/displacements are calculated by shape-sensing method.

116 Estimation of Object Orientation Rotation angle of CR dot are obtained from rotation matrix R 3 basis s vectors n, n 2 and n 3 around aou dcr dot q q 2 n q q n2 q2 q2 p i, jk pi, jk k p i k, j pik, j k n 3 n n2 : average of : average of p i,j p i,j p i,j pi p i,j p i,j p i,j p i+,j+ CR dot p i,j p i,j p i,j : position of dot (i-th from left and j-th from top) Assumption : Eight dots adjacent to CR dot are in contact with object. Positional relation of nine dots is not changed. n n n n m n n2 R n2 n n n 3 3 m m m m R n : rotation matrix from m to n m, n : sampling index

117 Estimation of Object Orientation Divide of rotation angle m n m R R n m z R n m y R n x m n z, m n y, m n x Obtain Consideration of change of CR dot CR dot changes. m R n x, m R n y, m R n z : rotation matrix around x, y, z-direction m n x, m n y, m n z : rotation angle around x, y, z-direction : CR dot : contacting dot : non-contacting dot Not satisfied m n m n m m obj x n obj y n obj z m m n obj : rotation angle of object Rotation angles of object = Sums of rotation angles of CR dot at each step m n obj x n n n k k m n k k m n,, k x obj y y obj z km km km k z (when CR dot doesn t slip to object) m x n y n z

118 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

119 Experimental Description Tactile Sensor Proposed method calculates contact region, object location Comparing Touch pad Actual contact t region Object Actual position/angle of object is obtained Side camera

120 Estimation Result of Contact Region Object contacts with square/ring shaped object Estimated contact region Shape of object Estimated contact region Shape of object y (mm) y (mm) x (mm) x (mm)

121 Experimental Movie of Contact Region Estimation

122 Experimental Movie of Contact Region Estimation

123 Estimation Result of Object Position Object moves on x-z plane without rotation. x-c coordin ate valu ue (mm m) z-co oordina ate valu ue (mm m) Estimated position Actual position 0 Estimated position Actual position Time in number

124 Estimation Result of Rotation Angle of Rolling Object Object rolls on sensor surface. Ang gle arou und x-ax xis (deg g) y value of CR dot (mm) Eti Estimated tdangle Actual angle Time in number

125 Experimental Movie of Object Location Estimation

126 Table of Contents. Introduction 2. Vision Based i dt Tactile Sensor 3. Contact Region Estimation 4. Object Location Estimation 5. Experimental Results 6. Conclusion

127 Conclusion This paper proposed method to obtain Contact region to evaluate grasp stability, object shape and contact pressure Object location to archive complex manipulation tasks Our sensor was developed to more practical level. Normal force Tangential force Sense Moment Degree of slippage Shape/irregularity Contact region Object location Future work Implementation of developed sensor to robot hand to verify proposed method

128 Thank you for your kind attention.

129 Estima ated Depth h l [mm] Estimation Result Estimated inner shape Estimated outer shape Estima ated Depth l [mm] Estimated inner shape Estimated outer shape x [mm][ ] x [mm] 40 Contact region 40 Contact region y (mm) x (mm) x (mm) y (mm)30 20

130 Estimation Result of Object Orientation An ngle aro ound x-a axis (de eg) Estimated angle 5 Actual angle Time in number

131 Simultaneous Acquisition An ngle aroun nd x-axis (deg) y value of CR dot (mm m) y5 0 Estimated angle Actual angle Time in number Time in number=0 Time in number=20 Time in number=30 Time in number=40 Time in number=50 Time in number=60

132 Calculation of rotation angle x, y, z Divide of rotation angle R R z R R z y y x x cosz sinz 0 cos y 0 sin y 0 0 sin z cosz cos x sin x 0 0 sin y 0 cos y 0 sinx cos x cos z cos y sinz cos y sin y cos sin sin sin cos sin sin sin cos cos z z y y y x x cos sin x z z x x cos z sin y cos x sin z sin x sinz sin y cos x cosz sin x cos y cos x. We can obtain y. 2. After obtaining y, we can calculate x, z.

133 Calculation for Theory of Contact Region Estimation Calculation of curvature radius of each segment We assume that the contact surface of the object is convex/flat. Although we regard this segment as in the non contact region, it may satisfy the condition when R (θ) is a small negative number. Therefore, when R (x, y, θ) is negative, we set R (x (x, y, θ) to- that yields /R (x (x, y, θ)=0. R x, y, When R (x (x, y, )<0, R x, y, 0 R() () p () () R() () R () =R() R (+/2) =R(+/2)

134 Consideration of Calculation Error Modification of condition for P to belong to contact region Actual shape Estimated shape R 0 R 0 Condition for point P to be in contact region R x, y, 0 rad R x, y, 2 x, y min E 2, f R R Smaller are desirable. n n x, y f i R x, y, R i R n x, y 2 x y f min E f f, R x, y, 0 E R : average values of /R R : standard deviation of /R Not satisfied when touch pad doesn t contact E f : average values of f f : standard deviation of f when touch pad doesn t contact, is decreased. f R

135 Measurement of Contact Force Normal force Tangential force Moment Contact radius (Contact t region is circle.) Relation between normal force and contact t radius Refrence Xydas, Kao:Modeling of contact mechanics and friction limit surface for soft fingers in robotics with experimental results,international te a Journal of Robotics Research,Vol.8,,No. 8,pp (999).

136 Measurement of Contact Force Normal force Tangential force Moment nom malized displ acement (m mm) tangential force (N) displacements Relation between tangential force and ddisplacements of fdots

137 Measurement of Contact Force Normal force Tangential force Moment 2 rotation angle nom malized an ngle (deg.) torque (Nmm) Relation between moment and rotation ti angle of contact t surface

138 Estimation of Slippage Degree Partial slippage by non linear pressure distribution Sensor Object Normal force N Tangential force F Contact region S c Stick region S s F<N S Incipient slippage region F>N Stick ratio indicates slippage degree. Stick ratio S s c = =0 0.5 =0 0. =0 0 Perfect sticking Partial slippage Macroscopic slippage Keeping > 0 Preventing object from slipping

139 Stick Ratio Estimation Method Discrimination of stick/slippage region d Contact region Initial image Current image Displacement d k : Each dot d 0 : Central dot Object d 0 d 0 d k d k In stick region In slippage region Stick ratio Ss S c N N s c N s : Number of dots in stick region N c : Number of dots in contact region

140 Forecasted Question Size of sensor 640 pixel CCD camera : mm pixel LED light : mm Processing speed Curvature radious : 20 mm Height : 3 mm Thickness of membrane : mm Although the processing speed is about 2Hz currently, we can process the method faster by using high spec PC and parallel computing method such as CUDA.

141 Forecasted Question 回転と平行移動が重なったらどうなるの?When the movement and rotation occur simultaneously, it is hard to define the position of the object. For example, when we define the object position as the position of the weighted center of the object, we cannot estimate the displacement with the rotation. なぜシリコーンゴム?The silicon rubber is hardly influenced by the environment. Vision-based 以外のセンサってどんなのがあるの?electrical resistance, capacitance, electromagnetic component, piezoelectric/ ultrasonic/ component, strain gauge. 接触領域分解能は?We estimate the contact region, changing the center point P of the segment by 5pixel (0.4mm). It is the resolution. When we estimate changing P by smaller distance, the resolution is increased. 物体位置分解能は?The resolution of the object location depends on the shape estimation of the touch pad. the resolution of the estimated shape is about μm but mean error is 0.5 mm. Therefore, the resolution of the object position is μm but maximum error is about 0.5 mm. 物体角度分解能は?The resolution of the rotation angle is about 0.04 deg which is calculated from the resolution of the pad shape and the equation to acquire the angle. (Distance between 2 dots is.5 mm and resolution of shape is μm.) But maximum error is about 0 deg. This is due to the error of the shape estimation.

142 Forecasted Question 一般性は? スケーラブル?The shape and size of the touch pad is arbitrary. However, the sensor requires the resolution of the CCD camera to detect the position of dots. Therefore, when we change the CCD camera, we have to change the number of dots. And when we estimate the force and slippage, the elastic body must have the convex surface. r はどうやって決める?r is determined as.92 mm (25pixel) which was obtained experimentally. The size of r has trade-off between the variation of the calculated curvature radius and the estimation accuracy for a sharp curve.

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 ) CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 再構築法の開発 並河俊弥 ( 東京大学 ) 201 1 第 41 回天文 天体物理若手夏の学校 2011/08/01-04 CMB lensing の宇宙論への応用 暗黒エネルギー ニュートリノ質量など 比較的高赤方偏移の揺らぎに感度をもつ 光源の性質がよく分かっている 他の観測と相補的 原始重力波 TN+ 10 重力レンズ由来の B-mode

More information

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Agilent 4263B LCR Meter Operation Manual Manual Change Agilent Part No. N/A Jun 2009 Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows. Test Signal Frequency Accuracy Frequency

More information

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa Fast response silicon pixel detector using SOI 2016/08/10 Manabu Togawa 1 100 ps High intensity fixed target NA62200 ps J-PARC MEG TOF-PET TOF-PET 400 ps α K + -> π + νν : NA62 expriment At CERN SPS Goal

More information

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

C-H Activation in Total Synthesis Masayuki Tashiro (M1) 1 C-H Activation in Total Synthesis Masayuki Tashiro (M1) 21 st Jun. 2014 Does a late-stage activation of unactivated C-H bond shorten a total synthesis?? 2 3 Contents 1. Comparison of Two Classical Strategies

More information

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付 シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付 今回の授業の目的 4 次のRunge-Kutta 法を用いて, 惑星の軌道のシミュレーションを行う 2 d r GMm m = r 2 3 dt r 2 d r GM = 2 (using angular momentum cons.) 2

More information

The unification of gravity and electromagnetism.

The unification of gravity and electromagnetism. The unification of gravity and electromagnetism. (The physics of dark energy.) Terubumi Honjou The 9 chapter. The unification of gravity and electromagnetism. [1]... to the goal of modern physics and the

More information

京都 ATLAS meeting 田代. Friday, June 28, 13

京都 ATLAS meeting 田代. Friday, June 28, 13 京都 ATLAS meeting 0.06.8 田代 Exotic search GUT heavy gauge boson (W, Z ) Extra dimensions KK particles Black hole Black hole search (A 模型による )Extra dimension が存在する場合 parton 衝突で black hole が生成される Hawking

More information

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS 第 23 回風工学シンポジウム (2014) 一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS 1) 2) 3) 4) 5) 吉田大紀 林 泰一 伊藤芳樹 林 夕路 小松亮介 1) 4) 4) 1) 1) 寺地雄輔 太田行俊 田村直美 橋波伸治 渡邉好弘 Daiki

More information

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 むら を 定量化する とは? どちらも輝度分布の最大最小の差は 22% 画面の 4 隅に向かって暗くなる状態は 気にならない 気になるもの むら むら とは人の主観である 気になる要素 を見出し 計測可能にする SEMU: 既存の定量評価方法 SEMI: 半導体 FPD ナノテクノロジー MEMS 太陽光発電

More information

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan 重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 2013.1.8. 熱海 銀河における元素量の観測 青木和光 Wako Aoki 国立天文台 National Astronomical Observatory of Japan 銀河における元素量の観測 中性子星合体によってどのような元素合成が起こ るか とくにr-processのサイトか 化学進化への影響は 化学組成と金属量 化学組成 元素量

More information

Illustrating SUSY breaking effects on various inflation models

Illustrating SUSY breaking effects on various inflation models 7/29 基研研究会素粒子物理学の進展 2014 Illustrating SUSY breaking effects on various inflation models 山田悠介 ( 早稲田大 ) 共同研究者安倍博之 青木俊太朗 長谷川史憲 ( 早稲田大 ) H. Abe, S. Aoki, F. Hasegawa and Y. Y, arxiv:1408.xxxx 7/29 基研研究会素粒子物理学の進展

More information

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018 2018 年 ( 平成 30 年 ) 13 日 ( 金曜日 ) Fri July 13, 2018 発行所 (Name) : 株式会社東京証券取引所 所在地 (Address) : 103-8220 東京都中央日本橋兜町 2-1 ホームヘ ーシ (URL) : https://www.jpx.co.jp/ 電話 (Phone) : 03-3666-0141 2-1 Nihombashi Kabutocho,

More information

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日 Reactive Fluid Dynamics 2 1 目的 本 G-COE で対象とする大規模複雑力学系システムを取り扱うにあたって, 非線形力学の基本的な知識と応用展開力は不可欠である. そこで,

More information

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese) Advance Publication by J-STAGE 日本機械学会論文集 Transactions of the JSME (in Japanese) DOI:10.1299/transjsme.16-00058 Received date : 24 February, 2016 Accepted date : 6 September, 2016 J-STAGE Advance Publication

More information

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること (2018 年度一般入試 A) 英語問題 (60 分 ) ( この問題冊子は 8 ページである ) 受験についての注意 1. 監督の指示があるまで 問題を開いてはならない 2. 携帯電話 PHS の電源は切ること 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

More information

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について Report on the experiment of vibration measurement of Wire Brushes mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について In this report, the purpose of the experiment is to clarify the vibration

More information

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会 一般化川渡り問題について 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 12.3.8 組合せゲーム パズルミニ研究集会 1 3 人の嫉妬深い男とその妹の問題 [Alcuin of York, 青年達を鍛えるための諸問題 より ] 3 人の男がそれぞれ一人ずつ未婚の妹を連れて川にさしかかった

More information

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere Chapter 1 Earth Science Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere Project Representative Shingo Watanabe

More information

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三 車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三 概要車載用燃焼圧センサー用として高抵抗を示すランガサイト型圧電結晶をデザインした すなわち4 元系のランガサイト型結晶 CNGS の適正組成をイオン半径 結晶構成要素の結晶サイト存在に関する自由度 および

More information

Estimation of Gravel Size Distribution using Contact Time

Estimation of Gravel Size Distribution using Contact Time ISSN 386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 97, 212 Estimation of Gravel Size Distribution using Contact Time Akira ODA*, Yuya HIRANO**, Masanori WATANABE***

More information

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei 2016/09/13 INPC2016 @ Adelaide 1 Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei Back ground Prog. Theor. Exp. Phys. 2016, 013D01 Yoshihiko Kobayashi

More information

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device 15 th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, 5-8 September, PPPL Session 8 : Diagnostic Development : O-14 Fusion neutron production with deuterium neutral beam

More information

2011/12/25

2011/12/25 Outline [] Control Technologies for Ocean Engineering Control technologies as the second axis Kyushu University Prof. H.Kajiwara (.8,at PNU) LQI Control Linear-Quadratic- Integral Design of Linear-Time-

More information

Relation of machine learning and renormalization group in Ising model

Relation of machine learning and renormalization group in Ising model Relation of machine learning and renormalization group in Ising model Shotaro Shiba (KEK) Collaborators: S. Iso and S. Yokoo (KEK, Sokendai) Reference: arxiv: 1801.07172 [hep-th] Jan. 23, 2018 @ Osaka

More information

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学 非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学 Unbound excited states in,17 C Ground state deformation property of carbon isotopes Y.Satou et al., Phys. Lett. B 660, 320(2008). Be BC Li H He Ne O F N N=8 C 17 C Neutron

More information

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる 谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる 1. 地球内部の全球的 3 次元構造とマントル対流プレートテクトニクスによる地球表面の運動が GPS 等の測地観測によってリアルタイムでわかるようになってきた現在

More information

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工 WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工の放射性核種について定められたガイダンスレベルを表 9.2 に示す それぞれの成人の線量換算係数もまた示されている

More information

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から 自由研究論文 61 新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から 柴田 1) 俊和 The Case Study about Instruction of the Tacit Knowledge called a New Course of Study - Instruction Contents in Sport Pedagogy-

More information

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4 BCRAM-1LB ( 1 C ) RJJG- Rev...11. I T(RMS) A V DRM 6 V I FGT I, I RGT I, I RGT III ma : PRSSZE-A ( : TO-P), 1 1. T 1. T.. T 1 1.. 1 C 1 C 1 * 1 V DRM 6 V * 1 V DSM V I T(RMS) A Tc = C I TSM A 6Hz 1 I t

More information

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase Spontaneous agnetization of uar atter in the inhoogeneous chiral phase arxiv:7. [hep-ph] Ryo Yoshiie (Kyoto University) collaborator:kazuya Nishiyaa oshitaa atsui XQCD 9/@CCNU QCD phase diagra and chiral

More information

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling Taku OZAWA, Sou NISHIMURA, and Hiroshi OHKURA Volcano Research Department,

More information

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または津波被害からの教訓 ) 2)Way of thinking for reconstruction (

More information

Thermal Safety Software (TSS) series

Thermal Safety Software (TSS) series Ready-solutions Thermal Safety Software (TSS) series 各種の反応危険性評価ソフト The subset for adiabatic calorimetry ( 断熱測定データ解析ソリューション ) 断熱熱量計 (ARC VSP DEWAR) 等は 化学反応の熱的危険性評価に有効であることが知られています このソリューションは 断熱下で測定した熱量データを多目的に解析するために

More information

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Introduction to Multi-hazard Risk-based Early Warning System in Japan Introduction to Multi-hazard Risk-based Early Warning System in Japan Yasuo SEKITA (Mr) Director-General, Forecast Department Japan Meteorological Agency (JMA) Natural Disasters in Asia Source: Disasters

More information

October 7, Shinichiro Mori, Associate Professor

October 7, Shinichiro Mori, Associate Professor The areas of landslides and affected buildings and houses within those areas, in and around Palu City during Sulawesi Earthquake on September 28, 2018 specified by an analysis based on satellite imagery

More information

Product Specification

Product Specification This information may be changed without a previous notice. Specification No. JECXDE-9004E Product Specification Issued Date: 17 / Dec. / 2014 Part Description: Supercapacitor (EDLC) Customer Part No.:

More information

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo 69 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyoshi KOBAYASHI * Abstract Resistivity monitoring system is a visualization

More information

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya D j a n g o と P H P の仲間たち What's Django? W h a t ' s D j a n g o Pythonのフレームワーク インストール簡単 コマンドを実行するだけで自動生成しまくり

More information

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana プリムネシウム藻綱 Isochrysis galbana の光化学系 II における光適応戦略 6D551 小幡光子 指導教員山本修一 SYNOPSIS 海洋に生息する藻類は 海水の鉛直混合や昼夜により 弱光から強光までの様々な光強度

More information

XENON SHORT ARC LAMPS キセノンショートアークランプ

XENON SHORT ARC LAMPS キセノンショートアークランプ 光源事業 / キセノンショートアークランプ XENON SHORT ARC LAMPS キセノンショートアークランプ 当社のキセノンショートアークランプは 自然太陽光に近似し た光波長 分光分布を有する特性を生かし 太陽電池の性能評 価 基礎研究のための弊社製ソーラシミュレータ用標準光源と して採用しているだけでなく 高輝度 点光源 高演色という 特性を生かし 分光器用光源 映写機用光源 プラネタリウム

More information

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass. Diagram courtesy of P5 The Energy Frontier Origin of Mass Matter/Antimatter Asymmetry Dark Matter Origin of Universe Unification of Forces New Physics Beyond the Standard Model ニュートリノ質量 質量起源 The Intensity

More information

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA H HUENIA {^ERALDICA,THE CORRECT NAME FOR HUENIA PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA しノ. by L. B, HOLTHUIS CRUSTACEA SMITH^IB^^ISf RETURN fo W-l 妙. V, i コノハガニの学名について L. B. ホノレトイス.

More information

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構 超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構 名古屋大学理学研究科 井上剛志 今日の話とは別の成果 : Inoue, Hennebelle, Fukui, Matsumoto, Iwasaki, Inutsuka 2018, PASJ Special issue, arxiv: 1707.02035 IntroducGon to RX J1713.7-3946 p SNR: RX J1713.7-3946:

More information

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo) L 28 th Conference on Severe Local Storms 11 Nov. 2016 Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo) Introduction In the warm sector of extratropical cyclones (ECs), there are strong upper-level

More information

日本政府 ( 文部科学省 ) 奨学金留学生申請書

日本政府 ( 文部科学省 ) 奨学金留学生申請書 A PP L IC AT IO N J AP A N ESE G O VE R NMENT ( M ONB UK AG AK US HO :M EXT)SC H OL A RS H IP F O R 2 0 1 6 日本政府 ( 文部科学省 ) 奨学金留学生申請書 Undergraduate Students ( 学部留学生 ) INSTRUCTIONS( 記入上の注意 ) 1.Type application,

More information

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬 高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP シンポジウム @ 白馬 2010.2.14-17 χ Direct Detection χ q q Indirect Detection χ γ, ν, lepton Accelerator Detection q χ χ γ, ν, lepton q χ Target : Xe, Ge, Si, NaI,

More information

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について The 4th Workshop on JAXA: Astrodynamics and Flight Mechanics, Sagamihara, July 015. On Attitude Control of Microsatellite Using Shape Variable Elements By Kyosuke Tawara 1) and Saburo Matunaga ) 1) Department

More information

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,... 対角線論法 可算無限集合 : 自然数全体の集合との間に 対 対応がある集合のこと. 可算集合 : 有限または可算無限である集合のこと. つまり, つずつ要素を取り出してきて, もれなく書き並べられるもの 例. 正の偶数全体の集合 E は可算無限である. 自然数全体の集合 N の要素 と,E の要素 2 を対とする 対 対応がある. 例 2. 整数全体の集合 Z は可算無限である. 対 対応がある.

More information

Study of General Dynamic Modeling Using the Craig-Bampton Method

Study of General Dynamic Modeling Using the Craig-Bampton Method Study of General Dynamic Modeling Using the Craig-Bampton Method Shinji Mitani (JAXA) Abstract: This paper proposes a more general dynamic model of the constrained mode using the Craig-Bampton method under

More information

Deep moist atmospheric convection in a subkilometer

Deep moist atmospheric convection in a subkilometer Deep moist atmospheric convection in a subkilometer global simulation Yoshiaki Miyamoto, Yoshiyuki Kajikawa, Ryuji Yoshida, Tsuyoshi Yamaura, Hisashi Yashiro, Hirofumi Tomita (RIKEN AICS) I. Background

More information

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学) KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学) 1 Contents Motivation KOTO Experiment Prospect 2 Motivation 3 New Physicsはあるのか 4 2008 : Kobayashi and Maskawa CP-violation was established. The size is not enough to explain

More information

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata 近距離重力実験実験室における逆二乗則の法則の検証? Jiro Murata Rikkyo University / TRIUMF 第 29 回理論懇シンポジウム 重力が織りなす宇宙の諸階層 2016/12/20-22 東北大学天文学教室 1. 重力実験概観 Newton 実験の紹介 2. 加速器実験の解釈 比較 1 ATLAS よくある質問 Q 重力実験はどのくらいの距離までいってるんですか? A

More information

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史 統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史 概要 高速点火核融合ではターゲット爆縮から追加熱用レーザーによる高速電子発生まで時間 空間スケールにおいて非常に広範な領域の現象を理解する必要がある そこで本プロジェクトでは輻射流体コード 粒子コード Fokker-Planck コード の開発が進められており これらのコードをネットワークを介して結合することで統合コードの構築を目指している

More information

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40 A273 57 01B 1/40 INDEX PAGE 1. MTBF 計算値 Calculated Values of MTBF 3~4 2. 部品ディレーティング Component Derating 5~9 3. 主要部品温度上昇値 Main Components Temperature Rise ΔT List 10~11 4. 電解コンデンサ推定寿命計算値 Electrolytic Capacitor

More information

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators The 22th IEEE Asian Test Symposium (ATS 13), Yilan, Taiwan, Nov. 20, 2013 An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators Kentaroh Katoh, Yuta Doi, Satoshi Ito, Haruo Kobayashi,

More information

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論 Day 5 A Gem of Combinatorics 組合わせ論の宝石 Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論 Recall the last lecture and try the homework solution 復習と宿題確認 Partially Ordered Set (poset)

More information

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University Hypocenters, Spectral Analysis and Source Mechanism of Volcanic Earthquakes at Kuchinoerabujima: High-frequency, Low-frequency and Monochromatic Events Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI,

More information

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al G D M G Nw B C 英語教授法通信 第 号 ι 年 月 日勺 WHA RANSFORM AONALYNAX 一一 A R! L 一 一 ず 併 j ~ ;! ~も Wm Y m m m x N~w B~ mx j (; ; qw m M w SC mj m S~ Cm mx mm C J q m A H CmS S m m m mm m Cm R P S ; x mm w A と w R

More information

Method for making high-quality thin sections of native sulfur

Method for making high-quality thin sections of native sulfur Bulletin of the Geological Survey of Japan, vol. 69 (2), p. 135 139, 2018 Notes and Comments Method for making high-quality thin sections of native sulfur Takayuki S 1,*, Akira Owada 1 and Eri Hirabayashi

More information

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻 数理科学専修 統合数理科学を 目 指 す welcome to Mathematics 数理科学 とは 数学および数学と諸科学との関係領域に構築 された学問分野の総称であり 数学理論 いわゆる純粋数学 の探求ともに 現実現象の記述 抽象化 定式化 モデル化 の開発にも重点を置くものです 1981年 慶應義塾は他大学にさきがけてを設置し ましたが 数理科学はあらゆる科学技術を語る共通の言葉とし て 理工学はもちろん

More information

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2 Bulletin of the Geological Subsurface Survey of Japan, Thermal vol.60 Regime (9/10), in the p.469-489, Chao-Phraya 2009 Plain, Thailand (Uchida et al.) Subsurface Thermal Regime in the Chao-Phraya Plain,

More information

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps [Technical report] Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps Mahito ITO *, Itaru UESATO *, Yoshiyuki NOTO *, Osamu IJIMA

More information

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 ) 高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 ) Curret GSMaP products GSMaP_MWR Microwave radiometer product GSMaP_MVK Global precipitatio mappig from microwave ad ifrared radiometric data GSMaP_Gauge Gauge adjusted

More information

スペース赤外線天文学の 現状と将来 ~ 波長の壁を越えて ~ 中川貴雄 (ISAS/JAXA)

スペース赤外線天文学の 現状と将来 ~ 波長の壁を越えて ~ 中川貴雄 (ISAS/JAXA) スペース赤外線天文学の 現状と将来 ~ 波長の壁を越えて ~ 中川貴雄 (ISAS/JAXA) 日本の スペース赤外線天文学の歩み? IRTS (1995) あかり (2006) Where are we from? Are we alone? Formation & evolution of galaxies Birth & evolution of stars and planetary systems

More information

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合 サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合 マテリアルズインフォマティクスの最前線 吉田 亮 1,2,3,4 yoshidar@ism.ac.jp 情報 システム研究機構 統計数理研究所 モデリング研究系 准教授 情報 システム研究機構 統計数理研究所 ものづくりデータ科学研究センター センター長 3 総合研究大学院大学 複合科学研究科 統計科学専攻 准教授 4 物質

More information

HWS150A RELIABILITY DATA 信頼性データ

HWS150A RELIABILITY DATA 信頼性データ RELIABILITY DATA 信頼性データ TDK-Lambda A259-57-1C I N D E X PAGE 1.MTBF 計算値 Calculated Values of MTBF R-1~2 2. 部品ディレーティング Components Derating R-3~7 3. 主要部品温度上昇値 Main Components Temperature Rise T List R-~9.

More information

Yutaka Shikano. Visualizing a Quantum State

Yutaka Shikano. Visualizing a Quantum State Yutaka Shikano Visualizing a Quantum State Self Introduction http://qm.ims.ac.jp 東京工業大学 ( 大岡山キャンパス ) 学部 4 年間 修士課程 博士課程と通ったところです 宇宙物理学理論研究室というところにいました マサチューセッツ工科大学 博士課程の際に 機械工学科に留学していました (1 年半 ) チャップマン大学

More information

高エネルギーニュートリノ : 理論的な理解 の現状

高エネルギーニュートリノ : 理論的な理解 の現状 第 24 回 宇宙ニュートリノ 研究会 高エネルギーニュートリノ : 理論的な理解 の現状 京都大学基礎物理学研究所 長滝重博 Kaji Yasuyuki 9th March 2011, ICRR, Tokyo Overview History of the Universe UHECRs? VHE-ν? When? Who? How? CMB 3000k -> 2.75k Mysteries of

More information

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology) ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology) 川村宏 ( 東北大学大気海洋変動観測研究センター教授 ) Hiroshi Kawamura (Tohoku University, Center for Atmospheric and Oceanic Studies, Professor)

More information

Trends of the National Spatial Data Infrastructure

Trends of the National Spatial Data Infrastructure Trends of the National Spatial Data Infrastructure YoungJoo Lee 2009. 6. 8 Contents Introductions - Definitions of NSDI - Components of NSDI - Roles of NSDI Comparative Analysis - Backgrounds: History

More information

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model Satoko Matsueda, Yuhei Takaya and Kengo Miyaoka Climate Prediction Division, Japan Meteorological Agency Madden-Julian

More information

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される 井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される 1. 地震の動的破壊プロセスの解明地下の岩盤の破壊を伴う摩擦すべりである地震を理解するには 地下で何が起きたかを正確に知る必要がある 井出博士は そのための手法である 断層すべりインバージョン法

More information

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data Seiichi SHIMADA * Abstract The IGS reprocessed GPS precise ephemeris (repro1) is evaluated

More information

SML-811x/812x/813x Series

SML-811x/812x/813x Series SML-811x/812x/813x Series Data Sheet 特 背面実装可能タイプ 外観図 サイズ情報 3412 (15) 3.4 1.25mm (t=1.1mm) Color Type V U D W M B WB 外形寸法図 3.4 はんだ付け推奨パターン 1.2 R 1.25 1.25 φ2.4 4-R.3 レジスト +.5 1.1 -.1 Hole + 1.25.28 カソードインデックス

More information

ATLAS 実験における荷電ヒッグス粒子の探索

ATLAS 実験における荷電ヒッグス粒子の探索 1 ATLAS 実験における荷電ヒッグス粒子の探索 筑波大学大学院数理物質科学研究科物理学専攻博士後期課程 3 年永田和樹 2016 年 1 月 19 日 CiRfSE workshop 重い荷電ヒッグス粒子探索 2 もし 荷電ヒッグス粒子の発見できたら 標準理論を超える物理の存在の証明 例 :Minimal Supersymmetric Standard Model (MSSM) 重い荷電ヒッグス粒子探索

More information

Taking an advantage of innovations in science and technology to develop MHEWS

Taking an advantage of innovations in science and technology to develop MHEWS Taking an advantage of innovations in science and technology to develop MHEWS Masashi Nagata Meteorological Research Institute, Tsukuba, Ibaraki, Japan Japan Meteorological Agency 1 Why heavy rainfalls

More information

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子 地質調査総合センター速報 No.54, 平成 21 年度沿岸域の地質 活断層調査研究報告,p.61-67,2010 長岡平野西縁断層帯における浅層反射法地震探査 - 新潟市松野尾地区の地下構造 Subsurface structure of the Western boundary fault zone of Nagaoka Plain, based on high-resolution seismic

More information

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University Analysis status of the Λ hyernuclear sectroscoic exeriment @ Jlab Hall C (E01-011) Contents 1: Characteristics of the (e,e K ) reaction 2: Physics goals of Jlab E01-011 3: Thomas Jefferson National Accelerator

More information

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE)

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE) NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して Educational Research based on Newspaper In Education (NIE) Tuition of Liberal Arts for second year students at International Pacific University 次世代教育学部国際教育学科渡邉規矩郎

More information

Neural POS-Tagging with Julia

Neural POS-Tagging with Julia Neural POS-Tagging with Julia Hiroyuki Shindo 2015-12-19 Julia Tokyo Why Julia? NLP の基礎解析 ( 研究レベル ) ベクトル演算以外の計算も多い ( 探索など ) Java, Scala, C++ Python-like な文法で, 高速なプログラミング言語 Julia, Nim, Crystal? 1 Part-of-Speech

More information

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba [Technical report] Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba Mahito ITO *, Itaru UESATO *, Yoshiyuki NOTO **, Osamu

More information

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment Kyoto University E-mail: maeda_y@scphys.kyoto-u.ac.jp A novel γ-ray detector insensitive to neutrons is developed

More information

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model Project Representative Masaki Satoh Atmosphere and Ocean Research Institute, University of Tokyo / Research Institute

More information

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater ISSN 0386-4049 TECHNICAL REPORTS OF THE METEOROLOGICAL RESEARCH INSTITUTE No.58 2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater 気象研究所技術報告 第 58 号 栄養塩測定用海水組成標準の 2006

More information

Video Archive Contents Browsing Method based on News Structure Patterns

Video Archive Contents Browsing Method based on News Structure Patterns DEWS2006 5C-i4 670-0092 1 1-12 670-0092 1 1-12 E-mail: hd05r011@stshse.u-hyogo.ac.jp, sumiya@shse.u-hyogo.ac.jp TV Web Video Archive Contents Browsing Method based on News Structure Patterns Abstract Daisuke

More information

Development of Advanced Simulation Methods for Solid Earth Simulations

Development of Advanced Simulation Methods for Solid Earth Simulations Chapter 1 Earth Science Development of Advanced Simulation Methods for Solid Earth Simulations Project Representative Mikito Furuichi Department of Mathematical Science and Advanced Technology, Japan Agency

More information

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所 新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所 2013 HORIBA Scientific. All rights reserved. Ultra fast simultaneous AFM and hyper-spectral imaging: chemical and physical investigation of nano-materials

More information

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure Project Representative Takashi Furumura Author Takashi Furumura Center for Integrated Disaster Information

More information

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido [Technical report] Global Spectral UV in Recent 6 s and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido Mahito ITO *, Masaji ONO **, Noritsugu TSUDA

More information

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

A method for estimating the sea-air CO 2 flux in the Pacific Ocean 太平洋における大気 - 海洋間二酸化炭素フラックス推定手法 A method for estimating the sea-air CO 2 flux in the Pacific Ocean 杉本裕之 気象庁地球環境 海洋部 / 気象研究所海洋研究部 平石直孝 気象庁地球環境 海洋部 ( 現 : 気象庁観測部 ) 石井雅男, 緑川貴 気象研究所地球化学研究部 Hiroyuki Sugimoto Global

More information

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006). 森雄一朗博士の研究業績概要 現代科学において環境は最も重要なキーワードの一つであり 化学分野では環境にやさしい化学 すなわちグリーン サステイナブルケミストリー (GSC) が世界的に重要な研究領域として位置づけられている GSCという言葉が生み出されて約 10 年であるが 化学と環境の共存という大きな目標に向けて今後益々の発展が必要な分野である 森雄一朗博士はこれまでGSC 分野を中心に基礎から応用まで幅広く研究活動を行い成果を挙げている

More information

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正 氏名 ( 本籍地 ) 学 位 の 種 類 学 位 記 番 号 学位授与年月日 学位授与の要件 研究科, 専攻 論 文 題 目 ぱんれい 庞磊博士 ( 生命科学 ) 生博第 337 号平成 29 年 3 月 24 日学位規則第 4 条第 1 項該当東北大学大学院生命科学研究科 ( 博士課程 ) 生態システム生命科学専攻 Analyses of Functional Tissues and Hormonal

More information

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp ) ) 4) ) hayashi@archi.kyoto-u.ac.j Det. of Architecture and Architectural Engrg., Kyoto University, Prof., Dr.Eng. ), r-suzuki@archi.kyoto-u.ac.j Det. of Architecture and Architectural Engrg., Kyoto University,

More information

XAFS Spectroscopy X-ray absorption fine structure

XAFS Spectroscopy X-ray absorption fine structure 17/7/9 XAFS Spectroscopy X-ray absorpton fne structure K.Asakura, ICAT Hokuda 1 17/7/9 X 線とは X 線とは波長の短い電磁波 ( 横波 ) である. 4 17/7/9 X 線と物質との相互作用 3 図 1.3 X 線の吸収によって引き起こされる様々な現象. 図 1.4 1 個の原子内での X 線吸収現象. 3 17/7/9

More information

757G-V2 Series. For General Lighting Application. NF2x757G-F1, NFSx757G COB Series. Ra 90. Ra 80 Cove Light. Surface Mount Type

757G-V2 Series. For General Lighting Application. NF2x757G-F1, NFSx757G COB Series. Ra 90. Ra 80 Cove Light. Surface Mount Type DETAIL DETAIL For General Lighting High color rendering Ra 95 option High color rendering option Ra 95 is now available, even in higher color temperatures. Illuminated objects can appear more natural than

More information

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015 -the 1st lecture- @Milano March 16-20, 2015 Yoshitaka Fujita Osaka University Snake of Sizes 1 1.4 billion light years 1 fm 量子力学 Quantum Mechanics Molecule ミクロの世界 Micro World ニュートン力学 Newton Mechanics マクロの世界

More information

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1. 放射線検出器の基礎 - 2 飯嶋徹 電離によるエネルギー損失 2 2 de 2 Z 1 2mc 2 2 ln e β δ = Kz β (1 2 dx A β I β ) 2 K = 4π N r m c = 0.3071 MeV cm / gr 2 2 2 0 0 e I Mean ioniza9on energy I 7 = 12 + ev Z Z Z < 13 I 1.19 = 9.76 +

More information

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築 結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築 ( 課題番号 :17350021) 平成 17 年度 ~ 平成 18 年度科学研究費補助金 ( 基盤研究 (B) ) 研究成果報告書 平成 19 年 5 月 研究代表者山本陽介 広島大学大学院理学研究科教授 目次 1. 課題番号 2. 研究課題 3. 研究組織 4. 研究経費 5. 研究発表 原著論文 総説類 国内学会における特別講演

More information

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと 平成 29 年度入学者選抜学力検査問題 英 語 ( 配点 ) 1 2 3 4 5 6 10 点 15 点 24 点 15 点 15 点 21 点 ( 注意事項 ) 1 問題冊子は指示があるまで開かないこと 2 問題冊子は 1 ページから 8 ページまでです 検査開始の合図のあとで確かめること 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ

More information