Reconstruction of full rank algebraic branching programs

Size: px
Start display at page:

Download "Reconstruction of full rank algebraic branching programs"

Transcription

1 Reconstruction of full rank algebraic branching programs Vineet Nair Joint work with: Neeraj Kayal, Chandan Saha, Sebastien Tavenas 1

2 Arithmetic circuits 2

3 Reconstruction problem f(x) Q[X] is an m-variate degree d polynomial computable by a size s circuit in circuit class C. Input: α ϵ F m Blackbox access f(α) 3

4 Reconstruction problem Input: α ϵ F m f(α) Output: A small arithmetic circuit computing f. The algorithm should run in time poly(m,s,d,b) where (b is the bit length of the coefficients of f). 4

5 Polynomial identity testing (PIT): Input: α ϵ F m f(α) Is f(x) = 0? Randomized algorithm for PIT follows easily from Schwartz-Zippel lemma Unlike PIT no efficient randomized algorithm is known for reconstruction. 5

6 Previous works Over finite fields [Shp07],[KS09] gave quasi-poly time deterministic reconstruction algorithm for depth three circuits with constant number of product gates. 6

7 Previous works Over characteristic zero fields [Sinha16] gave a poly time randomized algorithm for depth three circuits with two product gates. [GKL12] gave poly time randomized algorithm for multilinear depth four circuits with two top-level product gates. 7

8 Previous works [SV09], [MV16] gave deterministic poly time reconstruction for read-once formulas [KS03], [FS13] gave deterministic quasi-poly time reconstruction for ROABPs, set-multilinear ABPs and non-commutative ABPs 8

9 Average-case reconstruction Progress in reconstruction is slow. Can we do reconstruction for most circuits in a circuit class C? C Efficiently reconstructed 9

10 Average-case reconstruction Problem definition: The input f is an m variate degree d polynomial picked according to a distribution D on circuit class C Output an efficient reconstruction algorithm for f. [GKL11], [GKQ13] gave randomized poly time algorithm for average-case reconstruction of multilinear formulas and formulas. 10

11 Algebraic branching programs (ABP) Definition: Consider the product of d matrices as X 1 X 2 X d, where X 1 is a row vector of length w, X d is a column vector of length w and X 2,, X d-1 are wxw matrices. Each entry of X i, i [d] is an affine form in X variables. X = m, example a 0 + a 1 x a m. Polynomial computed by the ABP is the entry in the 1x1 matrix computed as above. Length and width of the ABP is w and d respectively. 11

12 Distribution on ABPs Random ABP: Fix w,d and m. Pick the constants of the linear forms independently and uniformly at random from a large set S Q. Average-case reconstruction: Design a reconstruction algorithm for random(m,w,d,s) ABP. 12

13 Average-case reconstruction for ABPs Input: Blackbox access to f(x) computable by random(m,w,d,s) ABP. α ϵ F n f(α) Output: A small ABP computing f with high probability. The algorithm should run in time poly(m,w,d,ρ) - (ρ bit length of an element in S). 13

14 Pseudo-random family A distribution D on m variate degree d polynomial family with seed length s=(md) O(1) generates a pseudo-random family if Every algorithm that distinguishes a polynomial coming from D and uniformly random m-variate polynomial with a non-negligible bias runs in time exponential in s. 14

15 Candidate family [Aar08] conjectures the family Det n (AX) where every entry of A ϵ F t x m is chosen uniformly at random from a finite field and m << t=n 2 is pseudo-random Example x 1 +x 2 6x 1 +x 2 x 1 +3x 2 5x 1 +4x 2 8x 1 +x 2 10x 1 +x 2 8x 1 +3x 2 3x 1 +2x 2 m = 2, n = 4 8x 1 +2x 2 5x 1 +4x 2 7x 1 +9x 2 11x 1 +x 2 4x 1 +3x 2 9x 1 +3x 2 5x 1 +6x 2 9x 1 +7x 2 15

16 Iterated matrix multiplication Definition: Consider the product of d matrices as X 1 X 2 X d, where X 1 is a row vector of length w, X d is a column vector of length w and X 2,, X d-1 are wxw matrices. Each entry of X i, i [d] is a distinct variable. The variables are disjoint across matrices. IMM w,d is the entry in 1x1 matrix computed as above. 16

17 Consequence Det n and IMM w,d are affine projections of each other [Mahajan, Vinay 97]. Hence, it makes sense to ask whether IMM w,d (AX) where A ϵ F t x m is chosen uniformly at random from a finite S Q and m << t = w 2 (d-2) + 2w is pseudorandom. 17

18 18 Our Contribution

19 Main result 19

20 Remarks Does not resolve Aaronson s conjecture For IMM w,d the conjecture holds when m << w 2 d Our result holds when m w 2 d Our result works even if the matrices are not of uniform width. 20

21 Full rank ABPs If m w 2 d then the affine forms in the ABP are Q-linearly independent with high probability. Full rank ABPs: the set of linear forms in X 1, X 2,, X d are Q-linearly independent. Example: x 1 + x 2 x 2 + x 3 x 3 + x 4 x 4 + x 5 x 5 + x 6 x 6 + x 7 x 13 + x 14 x 7 + x 8 x 8 + x 9 x 9 + x 10 x 14 + x 15 x 10 + x 11 x 11 + x 12 x 12 + x 13 x 15 + x 16 21

22 Full rank ABPs If m w 2 d then the affine forms in the ABP are Q-linearly independent with high probability. Full rank ABPs: the set of linear forms in X 1, X 2,, X d are Q-linearly independent. Main result: We design an efficient randomized algorithm to reconstruct full rank ABPs. 22

23 Equivalent polynomials An n-variate polynomial f is equivalent to an n- variate polynomial g if there exists an invertible A ϵ F n xn such that f(x) = g(ax) Equivalence test: g(x) f(x) Is there an invertible A in F nxn such that f(x) = g(ax) 23

24 Equivalent polynomials Equivalence test: IMM(X) f(x) Is there an invertible A in F nxn such that f(x) = IMM(AX) Remark: Computing a full rank ABP for f is the same as designing an efficient randomized equivalence test for IMM 24

25 Group of symmetries of IMM Group of symmetries: For an n variate polynomial g(x) it is the set of all invertible A F nxn such that g(ax) = g(x). Characterization by symmetries: g(x) is characterized by its group of symmetries then The group of symmetries of f(x) and g(x) are equal if and only if f(x) is a constant multiple of g(x) Main theorem 2: IMM w,d is characterized by its group of symmetries. 25

26 26 Proof Ideas

27 Template of the reconstruction algorithm Assume the input polynomial f is computable by a full rank ABP Compute a full rank ABP 1. Find the layer spaces 2. Glue them together Do a polynomial identity test to check if the polynomial computed by the ABP is f Output `f is not computable by a full rank ABP no yes Output the full rank ABP computing f 27

28 Pre-processing Let an m variate polynomial f be computed by a width w and length d full rank ABP. The number of edges is n = w 2 (d-2) +2w Two steps of pre-processing: m n Variable reduction: At the end of this step we get an n variate f computable by a full rank ABP Translation equivalence test: The entries in the matrices of the full rank ABP computing f are linear forms (constant term is 0). 2

29 Multiple full rank ABPs for f Suppose f is computable by a full rank ABP X 1 X 2 X d Then this full rank ABP for f is not unique The following transformations still compute f Transposition Left-right multiplication 29 Corner translations

30 Transposition Recall X 1 and X d are row and column vectors Since the eventual product is a 1x1 matrix the transpose of the product still computes f Hence f is also computed by T X d T X 2 T X 1 30

31 Left-right multiplication Let A be a wxw invertible matrix with entries from Q Replace X 2 with X 2 = X 2 A and X 3 = A -1 X 3 f is computed by the product X 1 X 2 X 3 X d 31

32 Corner translations Let B be an anti-symmetric wxw matrix, then X 1 B T X 1 = 0 x 1 + x 2 x 2 + x 3 x 3 + x x 1 + x x 2 + x 3 = 0 x 3 + x 4 32

33 Corner translations Let B 1, B 2,, B w be anti-symmetric wxw matrices. Let Y be the matrix such that the i-th column of Y is B i T X 1 i-th column of matrix Y B i T X 1 33

34 Corner translations Replace X 2 with X 2 = X 2 + Y Observe that X 1 X 2 = X 1 X 2 as X 1 Y = 0 wxw f is computed by the product X 1 X 2 X 3 X d = X 1 (X 2 + Y) X 3 X d Similarly we can define corner translations for X d-1 34

35 Uniqueness of the layer spaces Suppose f is computable by a full rank ABP X 1 X 2 X d Let X i denote the Q-linear space spanned by the linear forms in X i X 1,2 and X d-1,d denote the the Q-linear space spanned by the linear forms in X 1,X 2 and X d-1, X d respectively 35

36 Uniqueness of the layer spaces If X 1 X 2 X d computes f then either X i = X i for i ϵ [d]\{2,d-1} X 1,2 = X 1,2 and X d-1,d = X d-1,d or X i = X d-i for i ϵ [d]\{2,d-1} X 1,2 = X d-1,d and X d-1,d = X 1,2 36

37 Uniqueness of the layer spaces X 1 X 3 X 4 X d-2 X d X 1,2 X d-1,d 37

38 Uniqueness of the layer spaces X d X d-2 X d-3 X 3 X 1 X d-1,d X 1,2 38

39 Group of symmetries of IMM The set of all invertible A ϵ F n xn IMM w,d (AX) = IMM w,d. such that We show that the group of symmetries are generated by the following subgroups T denotes the group corresponding to transpositions M denotes the group corresponding to left-right multilpications C denotes the group corresponding to corner translations 39

40 Group of symmetries of IMM Main Theorem: G IMM = C H, where H = M T C is a normal subgroup in G IMM and M is a normal subgroup in H We also show that IMM is characterized by its group of symmetries That is any polynomial with the same symmetry group is a constant multiple of IMM 40

41 Computing the full rank ABP: Step 1 Computing the layer spaces: Study the Lie algebra of the group of symmetries of IMM w,d [Kay12] Lie algebra of the group of symmetries of f is the set of matrices A = (a i,j ) i,j [n] We just use the vector space property of the algebra 41

42 Invariant spaces Invariant space: Let M: Q n Q n be a linear operator. U Q n is an invariant space if M(U) U The definition can be extended to a set of linear operators {M 1, M 2,, M n } The layer spaces of an f computed by a full rank ABP are intimately connected to the invariant spaces of Lie algebra of f 42

43 Computing the layer spaces Compute a basis of the Lie algebra of f Easy: Involves solving a set of linear dependencies Compute the irreducible invariant spaces of the Lie algebra of f Since f and IMM are equivalent their Lie algebras are conjugates of each other Compute the layer spaces from the irreducible invariant spaces We show that the layer spaces are in fact the irreducible invariant spaces in some sense 43

44 Computing the full rank ABP: Step 2 Ordering the layer spaces: We use evaluation dimension to order the layer spaces. Definition: Evaluation Dimension for a polynomial H(X) is defined with respect to a set of variables S X Evaldim S [H(X) ] is equal to dim (span{h(x) x j =ɑ j for x j S,where ɑ j F}) 44

45 Ordering the layer spaces We make the variables in distinct layers are disjoint by mapping the basis vectors of the layer spaces to distinct variables. Then we find the ordering inductively. 45

46 Ordering the layer spaces Base Case Evaluation dimension = w Evaluation dimension = w 2 46

47 Ordering the layer spaces Inductive Step Evaluation dimension = w Evaluation dimension = w 2 47

48 48 Thank You

Deterministic identity testing for sum of read-once oblivious arithmetic branching programs

Deterministic identity testing for sum of read-once oblivious arithmetic branching programs Deterministic identity testing for sum of read-once oblivious arithmetic branching programs Rohit Gurjar, Arpita Korwar, Nitin Saxena, IIT Kanpur Thomas Thierauf Aalen University June 18, 2015 Gurjar,

More information

Polynomial Identity Testing

Polynomial Identity Testing Polynomial Identity Testing Amir Shpilka Technion and MSR NE Based on joint works with: Zeev Dvir, Zohar Karnin, Partha Mukhopadhyay, Ran Raz, Ilya Volkovich and Amir Yehudayoff 1 PIT Survey Oberwolfach

More information

Ben Lee Volk. Joint with. Michael A. Forbes Amir Shpilka

Ben Lee Volk. Joint with. Michael A. Forbes Amir Shpilka Ben Lee Volk Joint with Michael A. Forbes Amir Shpilka Ben Lee Volk Joint with Michael A. Forbes Amir Shpilka (One) Answer: natural proofs barrier [Razborov-Rudich]: (One) Answer: natural proofs barrier

More information

November 17, Recent Results on. Amir Shpilka Technion. PIT Survey Oberwolfach

November 17, Recent Results on. Amir Shpilka Technion. PIT Survey Oberwolfach 1 Recent Results on Polynomial Identity Testing Amir Shpilka Technion Goal of talk Survey known results Explain proof techniques Give an interesting set of `accessible open questions 2 Talk outline Definition

More information

15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions

15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions 15-251: Great Theoretical Ideas In Computer Science Recitation 9 : Randomized Algorithms and Communication Complexity Solutions Definitions We say a (deterministic) protocol P computes f if (x, y) {0,

More information

5 Linear Transformations

5 Linear Transformations Lecture 13 5 Linear Transformations 5.1 Basic Definitions and Examples We have already come across with the notion of linear transformations on euclidean spaces. We shall now see that this notion readily

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 9

CPSC 536N: Randomized Algorithms Term 2. Lecture 9 CPSC 536N: Randomized Algorithms 2011-12 Term 2 Prof. Nick Harvey Lecture 9 University of British Columbia 1 Polynomial Identity Testing In the first lecture we discussed the problem of testing equality

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

Polynomial Identity Testing. Amir Shpilka Technion

Polynomial Identity Testing. Amir Shpilka Technion Polynomial Identity Testing Amir Shpilka Technion 1 Goal of talk Model: Arithmetic circuits Problem: Polynomial Identity Testing Example: Depth-3 circuits Some open problems 2 Holy grail: P vs. NP Boolean

More information

Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing

Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing Michael A. Forbes Amir Shpilka March 7, 2013 Abstract Mulmuley [Mul12a] recently gave an explicit version of

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional space

More information

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti Mobile Robotics 1 A Compact Course on Linear Algebra Giorgio Grisetti SA-1 Vectors Arrays of numbers They represent a point in a n dimensional space 2 Vectors: Scalar Product Scalar-Vector Product Changes

More information

Linear Projections of the Vandermonde Polynomial

Linear Projections of the Vandermonde Polynomial Linear Projections of the Vandermonde Polynomial C. Ramya B. V. Raghavendra Rao Department of Computer Science and Engineering IIT Madras, Chennai, INDIA {ramya,bvrr}@cse.iitm.ac.in arxiv:1705.03188v1

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

Rank Bound for Depth-3 Identities

Rank Bound for Depth-3 Identities Rank Bound for Depth-3 Identities Nitin Saxena (Hausdorff Center for Mathematics, Bonn) Joint work with C. Seshadhri (IBM Almaden Research Center, San Jose) 1 The problem of PIT Polynomial identity testing:

More information

Dependence of logarithms on commutative algebraic groups

Dependence of logarithms on commutative algebraic groups INTERNATIONAL CONFERENCE on ALGEBRA and NUMBER THEORY Hyderabad, December 11 16, 2003 Dependence of logarithms on commutative algebraic groups Michel Waldschmidt miw@math.jussieu.fr http://www.math.jussieu.fr/

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

An algebraic perspective on integer sparse recovery

An algebraic perspective on integer sparse recovery An algebraic perspective on integer sparse recovery Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell and Benny Sudakov) Combinatorics Seminar USC October 31, 2018 From Wikipedia:

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University Finite fields, randomness and complexity Swastik Kopparty Rutgers University This talk Three great problems: Polynomial factorization Epsilon-biased sets Function uncorrelated with low-degree polynomials

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

Determinant Versus Permanent

Determinant Versus Permanent Determinant Versus Permanent Manindra Agrawal Abstract. We study the problem of expressing permanent of matrices as determinant of (possibly larger) matrices. This problem has close connections with complexity

More information

Formalizing Randomized Matching Algorithms

Formalizing Randomized Matching Algorithms Formalizing Randomized Matching Algorithms Stephen Cook Joint work with Dai Tri Man Lê Department of Computer Science University of Toronto Canada The Banff Workshop on Proof Complexity 2011 1 / 15 Feasible

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

Linear Algebra 1 Exam 2 Solutions 7/14/3

Linear Algebra 1 Exam 2 Solutions 7/14/3 Linear Algebra 1 Exam Solutions 7/14/3 Question 1 The line L has the symmetric equation: x 1 = y + 3 The line M has the parametric equation: = z 4. [x, y, z] = [ 4, 10, 5] + s[10, 7, ]. The line N is perpendicular

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Bastian Steder

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Bastian Steder Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Bastian Steder Reference Book Thrun, Burgard, and Fox: Probabilistic Robotics Vectors Arrays of numbers Vectors represent

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

MATH 223A NOTES 2011 LIE ALGEBRAS 35

MATH 223A NOTES 2011 LIE ALGEBRAS 35 MATH 3A NOTES 011 LIE ALGEBRAS 35 9. Abstract root systems We now attempt to reconstruct the Lie algebra based only on the information given by the set of roots Φ which is embedded in Euclidean space E.

More information

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points. 22M: 121 Final Exam This is 2 hour exam. Begin each question on a new sheet of paper. All notations are standard and the ones used in class. Please write clearly and provide all details of your work. Good

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

Generic Picard-Vessiot extensions for connected by finite groups Kolchin Seminar in Differential Algebra October 22nd, 2005

Generic Picard-Vessiot extensions for connected by finite groups Kolchin Seminar in Differential Algebra October 22nd, 2005 Generic Picard-Vessiot extensions for connected by finite groups Kolchin Seminar in Differential Algebra October 22nd, 2005 Polynomial Galois Theory case Noether first introduced generic equations in connection

More information

Determinant versus permanent

Determinant versus permanent Determinant versus permanent Manindra Agrawal Abstract. We study the problem of expressing permanents of matrices as determinants of (possibly larger) matrices. This problem has close connections to the

More information

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Vectors Arrays of numbers Vectors represent a point

More information

Solutions to the August 2008 Qualifying Examination

Solutions to the August 2008 Qualifying Examination Solutions to the August 2008 Qualifying Examination Any student with questions regarding the solutions is encouraged to contact the Chair of the Qualifying Examination Committee. Arrangements will then

More information

More on Noncommutative Polynomial Identity Testing

More on Noncommutative Polynomial Identity Testing More on Noncommutative Polynomial Identity Testing Andrej Bogdanov Hoeteck Wee Abstract We continue the study of noncommutative polynomial identity testing initiated by Raz and Shpilka and present efficient

More information

REPRESENTATION THEORY OF S n

REPRESENTATION THEORY OF S n REPRESENTATION THEORY OF S n EVAN JENKINS Abstract. These are notes from three lectures given in MATH 26700, Introduction to Representation Theory of Finite Groups, at the University of Chicago in November

More information

Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic?

Homework 11/Solutions. (Section 6.8 Exercise 3). Which pairs of the following vector spaces are isomorphic? MTH 9-4 Linear Algebra I F Section Exercises 6.8,4,5 7.,b 7.,, Homework /Solutions (Section 6.8 Exercise ). Which pairs of the following vector spaces are isomorphic? R 7, R, M(, ), M(, 4), M(4, ), P 6,

More information

Solution. That ϕ W is a linear map W W follows from the definition of subspace. The map ϕ is ϕ(v + W ) = ϕ(v) + W, which is well-defined since

Solution. That ϕ W is a linear map W W follows from the definition of subspace. The map ϕ is ϕ(v + W ) = ϕ(v) + W, which is well-defined since MAS 5312 Section 2779 Introduction to Algebra 2 Solutions to Selected Problems, Chapters 11 13 11.2.9 Given a linear ϕ : V V such that ϕ(w ) W, show ϕ induces linear ϕ W : W W and ϕ : V/W V/W : Solution.

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

18. Cyclotomic polynomials II

18. Cyclotomic polynomials II 18. Cyclotomic polynomials II 18.1 Cyclotomic polynomials over Z 18.2 Worked examples Now that we have Gauss lemma in hand we can look at cyclotomic polynomials again, not as polynomials with coefficients

More information

Assignment 3. A tutorial on the applications of discrete groups.

Assignment 3. A tutorial on the applications of discrete groups. Assignment 3 Given January 16, Due January 3, 015. A tutorial on the applications of discrete groups. Consider the group C 3v which is the cyclic group with three elements, C 3, augmented by a reflection

More information

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by Seminar 1 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets N, Z, Q, R, C? 2. Let A = {a 1, a 2, a 3 }.

More information

0.1 Rational Canonical Forms

0.1 Rational Canonical Forms We have already seen that it is useful and simpler to study linear systems using matrices. But matrices are themselves cumbersome, as they are stuffed with many entries, and it turns out that it s best

More information

A Polynomial Time Deterministic Algorithm for Identity Testing Read-Once Polynomials

A Polynomial Time Deterministic Algorithm for Identity Testing Read-Once Polynomials A Polynomial Time Deterministic Algorithm for Identity Testing Read-Once Polynomials Daniel Minahan Ilya Volkovich August 15, 2016 Abstract The polynomial identity testing problem, or PIT, asks how we

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Chapter 2: Linear Independence and Bases

Chapter 2: Linear Independence and Bases MATH20300: Linear Algebra 2 (2016 Chapter 2: Linear Independence and Bases 1 Linear Combinations and Spans Example 11 Consider the vector v (1, 1 R 2 What is the smallest subspace of (the real vector space

More information

Algebraic structures I

Algebraic structures I MTH5100 Assignment 1-10 Algebraic structures I For handing in on various dates January March 2011 1 FUNCTIONS. Say which of the following rules successfully define functions, giving reasons. For each one

More information

ALGEBRA 8: Linear algebra: characteristic polynomial

ALGEBRA 8: Linear algebra: characteristic polynomial ALGEBRA 8: Linear algebra: characteristic polynomial Characteristic polynomial Definition 8.1. Consider a linear operator A End V over a vector space V. Consider a vector v V such that A(v) = λv. This

More information

Improved Polynomial Identity Testing for Read-Once Formulas

Improved Polynomial Identity Testing for Read-Once Formulas Improved Polynomial Identity Testing for Read-Once Formulas Amir Shpilka Ilya Volkovich Abstract An arithmetic read-once formula (ROF for short) is a formula (a circuit whose underlying graph is a tree)

More information

NOTES ON LINEAR ALGEBRA. 1. Determinants

NOTES ON LINEAR ALGEBRA. 1. Determinants NOTES ON LINEAR ALGEBRA 1 Determinants In this section, we study determinants of matrices We study their properties, methods of computation and some applications We are familiar with the following formulas

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization

Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization Equivalence of Polynomial Identity Testing and Deterministic Multivariate Polynomial Factorization Swastik Kopparty Shubhangi Saraf Amir Shpilka Abstract In this paper we show that the problem of deterministically

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

Learning Restricted Models of Arithmetic Circuits

Learning Restricted Models of Arithmetic Circuits Learning Restricted Models of Arithmetic Circuits Adam R. Klivans Department of Computer Science University of Texas at Austin Austin, TX 78712-1188 klivans@cs.utexas.edu Amir Shpilka Faculty of Computer

More information

The Power of Depth 2 Circuits over Algebras

The Power of Depth 2 Circuits over Algebras The Power of Depth 2 Circuits over Algebras Chandan Saha, Ramprasad Saptharishi 2 and Nitin Saxena 3 Indian Institute of Technology, Kanpur 20806, India csaha@iitk.ac.in 2 Chennai Mathematical Institute,

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

88 CHAPTER 3. SYMMETRIES

88 CHAPTER 3. SYMMETRIES 88 CHAPTER 3 SYMMETRIES 31 Linear Algebra Start with a field F (this will be the field of scalars) Definition: A vector space over F is a set V with a vector addition and scalar multiplication ( scalars

More information

Lecture 2: January 18

Lecture 2: January 18 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 2: January 18 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS

ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS ELEMENTARY SUBALGEBRAS OF RESTRICTED LIE ALGEBRAS J. WARNER SUMMARY OF A PAPER BY J. CARLSON, E. FRIEDLANDER, AND J. PEVTSOVA, AND FURTHER OBSERVATIONS 1. The Nullcone and Restricted Nullcone We will need

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

Topic 1: Matrix diagonalization

Topic 1: Matrix diagonalization Topic : Matrix diagonalization Review of Matrices and Determinants Definition A matrix is a rectangular array of real numbers a a a m a A = a a m a n a n a nm The matrix is said to be of order n m if it

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Steven J. Miller June 19, 2004 Abstract Matrices can be thought of as rectangular (often square) arrays of numbers, or as

More information

UMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM

UMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM UMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM YUFEI ZHAO In this talk, I want give some examples to show you some linear algebra tricks for the Putnam. Many of you probably did math contests in

More information

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS

MATH 2210Q MIDTERM EXAM I PRACTICE PROBLEMS MATH Q MIDTERM EXAM I PRACTICE PROBLEMS Date and place: Thursday, November, 8, in-class exam Section : : :5pm at MONT Section : 9: :5pm at MONT 5 Material: Sections,, 7 Lecture 9 8, Quiz, Worksheet 9 8,

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

Reconstruction of ΣΠΣ(2) Circuits over Reals

Reconstruction of ΣΠΣ(2) Circuits over Reals Electronic Colloquium on Computational Complexity, Report No. 5 (25) Reconstruction of ΣΠΣ(2) Circuits over Reals Gaurav Sinha Abstract Reconstruction of arithmertic circuits has been heavily studied in

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Minimum Polynomials of Linear Transformations

Minimum Polynomials of Linear Transformations Minimum Polynomials of Linear Transformations Spencer De Chenne University of Puget Sound 30 April 2014 Table of Contents Polynomial Basics Endomorphisms Minimum Polynomial Building Linear Transformations

More information

Higher-order Fourier analysis of F n p and the complexity of systems of linear forms

Higher-order Fourier analysis of F n p and the complexity of systems of linear forms Higher-order Fourier analysis of F n p and the complexity of systems of linear forms Hamed Hatami School of Computer Science, McGill University, Montréal, Canada hatami@cs.mcgill.ca Shachar Lovett School

More information

On the complexity of the permanent in various computational models

On the complexity of the permanent in various computational models On the complexity of the permanent in various computational models Christian Ikenmeyer and J.M. Landsberg October 1, 2016 Abstract We answer a question in [10], showing the regular determinantal complexity

More information

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

UNDERSTANDING THE DIAGONALIZATION PROBLEM. Roy Skjelnes. 1.- Linear Maps 1.1. Linear maps. A map T : R n R m is a linear map if

UNDERSTANDING THE DIAGONALIZATION PROBLEM. Roy Skjelnes. 1.- Linear Maps 1.1. Linear maps. A map T : R n R m is a linear map if UNDERSTANDING THE DIAGONALIZATION PROBLEM Roy Skjelnes Abstract These notes are additional material to the course B107, given fall 200 The style may appear a bit coarse and consequently the student is

More information

DETERMINISTIC POLYNOMIAL IDENTITY TESTS FOR MULTILINEAR BOUNDED-READ FORMULAE

DETERMINISTIC POLYNOMIAL IDENTITY TESTS FOR MULTILINEAR BOUNDED-READ FORMULAE DETERMINISTIC POLYNOMIAL IDENTITY TESTS FOR MULTILINEAR BOUNDED-READ FORMULAE Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich June 20, 2014 Abstract. We present a polynomial-time deterministic

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11 3. Examples I did some examples and explained the theory at the same time. 3.1. roots of unity. Let L = Q(ζ) where ζ = e 2πi/5 is a primitive 5th root of

More information

SYMBOL EXPLANATION EXAMPLE

SYMBOL EXPLANATION EXAMPLE MATH 4310 PRELIM I REVIEW Notation These are the symbols we have used in class, leading up to Prelim I, and which I will use on the exam SYMBOL EXPLANATION EXAMPLE {a, b, c, } The is the way to write the

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Introduction. 1 Partially supported by a grant from The John Templeton Foundation

Introduction. 1 Partially supported by a grant from The John Templeton Foundation Nisan-Wigderson generators in proof systems with forms of interpolation Ján Pich 1 Faculty of Mathematics and Physics Charles University in Prague March, 2010 We prove that the Nisan-Wigderson generators

More information

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group.

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group. Algebra Review 2 1 Fields A field is an extension of the concept of a group. Definition 1. A field (F, +,, 0 F, 1 F ) is a set F together with two binary operations (+, ) on F such that the following conditions

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

EXERCISES AND SOLUTIONS IN LINEAR ALGEBRA

EXERCISES AND SOLUTIONS IN LINEAR ALGEBRA EXERCISES AND SOLUTIONS IN LINEAR ALGEBRA Mahmut Kuzucuoğlu Middle East Technical University matmah@metu.edu.tr Ankara, TURKEY March 14, 015 ii TABLE OF CONTENTS CHAPTERS 0. PREFACE..................................................

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Non-commutative arithmetic circuits with division

Non-commutative arithmetic circuits with division Non-commutative arithmetic circuits with division P. Hrubeš, A. Wigderson. December 2, 2013 Abstract We initiate the study of the complexity of arithmetic circuits with division gates over non-commuting

More information

Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs arxiv: v2 [cs.cc] 16 May 2015

Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs arxiv: v2 [cs.cc] 16 May 2015 Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs arxiv:1411.7341v2 [cs.cc] 16 May 2015 Rohit Gurjar 1, Arpita Korwar 1, Nitin Saxena 1 and Thomas Thierauf 2 1

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information