Robustness Experiments for a Planar Hopping Control System

Size: px
Start display at page:

Download "Robustness Experiments for a Planar Hopping Control System"

Transcription

1 To appear in International Conference on Clibing and Walking Robots Septeber 22 Robustness Experients for a Planar Hopping Control Syste Kale Harbick and Gaurav S. Sukhate kale gaurav@robotics.usc.edu Robotic Ebedded Systes Laboratory Robotics Research Laboratory Departent of Coputer Science University of Southern California Los Angeles, CA ABSTRACT We explore the robustness of a control syste for a pneuatic onopod siulation by adding Gaussian noise to the sensors and actuators. The control syste is based on Raibert s three-part control syste decoposition; with significant odifications to two of the control loops. Our speed controller uses a neural network to approxiate the neutral point function, and we use a odel-based height controller. No changes were ade to the attitude controller. Siulation experients show that the control syste perfors stably in the noisiest case, with a relative error of approxiately 2%. The control syste is expected to perfor coparably on the real robot since our actual sensors are ore accurate copared to the sensors siulated in these experients. 1 INTRODUCTION The benefits of legged systes over other fors of terrestrial locootion are obvious; they can navigate obstacles which wheeled and treaded vehicles cannot. Dynaically-stable legged systes have advantages over statically-stable legged systes. Running achines can travel faster and can navigate terrain which has points of support that are spaced too far apart for walking achines to reach. Even for the siplest running achine, a one-legged hopper, several research probles have not been copletely solved. Most running achines constructed thus far have served as little ore than existence proofs of different fors of locootion. We seek to construct a running achine that builds on basic locootion with additional behaviors that would be useful in a ore functional robotic syste. To this end we have studied ways to iprove the traditional Raibert three-part control syste [1]. The hopping achine considered in this paper is like a pogo-stick, except it uses a pneuatic rather than echanical spring. To siplify the analysis, we restrict the otion of the robot hopper to the sagittal plane. A diagra of the hopper odel is shown in Figure 1. Table 1 defines the subscripts used in the equations, Table 2 defines the state variables, and Table 3 defines the physical paraeters of the hopper. The leg stroke, hip offset, and ass paraeters are siilar to those of the planar hopping achine reported in [1].

2 Figure 1: 2D hopping achine in stance. The body is not shown. Our controller is based on Raibert s three-part control syste [1]. This ethod decoposes the control into three separate control loops: forward velocity control, body attitude control, and height control. The experients reported in this paper use a odel-based height controller [2], and a speed controller which uses a siple neural network to approxiate the neutral point function [3]. The body attitude controller is unchanged fro Raibert s original design. Siulation experients were perfored first with no noise and then with several cobinations of two sources of sensor noise and one source of actuator noise. All the noise sources were odeled as zero-ean, Gaussian, with no correlation across sources. The noisiest case tested, gave a relative error of approxiately twice that of the noiseless case. The siulated sensors with the least noise are of lower accuracy than the actual sensors we plan to use for the real robot. The paper is organized as follows. Related work is discussed in Section 2. Section 3 suarizes the control syste. Experiental results are presented in Section 4. Conclusions and future work are discussed in Section 5. 2 RELATED WORK A three-part control syste has been used to control onopod hopping robots [1]. This syste used a fixed duration thrust to regulate hopping height, and two PD-controllers to regulate forward running speed. Proportional control has been used to regulate hopping height in siulation [4]. For the Monopod II robot, an adaptive energy feedback controller was used to control the apex energy and thus the apex height [5]. A siilar approach to Raibert s for controlling running speed odifies the neutral point approxiation with an additional factor of the ratio of leg length to rest length [4]. A discrete closed for trajectory odel was used to control a bow leg hopper [6]. Model pa-

3 td touch-down lo lift-off + iediately after iediately before d desired value Table 1: Subscript definitions. L leg length () y height of body c.. () ẏ body vertical velocity (/s) ẋ body horizontal velocity (/s) K s spring constant (N ) θ angle of leg easured fro ground (rad) θ angular velocity of leg (rad/s) I oent of inertia of body w.r.t. foot during stance (kg 2 ) x f distance fro body c.. to foot along horizontal diension () T s stance duration (s) φ body angle w.r.t. horizontal (rad) γ angle of leg w.r.t. body (rad) Table 2: Variable definitions. raeters were experientally deterined with a least squares fit to a set of recorded trajectories. A siulation of a vertical hopping achine was controlled using a near-inverse discrete-tie odel [7]. Tie-varying or unknown paraeters were estiated with a recursive least-squares paraeter estiator. Because the odel was able to update itself in this way, the controller was uch less sensitive to odeling errors and even abrupt changes in physical paraeters. Other statistical learning ethods such as RMRC have been used to learn inverse kineatic appings in real tie [8]. Our speed controller approxiates the neutral point function using a siple neural network, rather than a linear function of forward velocity and stance duration. This allows the controller to track desired speeds beyond the point at which Raibert s approxiation diverges fro linear. For the plant siulated in these experients, this point is approxiately.7 /s. 3 CONTROL SYSTEM 3.1 Height Control The height control loop functions as follows. At lift-off, the controller solves equations of otion for the next five phases: initial ascent, descent, copression, extension, and final ascent. The goal is to control the apex height yax k+1 reached at the end of the final ascent phase. The controller uses state inforation at the beginning of initial ascent (lift-off) and the goal apex height to calculate the proper leg length setting. As the hopper transitions fro initial ascent to descent, the leg setting is realized with a PD controller

4 g gravitational acceleration 9.81 /s 2 µ k viscous leg friction 5. N/s d hip distance fro hip to body c...5 L ax ax leg length.285 s sprung ass kg u unsprung ass.225 kg A p area of piston P noinal pressure of upper leg chaber kp a Table 3: Physical paraeters of the hopper. τ = K P (L L d ) K D L where τ is the leg force coand, and K P and K D are proportional and derivative gains. Values for K P and K D used in the siulations are 13. N/ and 5. N/(/s), respectively. This leg position is aintained until touch-down, at which point the actuator releases and the passive dynaics of stance take over. At lift-off the cycle begins again. First we define the spring constant K s There are two equations of otion for copression and extension K s = A p P s L ax. (1) dl dẏ = ( Ks sin θ sl ẏ µ kẏ s + g ) sin θ (2) where θ k+1 lo dθ dẏ = θk+1 ( lo L 2 ax Ks sin θ µ kẏ sl s + g ) L 2 (3) = ẋk+1 lo sin (π θ k+1 lo ) + ẏ k+1 lo cos (π θ k+1 lo ). (4) L ax Equations 1-4 are the key equations for this odel; see [9] and [2] for further details. 3.2 Speed Control Raibert Controller The neutral point of a hop is the point where the foot should be placed which will result in zero net acceleration [1]. This point is a function of hopping height and forward speed. Raibert used an approxiation of the CG print, i.e. the locus of points on the ground over which the

5 Figure 2: The neutral point is approxiated using an estiation of the CG print. body center of ass travels during stance, to estiate the neutral point. This is represented in Figure 2. The length of the CG print was estiated as the stance duration ties the forward running speed, as given below in Equation 5. x f = ẋt s 2 + k ẋ (ẋ ẋ d ). (5) This foot position is converted into a desired leg angle w.r.t. the body γ d = φ arcsin x f L. Finally a second PD loop is used to calculate the hip torque τ = k p (γ γ d ) k d ( γ). We used the following values for gains: kẋ =.3, k p = 47., k d = Neural Network-Based Controller One proble with the Raibert speed controller, as he points out, is that the neutral point is nearly linear with forward speed only up to a certain velocity. This point varies with the physical paraeters of the syste, but for the plant described in this paper, it is approxiately.7 /s. To overcoe this difficulty, we used a siple neural network to ore closely represent the neutral point function. The original controller was odified to replace the first ter in Equation 5 with a neural network output. The second ter is left unchanged. Training data were generated by a huan operator controlling the foot position at varying speeds and apex heights. The siulation recorded neutral point values for two apex heights

6 Avg. Rel. Noise Profile Error (%) No noise 11.6 σ l = 1 c, σ a = 1, σ t = 5 N 14.7 σ l = 1 c, σ a = 1, σ t = 1 N 16.9 σ l = 1 c, σ a = 2, σ t = 5 N 17.4 σ l = 1 c, σ a = 2, σ t = 1 N 16.1 σ l = 2 c, σ a = 1, σ t = 5 N 13.7 σ l = 2 c, σ a = 1, σ t = 1 N 14.9 σ l = 2 c, σ a = 2, σ t = 5 N 2 σ l = 2 c, σ a = 2, σ t = 1 N 18.6 Table 4: Average relative errors as percentages. and five speeds, for a total of ten training points. The neural network was trained off-line using Levenberg-Marquardt optiization [1, 11]. 4 EXPERIMENTS In each run, the desired speed was varied fro.2 /s to 1.8 /s, while the desired apex height reained constant. Three heights were tested, with eight different noise profiles (and one with no noise), for a total of 27 runs. The heights used were.4,.45, and. These heights correspond to the planned operating range of our actual robot, which is being constructed. The length and angle easureents were containated with additive Gaussian noise, as were the torque settings. Two values for standard deviations were used for each noise source: 1 c and 2 c for leg length, 1 and 2 for angle, and 5 N and 1 N for hip torque. Note that the noise sources are uncorrelated with each other. Height and speed tracking perforances for no noise, iniu noise, and axiu noise are shown in Figure 3. Table 4 shows the average relative error coputed over all three heights for each noise profile. Relative errors in forward velocity as functions of desired velocity and desired apex height are shown in Figure 4. 5 CONCLUSIONS AND FUTURE WORK The experients reported in this paper were intended to deterine the sensitivity of the plant to additive Gaussian noise in what we presue to be the key actuator and sensors. We found that the relative error of the test cases with the highest aounts of noise was approxiately twice that of the noiseless case. The leg length and angle sensors we plan to use on the physical robot have accuracies of 2 and.7, respectively. The standard deviations for the noise of these sensors are.67 and.23. Thus the noise for these sensors is less than the lowest noise case reported in these experieents. The noise profiles of our actuators have yet to be deterined. However, the greatest

7 standard deviation for torque which was tested in these siulations (1 N ) is approxiately 25% of the axiu torque of the actuator. We believe that it is unlikely the true inaccuracy in torque will be greater than the values tested. We expect the controller will perfor coparably on the real robot as it has in the siulations. Future work in siulation includes 3D siulations and experients with additional locootory behaviors such as leaning against a wall and traversing inclined surfaces. We will also test the control syste on a real hopping robot, which is being constructed. ACKNOWLEDGEMENTS The authors would like to thank Michael Poole for his work on designing and constructing the physical robot frae, presently under developent. The Vortex physics siulation toolkit developed by CM Labs was used for the experients reported in this paper. REFERENCES [1] Marc Raibert, Legged Robots that Balance, MIT Press, Cabridge, MA, [2] Kale Harbick and Gaurav S. Sukhate, Controlling hopping height of a pneuatic onopod, in IEEE Intl. Conf. on Robotics and Autoation, 22, vol. 4, pp [3] Kale Harbick and Gaurav S. Sukhate, Speed control of a pneuatic onopod using a neural network, Tech. Rep. IRIS-2-413, Institute for Robotics and Intelligent Systes, University of Southern California, 22. [4] M. Ahadi and M. Buehler, Stable control of a siulated one-legged running robot with hip and leg copliance, IEEE Transactions on Robotics and Autoation, vol. 13, no. 1, pp , February [5] M. Ahadi and M. Buehler, The ARL Monopod II Running Robot: Control and Energetics, in IEEE Intl. Conf. on Robotics and Autoation, 1999, pp [6] G.Z. Zeglin and H.B. Brown, Control of a bow leg hopping robot, in IEEE Intl. Conf. on Robotics and Autoation, [7] Joseph Prosser and Moshe Ka, Control of hopping height for a one-legged hopping achine, Mobile Robots VII, vol. 1831, pp , Noveber [8] A. D Souza and S. Vijayakuar and S. Schaal, Learning inverse kineatics, in IEEE Intl. Conf. on Intelligence in Robotics and Autonoous Systes, 21. [9] Kale Harbick and Gaurav S. Sukhate, Height control for a one-legged hopping robot using a two-diensional odel, Tech. Rep. IRIS-1-46, Institute for Robotics and Intelligent Systes, University of Southern California, 21. [1] K. Levenberg, A ethod for the solution of certain non-linear probles in least squares, Quarterly Journal of Applied Matheatics, vol. 2, no. 2, pp , [11] D. W. Marquardt, An algorith for least-squares estiation of non-linear paraeters, Journal of the Society of Industrial and Applied Matheatics, vol. 11, no. 2, pp , 1963.

8 Forward Velocity (/s) Apex Height () Forward Velocity (/s) Apex Height () Forward Velocity (/s) Apex Height () Tie (s) Tie (s) Tie (s) (a) No noise. (b) σ l = 1 c, σ a = 1, σ t = 5 N (c) σ l = 2 c, σ a = 2, σ t = 1 N Figure 3: Height and speed tracking (a) No noise. (b) σ l = 1 c, σ a = 1, σ t = 5 N (c) σ l = 1 c, σ a = 1, σ t = 1 N (d) σ l = 1 c, σ a = 2, σ t = 5 N (e) σ l = 1 c, σ a = 2, σ t = 1 N (f) σ l = 2 c, σ a = 1, σ t = 5 N (g) σ l = 2 c, σ a = 1, σ t = 1 N (h) σ l = 2 c, σ a = 2, σ t = 5 N (i) σ l = 2 c, σ a = 2, σ t = 1 N Figure 4: Relative errors (in percentages) as a function of speed and height.

Tele-Operation of a Mobile Robot Through Haptic Feedback

Tele-Operation of a Mobile Robot Through Haptic Feedback HAVE 00 IEEE Int. Workshop on Haptic Virtual Environents and Their Applications Ottawa, Ontario, Canada, 7-8 Noveber 00 Tele-Operation of a Mobile Robot Through Haptic Feedback Nicola Diolaiti, Claudio

More information

PY241 Solutions Set 9 (Dated: November 7, 2002)

PY241 Solutions Set 9 (Dated: November 7, 2002) PY241 Solutions Set 9 (Dated: Noveber 7, 2002) 9-9 At what displaceent of an object undergoing siple haronic otion is the agnitude greatest for the... (a) velocity? The velocity is greatest at x = 0, the

More information

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1

16.30/31 September 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders /31 Lab #1 16.30/31 Septeber 24, 2010 Prof. J. P. How and Prof. E. Frazzoli Due: October 15, 2010 T.A. B. Luders 16.30/31 Lab #1 1 Introduction The Quanser helicopter is a echanical device that eulates the flight

More information

Ch 12: Variations on Backpropagation

Ch 12: Variations on Backpropagation Ch 2: Variations on Backpropagation The basic backpropagation algorith is too slow for ost practical applications. It ay take days or weeks of coputer tie. We deonstrate why the backpropagation algorith

More information

Ufuk Demirci* and Feza Kerestecioglu**

Ufuk Demirci* and Feza Kerestecioglu** 1 INDIRECT ADAPTIVE CONTROL OF MISSILES Ufuk Deirci* and Feza Kerestecioglu** *Turkish Navy Guided Missile Test Station, Beykoz, Istanbul, TURKEY **Departent of Electrical and Electronics Engineering,

More information

System Design of Quadrotor

System Design of Quadrotor Syste Design of Quadrotor Yukai Gong, Weina Mao, Bu Fan, Yi Yang Mar. 29, 2016 A final project of MECHENG 561. Supervised by Prof. Vasudevan. 1 Abstract In this report, an autonoous quadrotor is designed.

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER

ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER IEPC 003-0034 ANALYSIS OF HALL-EFFECT THRUSTERS AND ION ENGINES FOR EARTH-TO-MOON TRANSFER A. Bober, M. Guelan Asher Space Research Institute, Technion-Israel Institute of Technology, 3000 Haifa, Israel

More information

A Simulation Study for Practical Control of a Quadrotor

A Simulation Study for Practical Control of a Quadrotor A Siulation Study for Practical Control of a Quadrotor Jeongho Noh* and Yongkyu Song** *Graduate student, Ph.D. progra, ** Ph.D., Professor Departent of Aerospace and Mechanical Engineering, Korea Aerospace

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

HYBRID ADAPTIVE FRICTION COMPENSATION OF INDIRECT DRIVE TRAINS

HYBRID ADAPTIVE FRICTION COMPENSATION OF INDIRECT DRIVE TRAINS Proceedings of the ASME 29 Dynaic Systes and Control Conference DSCC29 October 12-14, 29, Hollywood, California, USA DSCC29-2736 HYBRID ADAPTIVE FRICTION COMPENSATION OF INDIRECT DRIVE TRAINS Wenjie Chen

More information

Torsion Experiment. Encoder #3 ( 3 ) Third encoder/disk for Model 205a only. Figure 1: ECP Torsion Experiment

Torsion Experiment. Encoder #3 ( 3 ) Third encoder/disk for Model 205a only. Figure 1: ECP Torsion Experiment Torsion Experient Introduction For the Torsion lab, there are two required experients to perfor and one extra credit assignent at the end. In experient 1, the syste paraeters need to be identified so that

More information

Actuators & Mechanisms Actuator sizing

Actuators & Mechanisms Actuator sizing Course Code: MDP 454, Course Nae:, Second Seester 2014 Actuators & Mechaniss Actuator sizing Contents - Modelling of Mechanical Syste - Mechaniss and Drives The study of Mechatronics systes can be divided

More information

Wall Juggling of one Ball by Robot Manipulator with Visual Servo

Wall Juggling of one Ball by Robot Manipulator with Visual Servo Juggling of one Ball by obot Manipulator with Visual Servo Akira Nakashia Yosuke Kobayashi Yoshikazu Hayakawa Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho,

More information

CHAPTER 19: Single-Loop IMC Control

CHAPTER 19: Single-Loop IMC Control When I coplete this chapter, I want to be able to do the following. Recognize that other feedback algoriths are possible Understand the IMC structure and how it provides the essential control features

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

System Modeling and Control of a Clutch Actuator System for Dual Clutch Transmissions

System Modeling and Control of a Clutch Actuator System for Dual Clutch Transmissions Syste Modeling and Control of a Clutch Actuator Syste for Dual Clutch Transissions Jinsung Ki *) Seibu B. Choi ) Heerak Lee ) Jiwoo Kang ) Mandae Hur ) ) Departent of Mechanical Engineering, KAIST, 9 Daehak-ro,

More information

DSCC MANEUVERABILITY AND HEADING CONTROL OF A QUADRUPED ROBOT UTILIZING TAIL DYNAMICS

DSCC MANEUVERABILITY AND HEADING CONTROL OF A QUADRUPED ROBOT UTILIZING TAIL DYNAMICS Proceedings of the ASE 07 Dynaic Systes and Control Conference DSCC07 October -3, 07, Tysons, Virginia, USA DSCC07-5337 ANEUVERABILITY AND HEADING CONTROL OF A QUADRUPED ROBOT UTILIZING TAIL DYNAICS Wael

More information

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair Proceedings of the 6th SEAS International Conference on Siulation, Modelling and Optiization, Lisbon, Portugal, Septeber -4, 006 0 A Siplified Analytical Approach for Efficiency Evaluation of the eaving

More information

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period

An Approximate Model for the Theoretical Prediction of the Velocity Increase in the Intermediate Ballistics Period An Approxiate Model for the Theoretical Prediction of the Velocity... 77 Central European Journal of Energetic Materials, 205, 2(), 77-88 ISSN 2353-843 An Approxiate Model for the Theoretical Prediction

More information

Friction Induced Hunting Limit Cycles: An Event Mapping Approach

Friction Induced Hunting Limit Cycles: An Event Mapping Approach Friction Induced Hunting Liit Cycles: An Event Mapping Approach Ron H.A. Hensen, Marinus (René) J.G. van de Molengraft Control Systes Technology Group, Departent of Mechanical Engineering, Eindhoven University

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Modular Control of a Rotary Inverted Pendulum System

Modular Control of a Rotary Inverted Pendulum System Paper ID #14582 Modular Control of a Rotary Inverted Pendulu Syste Dr. Xiuin Diao, Purdue University Xiuin Diao received his B.S. degree in Mechanical Design and Manufacturing fro Yantai University, China,

More information

Name Period. What force did your partner s exert on yours? Write your answer in the blank below:

Name Period. What force did your partner s exert on yours? Write your answer in the blank below: Nae Period Lesson 7: Newton s Third Law and Passive Forces 7.1 Experient: Newton s 3 rd Law Forces of Interaction (a) Tea up with a partner to hook two spring scales together to perfor the next experient:

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network 565 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 07 Guest Editors: Zhuo Yang, Junie Ba, Jing Pan Copyright 07, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 83-96 The Italian Association

More information

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω =

T m. Fapplied. Thur Oct 29. ω = 2πf f = (ω/2π) T = 1/f. k m. ω = Thur Oct 9 Assignent 10 Mass-Spring Kineatics (x, v, a, t) Dynaics (F,, a) Tie dependence Energy Pendulu Daping and Resonances x Acos( ωt) = v = Aω sin( ωt) a = Aω cos( ωt) ω = spring k f spring = 1 k

More information

ANALYSIS OF LANDING TRAJECTORY USING BACKWARD PROPAGATION

ANALYSIS OF LANDING TRAJECTORY USING BACKWARD PROPAGATION ANALYSIS OF LANDING TRAJECTORY USING BACKWARD PROPAGATION Melissa M. Onishi Departent of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT The past NASA landing issions

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot

An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot Vol. 34, No. 1 ACTA AUTOMATICA SINICA January, 2008 An Adaptive UKF Algorith for the State and Paraeter Estiations of a Mobile Robot SONG Qi 1, 2 HAN Jian-Da 1 Abstract For iproving the estiation accuracy

More information

HIGH RESOLUTION NEAR-FIELD MULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR MACHINES

HIGH RESOLUTION NEAR-FIELD MULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR MACHINES ICONIC 2007 St. Louis, O, USA June 27-29, 2007 HIGH RESOLUTION NEAR-FIELD ULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR ACHINES A. Randazzo,. A. Abou-Khousa 2,.Pastorino, and R. Zoughi

More information

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization

Use of PSO in Parameter Estimation of Robot Dynamics; Part One: No Need for Parameterization Use of PSO in Paraeter Estiation of Robot Dynaics; Part One: No Need for Paraeterization Hossein Jahandideh, Mehrzad Navar Abstract Offline procedures for estiating paraeters of robot dynaics are practically

More information

High-Speed Smooth Cyclical Motion of a Hydraulic Cylinder

High-Speed Smooth Cyclical Motion of a Hydraulic Cylinder 846 1 th International Conference on Fleible Autoation and Intelligent Manufacturing 00, Dresden, Gerany High-Speed Sooth Cyclical Motion of a Hydraulic Cylinder Nebojsa I. Jaksic Departent of Industrial

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

Simulation and Experimental Works of Quadcopter Model for Simple Maneuver

Simulation and Experimental Works of Quadcopter Model for Simple Maneuver Siulation and xperiental Works of Quadcopter Model for Siple Maneuver Rafiuddin Sya Mechanical ngineering Departent, Hasnuddin University, Jl. P. Keerdekaan K Makassar - Indonesia (corresponding author

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0

L 2. AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) F T2. (b) F NET(Y) = 0 AP Physics Free Response Practice Oscillations ANSWERS 1975B7. (a) 60 F 1 F g (b) F NE(Y) = 0 F1 F1 = g / cos(60) = g (c) When the string is cut it swings fro top to botto, siilar to the diagra for 1974B1

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Sensorless Control of Induction Motor Drive Using SVPWM - MRAS Speed Observer

Sensorless Control of Induction Motor Drive Using SVPWM - MRAS Speed Observer Journal of Eerging Trends in Engineering and Applied Sciences (JETEAS) 2 (3): 509-513 Journal Scholarlink of Eerging Research Trends Institute in Engineering Journals, 2011 and Applied (ISSN: 2141-7016)

More information

667. Design and research of a laser trainer with all the functions of the G-36

667. Design and research of a laser trainer with all the functions of the G-36 667. Design and research of a laser trainer with all the functions of the G-36 A. Fedaravičius, L. Patašienė 2, M. Ragulskis 3, E. Sližys 4, A. Survila 5, 3, 5 Kaunas University of Technology, Institute

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

Designing a Permanent Magnet Linear Generator Multi Air-gap Structure using the Finite Element Method.

Designing a Permanent Magnet Linear Generator Multi Air-gap Structure using the Finite Element Method. Designing a Peranent Magnet Linear Generator Multi Air-gap Structure using the Finite Eleent Method. Pierre Kenfack, Daniel Matt, and Philippe Enrici Institute of Electronics and Systes, University Montpellier,

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Reducing Vibration and Providing Robustness with Multi-Input Shapers

Reducing Vibration and Providing Robustness with Multi-Input Shapers 29 Aerican Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -2, 29 WeA6.4 Reducing Vibration and Providing Robustness with Multi-Input Shapers Joshua Vaughan and Willia Singhose Abstract

More information

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate

IDAN Shock Mount Isolation Vibration Study November 1, The operation of shock and vibration isolation base plate dr. Istvan Koller RTD USA BME Laboratory. Background In 998, Real Tie Devices USA, Inc. introduced a novel packaging concept for ebedded PC/04 odules to build Intelligent Data Acquisition Nodes. This syste,

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%

NAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40% NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields.

Donald Fussell. October 28, Computer Science Department The University of Texas at Austin. Point Masses and Force Fields. s Vector Moving s and Coputer Science Departent The University of Texas at Austin October 28, 2014 s Vector Moving s Siple classical dynaics - point asses oved by forces Point asses can odel particles

More information

Inverted Pendulum control with pole assignment, LQR and multiple layers sliding mode control

Inverted Pendulum control with pole assignment, LQR and multiple layers sliding mode control J. Basic. Appl. Sci. Res., 3(1s)363-368, 013 013, TetRoad Publication ISSN 090-4304 Journal of Basic and Applied Scientific Research www.tetroad.co Inverted Pendulu control with pole assignent, LQR and

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Computergestuurde Regeltechniek exercise session Case study : Quadcopter

Computergestuurde Regeltechniek exercise session Case study : Quadcopter Coputergestuurde Regeltechniek exercise session Case study : Quadcopter Oscar Mauricio Agudelo, Bart De Moor (auricio.agudelo@esat.kuleuven.be, bart.deoor@esat.kuleuven.be) February 5, 016 Proble description

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

WileyPLUS Assignment 3. Next Week

WileyPLUS Assignment 3. Next Week WileyPLUS Assignent 3 Chapters 6 & 7 Due Wednesday, Noveber 11 at 11 p Next Wee No labs of tutorials Reebrance Day holiday on Wednesday (no classes) 24 Displaceent, x Mass on a spring ωt = 2π x = A cos

More information

PHYS 107 Practice Final Test Fall 2018

PHYS 107 Practice Final Test Fall 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise, this practice test includes 20 questions and 5 probles. Questions: N.B. Make sure that you justify your

More information

Steering a 3D Limit-Cycle Walker for Collaboration with a Leader

Steering a 3D Limit-Cycle Walker for Collaboration with a Leader Steering a 3D Liit-Cycle Walker for Collaboration with a Leader Mohaad Shafiee Motahar, Sushant Veer, and Ioannis Poulakakis Abstract This paper presents a control ethod for steering three diensional (3D)

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Decentralized Adaptive Control of Nonlinear Systems Using Radial Basis Neural Networks

Decentralized Adaptive Control of Nonlinear Systems Using Radial Basis Neural Networks 050 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO., NOVEMBER 999 Decentralized Adaptive Control of Nonlinear Systes Using Radial Basis Neural Networks Jeffrey T. Spooner and Kevin M. Passino Abstract

More information

Applying Experienced Self-Tuning PID Controllers to Position Control of Slider Crank Mechanisms

Applying Experienced Self-Tuning PID Controllers to Position Control of Slider Crank Mechanisms (00/7) 7 80 Applying Experienced Self-Tuning Controllers to osition Control of Slider Crank Mechaniss Chih-Cheng ao cckao@cc.kyit.edu.tw epartent of Electrical Engineering ao Yuan nstitute of Technology

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra

Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra Uncertainty Propagation and Nonlinear Filtering for Space Navigation using Differential Algebra M. Valli, R. Arellin, P. Di Lizia and M. R. Lavagna Departent of Aerospace Engineering, Politecnico di Milano

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine 6.5, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynaics of Turbopup Systes: The Shuttle Engine Dynaics of the Space Shuttle Main Engine Oxidizer Pressurization Subsystes Selected Sub-Model

More information

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization Recent Researches in Coputer Science Support Vector Machine Classification of Uncertain and Ibalanced data using Robust Optiization RAGHAV PAT, THEODORE B. TRAFALIS, KASH BARKER School of Industrial Engineering

More information

Kinematics and dynamics, a computational approach

Kinematics and dynamics, a computational approach Kineatics and dynaics, a coputational approach We begin the discussion of nuerical approaches to echanics with the definition for the velocity r r ( t t) r ( t) v( t) li li or r( t t) r( t) v( t) t for

More information

16.333: Lecture # 7. Approximate Longitudinal Dynamics Models

16.333: Lecture # 7. Approximate Longitudinal Dynamics Models 16.333: Lecture # 7 Approxiate Longitudinal Dynaics Models A couple ore stability derivatives Given ode shapes found identify sipler odels that capture the ain responses Fall 24 16.333 6 1 More Stability

More information

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES

Proc. of the IEEE/OES Seventh Working Conference on Current Measurement Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Proc. of the IEEE/OES Seventh Working Conference on Current Measureent Technology UNCERTAINTIES IN SEASONDE CURRENT VELOCITIES Belinda Lipa Codar Ocean Sensors 15 La Sandra Way, Portola Valley, CA 98 blipa@pogo.co

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Tracking using CONDENSATION: Conditional Density Propagation

Tracking using CONDENSATION: Conditional Density Propagation Tracking using CONDENSATION: Conditional Density Propagation Goal Model-based visual tracking in dense clutter at near video frae rates M. Isard and A. Blake, CONDENSATION Conditional density propagation

More information

Chapter 16 Solutions

Chapter 16 Solutions Chapter 16 Solutions 16.1 Replace x by x vt = x 4.5t to get y = 6 [(x 4.5t) + 3] 16. y (c) y (c) y (c) 6 4 4 4 t = s t = 1 s t = 1.5 s 0 6 10 14 x 0 6 10 14 x 0 6 10 14 x y (c) y (c) 4 t =.5 s 4 t = 3

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich

TUTORIAL 1 SIMPLE HARMONIC MOTION. Instructor: Kazumi Tolich TUTORIAL 1 SIMPLE HARMONIC MOTION Instructor: Kazui Tolich About tutorials 2 Tutorials are conceptual exercises that should be worked on in groups. Each slide will consist of a series of questions that

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2016 Lessons 7 14 Dec 2016 Outline Artificial Neural networks Notation...2 1. Introduction...3... 3 The Artificial

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning

Analysis of Impulsive Natural Phenomena through Finite Difference Methods A MATLAB Computational Project-Based Learning Analysis of Ipulsive Natural Phenoena through Finite Difference Methods A MATLAB Coputational Project-Based Learning Nicholas Kuia, Christopher Chariah, Mechatronics Engineering, Vaughn College of Aeronautics

More information

Determining the Robot-to-Robot Relative Pose Using Range-only Measurements

Determining the Robot-to-Robot Relative Pose Using Range-only Measurements Deterining the Robot-to-Robot Relative Pose Using Range-only Measureents Xun S Zhou and Stergios I Roueliotis Abstract In this paper we address the proble of deterining the relative pose of pairs robots

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006 Nae: Solve the following probles in the space provided Use the back of the page if needed Each proble is worth 0 points You ust show your work in a logical fashion starting with the correctly applied physical

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

Effective joint probabilistic data association using maximum a posteriori estimates of target states

Effective joint probabilistic data association using maximum a posteriori estimates of target states Effective joint probabilistic data association using axiu a posteriori estiates of target states 1 Viji Paul Panakkal, 2 Rajbabu Velurugan 1 Central Research Laboratory, Bharat Electronics Ltd., Bangalore,

More information

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1

TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 TOWARDS THE GEOMETRIC REDUCTION OF CONTROLLED THREE-DIMENSIONAL BIPEDAL ROBOTIC WALKERS 1 Aaron D. Aes, 2 Robert D. Gregg, Eric D.B. Wendel and Shankar Sastry Departent of Electrical Engineering and Coputer

More information

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS

EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS EMPIRICAL COMPLEXITY ANALYSIS OF A MILP-APPROACH FOR OPTIMIZATION OF HYBRID SYSTEMS Jochen Till, Sebastian Engell, Sebastian Panek, and Olaf Stursberg Process Control Lab (CT-AST), University of Dortund,

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl Meo To To who it ay concern Date Reference Nuber of pages 219-1-16 SVN: 5744 22 Fro Direct line E-ail Jan Mooian +31 )88 335 8568 jan.ooian@deltares nl +31 6 4691 4571 Subject PID controller ass-spring-daper

More information

OSCILLATIONS AND WAVES

OSCILLATIONS AND WAVES OSCILLATIONS AND WAVES OSCILLATION IS AN EXAMPLE OF PERIODIC MOTION No stories this tie, we are going to get straight to the topic. We say that an event is Periodic in nature when it repeats itself in

More information

DIRECT TORQUE CONTROL OF INDUCTION MACHINES CONSIDERING THE IRON LOSSES

DIRECT TORQUE CONTROL OF INDUCTION MACHINES CONSIDERING THE IRON LOSSES DIRECT TORQUE CONTROL OF INDUCTION MACHINES CONSIDERING THE IRON LOSSES TRUC PHAM-DINH A thesis subitted in partial fulfilent of the requireents of Liverpool John Moores University for the degree of Doctor

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information