CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS

Size: px
Start display at page:

Download "CHAPTER 7 SYMMETRICAL COMPONENTS AND REPRESENTATION OF FAULTED NETWORKS"

Transcription

1 HAPTER 7 SMMETRAL OMPOETS AD REPRESETATO OF FAULTED ETWORKS A uled three-phe yte e reolved ito three led yte i the iuoidl tedy tte. Thi ethod of reolvig uled yte ito three led phor yte h ee propoed y. L. Forteue. Thi ethod i lled reolvig yetril opoet of the origil phor or iply yetril opoet. thi hpter we hll diu yetril opoet trfortio d the will preet how uled opoet like - or -oeted lod, trforer, geertor d triio lie e reolved ito yetril opoet. We the oie ll thee opoet together to for wht re lled equee etwork. 7. SMMETRAL OMPOETS A yte of three uled phor e reolved i the followig three yetril opoet: Poitive Sequee: A led three-phe yte with the e phe equee the origil equee. egtive equee: A led three-phe yte with the oppoite phe equee the origil equee. ero Sequee: Three phor tht re equl i gitude d phe. Fig. 7. depit et of three uled phor tht re reolved ito the three equee opoet etioed ove. thi the origil et of three phor re deoted y, d, while their poitive, egtive d zero equee opoet re deoted y the uript, d repetively. Thi iplie tht the poitive, egtive d zero equee opoet of phe- re deoted y, d repetively. ote tht ut like the voltge phor give i Fig. 7. we lo reolve three uled urret phor ito three yetril opoet. Fig. 7. Repreettio of () uled etwork, it () poitive equee, () egtive equee d (d) zero equee.

2 . 7.. Syetril opoet Trfortio Before we diu the yetril opoet trfortio, let u firt defie the - opertor. Thi h ee give i (.4) d i reprodued elow. e (7.) ote tht for the ove opertor the followig reltio hold d o o e e e e e e e e (7.) Alo ote tht we hve (7.) Uig the -opertor we write fro Fig. 7. () d (7.4) Siilrly fro Fig. 7. () we get d (7.5) Filly fro Fig. 7. (d) we get (7.6) The yetril opoet trfortio trix i the give y (7.7) Defiig the vetor d,

3 .4 we write (7.4) (7.8) where i the yetril opoet trfortio trix d i give y (7.9) The origil phor opoet lo e otied fro the ivere yetril opoet trfortio, i.e., (7.) vertig the trix give i (7.9) d oiig with (7.) we get (7.) Fro (7.) we write (7.) (7.) (7.4) Filly, if we defie et of uled urret phor d their yetril opoet, we the defie (7.5) Exple 7.: Let u oider et of led voltge give i per uit y.,. d. Thee iply d The fro (7.7) we get ( )

4 .5 ( ). pu 4 ( ) We the ee tht for led yte the zero d egtive equee voltge re zero. Alo the poitive equee voltge i the e the origil yte, i.e.,, d Exple 7.: All the qutitie give i thi exple re i per uit. Let u ow oider the followig et of three uled voltge.,. d.9 f we reolve the uig (7.4) we the hve Therefore we hve ,.96 6., Furtherore ote tht Rel d Retive Power The three-phe power i the origil uled yte i give y P * * * T Q (7.6) where i the oplex ougte of the vetor. ow fro (7.) d (7.5) we get P (7.7) T T Q

5 .6 Fro (7.) we get T Therefore fro (7.7) we get ( ) P Q (7.8) We the fid tht the oplex power i three tie the utio of the oplex power of the three phe equee. Exple 7.: Let u oider the voltge give i Exple 7.. Let u further ue tht thee voltge re lie-to-eutrl voltge d they upply led - oeted lod whoe per phe ipede i..8 per uit. The the per uit urret i the three phe re pu pu pu The the rel d retive power oued y the lod i give y P Q ( ) o( ).9559 pu ( ) i( ).85 pu ow uig the trfortio (7.5) we get pu Fro the reult give i Exple 7. d fro the ove vlue we opute the zero equee oplex power Q.8 P.55 pu The poitive equee oplex power i

6 .7 Q.954 P.745 pu Filly the egtive equee oplex power i Q.67 P.69 pu Addig the three oplex power together we get the totl oplex power oued y the lod P ( P P P ) ( Q Q Q ) Q pu 7.. Orthogol Trfortio ted of the trfortio trix give i (7.9), let u ited ue the trfortio trix (7.9) We the hve (7.) ote fro (7.9) d (7.) tht ( T ). We therefore tte ( T ), where i ( ) idetity trix. Therefore the trfortio trie give i (7.9) d (7.) re orthogol. ow ie T T ( ) we write fro (7.7) P (7.) Q We hll ow diu how differet eleet of power yte re repreeted i ter of their equee opoet. ft we hll how tht eh eleet i repreeted y three equivlet iruit, oe for eh yetril opoet equee.

7 .8 7. SEQUEE RUTS FOR LOADS thi etio we hll otrut equee iruit for oth d -oeted lod eprtely. 7.. Sequee iruit for -oeted Lod oider the led -oeted lod tht i how i Fig. 7.. The eutrl poit () of the widig re grouded through ipede. The lod i eh phe i deoted y. Let u oider phe- of the lod. The voltge etwee lie d groud i deoted y, the lie-to-eutrl voltge i deoted y d voltge etwee the eutrl d groud i deoted y. The eutrl urret i the ( ) ( ) (7.) Therefore there will ot e y poitive or egtive equee urret flowig out of the eutrl poit. Fig. 7. Sheti digr of led -oeted lod. The voltge drop etwee the eutrl d groud i (7.) ow (7.4) We write iilr expreio for the other two phe. We therefore write (7.5) Pre-ultiplyig oth ide of the ove equtio y the trix d uig (7.8) we get

8 .9 (7.6) ow ie We get fro (7.6) (7.7) We the fid tht the zero, poitive d egtive equee voltge oly deped o their repetive equee opoet urret. The equee opoet equivlet iruit re how i Fig. 7.. While the poitive d egtive equee ipede re oth equl to, the zero equee ipede i equl to (7.8) f the eutrl i grouded diretly (i.e., ), the. O the other hd, if the eutrl i kept flotig (i.e., ), the there will ot e y zero equee urret flowig i the iruit t ll. Fig. 7. Sequee iruit of -oeted lod: () poitive, () egtive d () zero equee. 7.. Sequee iruit for -oeted Lod oider the led -oeted lod how i Fig. 7.4 i whih the lod i eh phe i deoted y. The lie-to-lie voltge re give y (7.9) Addig thee three voltge we get

9 . Fig. 7.4 Sheti digr of led -oeted lod. ( ) (7.) Deotig the zero equee opoet, d d tht of, d we rewrite (7.) (7.) Agi ie we fid fro (7.). Hee -oeted lod with o utul ouplig h ot y zero equee irultig urret. ote tht the poitive d egtive equee ipede for thi lod will e equl to. Exple 7.4: oider the iruit how i Fig. 7.5 i whih -oeted lod i oeted i prllel with -oeted lod. The eutrl poit of the -oeted lod i grouded through ipede. Applyig Kirhoff urret lw t the poit P i the iruit we get ( ) The ove expreio e writte i ter of the vetor [ ] Sie the lod i led we write

10 . Fig. 7.5 Prllel oetio of led d -oeted lod. Pre-ultiplyig oth ide of the ove expreio y the trfortio trix we get ow ie we get Seprtig the three opoet, we write fro the ove equtio Suppoe ow if we overt the -oeted lod ito equivlet, the the opoite lod will e prllel oitio of two -oeted iruit oe with ipede of d the other with ipede of /. Therefore the poitive d the egtive equee ipede re give y the prllel oitio of thee two ipede. The poitive d egtive equee ipede i the give y

11 . ow refer to Fig The voltge i give y ( ) Fro Fig. 7.5 we lo write. Therefore Thi iplie tht d hee. We the rewrite the zero equee urret expreio t e ee tht the ter i et fro the zero equee ipede. 7. SEQUEE RUTS FOR SHROOUS GEERATOR The three-phe equivlet iruit of yhroou geertor i how i Fig..6. Thi i redrw i Fig. 7.6 with the eutrl poit grouded through retor with ipede. The eutrl urret i the give y (7.) Fig. 7.6 Equivlet iruit of yhroou geertor with grouded eutrl.

12 . The derivtio of Setio. ue led opertio whih iplie. A per (7.) thi uptio i ot vlid y ore. Therefore with repet to thi figure we write for phe- voltge ( ) ( ) ( ) ( ) E M M L R E M L R ω ω ω ω ω (7.) Siilr expreio lo e writte for the other two phe. We therefore hve ( ) [ ] E E E M M L R ω ω (7.4) Pre-ultiplyig oth ide of (7.4) y the trfortio trix we get ( ) [ ] E E E M M L R ω ω (7.5) Sie the yhroou geertor i operted to upply oly led voltge we ue tht E E d E E. We therefore odify (7.5) ( ) [ ] E M M L R ω ω (7.6) We eprte the ter of (7.6) ( ) [ ] g M L R ω (7.7) ( ) [ ] E E M L R ω (7.8) ( ) [ ] M L R ω (7.9) Furtherore we hve ee for -oeted lod tht, ie the eutrl urret doe ot ffet thee voltge. However. Alo we kow tht. We therefore rewrite (7.7) ( ) g (7.4) The equee digr for yhroou geertor re how i Fig. 7.7.

13 .4 Fig. 7.7 Sequee iruit of yhroou geertor: () poitive, () egtive d () zero equee. 7.4 SEQUEE RUTS FOR SMMETRAL TRASMSSO LE The heti digr of triio lie i how i Fig thi digr the elf ipede of the three phe re deoted y, d while tht of the eutrl wire i deoted y. Let u ue tht the elf ipede of the odutor to e the e, i.e., Sie the triio lie i ued to e yetri, we further ue tht the utul idute etwee the odutor re the e d o re the utul idute etwee the odutor d the eutrl, i.e., The diretio of the urret flowig through the lie re idited i Fig. 7.8 d the voltge etwee the differet odutor re idited. Fig. 7.8 Luped preter repreettio of yetril triio lie. Applyig Kirhoff voltge lw we get (7.4) Agi ( ) ( ) (7.4) (7.4)

14 .5 Sutitutig (7.4) d (7.4) i (7.4) we get ( ) ( )( ) ( ) (7.44) Sie the eutrl provide retur pth for the urret, d, we write ( ) (7.45) Therefore utitutig (7.45) i (7.44) we get the followig equtio for phe- of the iruit Deotig ( ) ( )( ) (7.46) d (7.46) e rewritte ( ) (7.47) Sie (7.47) doe ot expliitly ilude the eutrl odutor we defie the voltge drop ro the phe- odutor (7.48) oiig (7.47) d (7.48) we get ( ) (7.49) Siilr expreio lo e writte for the other two phe. We therefore get (7.5) Pre-ultiplyig oth ide of (7.5) y the trfortio trix we get ow (7.5)

15 .6 ( ) ( ) ( ) ( ) Hee ( ) ( ) ( ) ( ) 6 Therefore fro (7.5) we get (7.5) The poitive, egtive d zero equee equivlet iruit of the triio lie re how i Fig. 7.9 where the equee ipede re 6 Fig. 7.9 Sequee iruit of yetril triio lie: () poitive, () egtive d () zero equee. 7.5 SEQUEE RUTS FOR TRASFORMERS thi etio we hll diu the equee iruit of trforer. A we hve ee erlier tht the equee iruit re differet for - d -oeted lod, the equee iruit re lo differet for d oeted trforer. We hll therefore tret differet trforer oetio eprtely.

16 oeted Trforer Fig. 7. how the heti digr of - oeted trforer i whih oth the eutrl re grouded. The priry d eodry ide qutitie re deoted y uript i uppere letter d lowere letter repetively. The tur rtio of the trforer i give y α :. Fig. 7. Sheti digr of grouded eutrl - oeted trforer. The voltge of phe- of the priry ide i A A A A Expdig A d A i ter of their poitive, egtive d zero equee opoet, the ove equtio e rewritte (7.5) A A A A A A A otig tht the diretio of the eutrl urret i oppoite to tht of, we write equtio iilr to tht of (7.5) for the eodry ide (7.54) ow ie the tur rtio of the trforer i α : we write Sutitutig i (7.54) we get α A A α A α α ( A A A ) α A Multiplyig oth ide of the ove equtio y α reult i α ( ) A A A α A (7.55) A

17 .8 Filly oiig (7.5) with (7.55) we get ( ) A A A ( α ) A α (7.56) Seprtig out the poitive, egtive d zero equee opoet we write α (7.57) A α (7.58) A [ ( ) ] α (7.59) A A Fig. 7. ero equee equivlet iruit of grouded eutrl - oeted trforer. Fro (7.57) d (7.58) we ee tht the poitive d egtive equee reltio re the e tht we hve ued for repreetig trforer iruit give i Fig..8. Hee the poitive d egtive equee ipede re the e the trforer lekge ipede. The zero equee equivlet iruit i how i Fig. 7.. The totl zero equee ipede i give y ( ) (7.6) The zero equee digr of the grouded eutrl - oeted trforer i how i Fig. 7. () i whih the ipede i give i (7.6). f oth the eutrl re olidly grouded, i.e.,, the i equl to. The igle lie digr i till the e tht how i Fig. 7. (). f however oe of the two eutrl or oth eutrl re ugrouded, the we hve either or or oth. The zero equee digr i the how i Fig. 7. () where the vlue of will deped o whih eutrl i kept ugrouded. Fig. 7. ero equee digr of () grouded eutrl d () ugrouded eutrl - oeted trforer.

18 oeted Trforer The heti digr of - oeted trforer i how i Fig. 7.. ow we hve AB A B A A A B B B AB AB (7.6) Agi AB α Therefore fro (7.6) we get AB Fig. 7. Sheti digr of - oeted trforer. ( ) α (7.6) AB AB The equee opoet of the lie-to-lie voltge AB e writte i ter of the equee opoet of the lie-to-eutrl voltge (7.6) AB A (7.64) AB A Therefore oiig (7.6)-(7.64) we get Hee we get ( ) A A α (7.65) A α d α (7.66) A Thu the poitive d egtive equee equivlet iruit re repreeted y erie ipede tht i equl to the lekge ipede of the trforer. Sie the -oeted widig doe ot provide y pth for the zero equee urret to flow we hve A

19 . However the zero equee urret oetie irulte withi the widig. We the drw the zero equee equivlet iruit how i Fig oeted Trforer Fig. 7.4 ero equee digr of - oeted trforer. The heti digr of - oeted trforer i how i Fig t i ued tht the -oeted ide i grouded with the ipede. Eve though the zero equee urret i the priry -oeted ide h pth to the groud, the zero equee urret flowig i the -oeted eodry widig h o pth to flow i the lie. Hee we hve. However the irultig zero equee urret i the widig getilly le the zero equee urret of the priry widig. Fig. 7.5 Sheti digr of - oeted trforer. The voltge i phe- of oth ide of the trforer i relted y A α Alo we kow tht A A We therefore hve A A A α A A A A ( ) A (7.67) Seprtig zero, poitive d egtive equee opoet we write

20 . α (7.68) A A A α α (7.69) A α α (7.7) The poitive equee equivlet iruit i how i Fig. 7.6 (). The egtive equee iruit i the e tht of the poitive equee iruit exept for the phe hift i the idued ef. Thi i how i Fig. 7.6 (). The zero equee equivlet iruit i how i Fig. 7.6 () where. ote tht the priry d the eodry ide re ot oeted d hee there i ope iruit etwee the. However ie the zero equee urret flow through priry widig, retur pth i provided through the groud. f however, the eutrl i the priry ide i ot grouded, i.e.,, the the zero equee urret ot flow i the priry ide well. The equee digr i the how i Fig. 7.6 (d) where. Fig. 7.6 Sequee digr of - oeted trforer: () poitive equee, () egtive equee, () zero equee with grouded -oetio d (d) zero equee with ugrouded -oetio. 7.6 SEQUEE ETWORKS The equee iruit developed i the previou etio re oied to for the equee etwork. The equee etwork for the poitive, egtive d zero equee re fored eprtely y oiig the equee iruit of ll the idividul eleet. erti uptio re de while forig the equee etwork. Thee re lited elow.. Aprt fro yhroou hie, the etwork i de of tti eleet.. The voltge drop ued y the urret i prtiulr equee deped oly o the ipede of tht prt of the etwork.. The poitive d egtive equee ipede re equl for ll tti iruit opoet, while the zero equee opoet eed ot e the e the. Furtherore utriet poitive d egtive equee ipede of yhroou hie re equl. 4. oltge oure re oeted to the poitive equee iruit of the rottig hie. 5. o poitive or egtive equee urret flow etwee eutrl d groud.

21 . Exple 7.5: Let u oider the etwork how i Fig 7.7 whih i eetilly the e tht diued i Exple.. The vlue of the vriou rete re ot iportt here d hee re ot give i thi figure. However vriou poit of the iruit re deoted y the letter A to G. Thi h ee doe to idetify the ipede of vriou iruit eleet. For exple, the lekge rete of the trforer T i pled etwee the poit A d B d tht of trforer T i pled etwee D d E. The poitive equee etwork i how i Fig Thi i eetilly e tht how i Fig..4. The egtive equee digr, how i Fig. 7.9, i lot idetil to the poitive equee digr exept tht the voltge oure re et i thi iruit. The zero equee etwork i how i Fig. 7.. The eutrl poit of geertor G i grouded. Hee pth fro poit A to the groud i provided through the zero equee rete of the geertor. The priry ide of the trforer T i -oeted d hee there i diotiuity i the iruit fter poit A. Siilr oetio re lo de for geertor G d trforer T. The triio lie ipede re pled etwee the poit B, D d F. The eodry ide of trforer T i ugrouded d hee there i rek i the iruit fter the poit F. However the priry ide of T i grouded d o i the eutrl poit of geertor G. Hee the zero equee opoet of thee two pprtu re oeted to the groud. Fig. 7.7 Sigle-lie digr of -hie power yte. Fig. 7.8 Poitive equee etwork of the power yte of Fig. 7.7.

22 . Fig. 7.9 egtive equee etwork of the power yte of Fig Fig. 7. ero equee etwork of the power yte of Fig. 7.7.

1/16/2013. Overview. 05-Three Phase Analysis Text: Three Phase. Three-Phase Voltages. Benefits of Three-Phase Systems.

1/16/2013. Overview. 05-Three Phase Analysis Text: Three Phase. Three-Phase Voltages. Benefits of Three-Phase Systems. oltge () 1/16/21 Overview 5Three Phse Alysis Text: 2.4 2.7 ECEGR 451 Power Systems ThreePhse Soures Delt d Y Coetios ThreePhse Lods ThreePhse Power ThreePhse Alysis PerPhse Alysis Dr. Louie 2 ThreePhse

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley

Module B3 3.1 Sinusoidal steady-state analysis (single-phase), a review 3.2 Three-phase analysis. Kirtley Module B.1 Siusoidl stedy-stte lysis (sigle-phse), review.2 Three-phse lysis Kirtley Chpter 2: AC Voltge, Curret d Power 2.1 Soures d Power 2.2 Resistors, Idutors, d Cpitors Chpter 4: Polyphse systems

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

LESSON 11: TRANSFORMER NAME PLATE DATA AND CONNECTIONS

LESSON 11: TRANSFORMER NAME PLATE DATA AND CONNECTIONS ET 332 Motors, Geertors d Power Systems LESSON 11: TRNSFORMER NME PLTE DT ND ONNETIONS 1 LERNING OJETIVES fter this presettio you will e le to: Idetify trsformer polrity usig dot d ovetiol lelig. Expli

More information

4. UNBALANCED 3 FAULTS

4. UNBALANCED 3 FAULTS 4. UNBALANCED AULTS So fr: we hve tudied lned fult ut unlned fult re more ommon. Need: to nlye unlned ytem. Could: nlye three-wire ytem V n V n V n Mot ommon fult type = ingle-phe to ground i.e. write

More information

Note 7 Root-Locus Techniques

Note 7 Root-Locus Techniques Lecture Note of Cotrol Syte I - ME 43/Alyi d Sythei of Lier Cotrol Syte - ME862 Note 7 Root-Locu Techique Deprtet of Mechicl Egieerig, Uiverity Of Sktchew, 57 Cpu Drive, Sktoo, S S7N 5A9, Cd Lecture Note

More information

Modified Farey Trees and Pythagorean Triples

Modified Farey Trees and Pythagorean Triples Modified Frey Trees d Pythgore Triples By Shi-ihi Kty Deprtet of Mthetil Siees, Fulty of Itegrted Arts d Siees, The Uiversity of Tokushi, Tokushi 0-0, JAPAN e-il ddress : kty@istokushi-ujp Abstrt I 6,

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

Introduction to Modern Control Theory

Introduction to Modern Control Theory Itroductio to Moder Cotrol Theory MM : Itroductio to Stte-Spce Method MM : Cotrol Deig for Full Stte Feedck MM 3: Etitor Deig MM 4: Itroductio of the Referece Iput MM 5: Itegrl Cotrol d Rout Trckig //4

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES

CHAPTER 3 NETWORK ADMITTANCE AND IMPEDANCE MATRICES CHAPTER NETWORK ADTTANCE AND PEDANCE ATRCES As we hve see i Chter tht ower system etwor c e coverted ito equivlet imedce digrm. This digrm forms the sis of ower flow (or lod flow) studies d short circuit

More information

z line a) Draw the single phase equivalent circuit. b) Calculate I BC.

z line a) Draw the single phase equivalent circuit. b) Calculate I BC. ECE 2260 F 08 HW 7 prob 4 solutio EX: V gyb' b' b B V gyc' c' c C = 101 0 V = 1 + j0.2 Ω V gyb' = 101 120 V = 6 + j0. Ω V gyc' = 101 +120 V z LΔ = 9 j1.5 Ω ) Drw the sigle phse equivlet circuit. b) Clculte

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction Lesso : Workig with the Nuber Syste Istructio Prerequisite Skills This lesso requires the use of the followig skills: evlutig expressios usig the order of opertios evlutig expoetil expressios ivolvig iteger

More information

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays. Sphericl refrctig urfce Here, the outgoig ry re o the oppoite ide of the urfce from the Icomig ry. The oject i t P. Icomig ry PB d PV form imge t P. All prxil ry from P which trike the phericl urfce will

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

ALGEBRA II CHAPTER 7 NOTES. Name

ALGEBRA II CHAPTER 7 NOTES. Name ALGEBRA II CHAPTER 7 NOTES Ne Algebr II 7. th Roots d Rtiol Expoets Tody I evlutig th roots of rel ubers usig both rdicl d rtiol expoet ottio. I successful tody whe I c evlute th roots. It is iportt for

More information

Intermediate Arithmetic

Intermediate Arithmetic Git Lerig Guides Iteredite Arithetic Nuer Syste, Surds d Idices Author: Rghu M.D. NUMBER SYSTEM Nuer syste: Nuer systes re clssified s Nturl, Whole, Itegers, Rtiol d Irrtiol uers. The syste hs ee digrticlly

More information

1880 Edison starts full-scale manufacture of DC generators and incandescent lamps.

1880 Edison starts full-scale manufacture of DC generators and incandescent lamps. 1.1 Leture 1 The Eletri ower System Overview. The symmetril three-se power system. Eletril power i AC iruits. Mesuremet of three-se power er-uit vlues of eletril qutities. Overview The moder eletri power

More information

All the Laplace Transform you will encounter has the following form: Rational function X(s)

All the Laplace Transform you will encounter has the following form: Rational function X(s) EE G Note: Chpter Itructor: Cheug Pge - - Iverio of Rtiol Fuctio All the Lplce Trform you will ecouter h the followig form: m m m m e τ 0...... Rtiol fuctio Dely Why? Rtiol fuctio come out turlly from

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

G8-11 Congruence Rules

G8-11 Congruence Rules G8-11 ogruee Rules If two polgos re ogruet, ou ple the oe o top of the other so tht the th etl. The verties tht th re lled orrespodig verties. The gles tht th re lled orrespodig gles. The sides tht th

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

An Investigation of Continued Fractions

An Investigation of Continued Fractions Ivetigtio o Cotiued rtio Kriti Ptto Ohio Norther Uiverity d Ohio 8 Emil: k-ptto@ou.edu dvior: Dr. dr hroeder -hroeder@ou.edu d Dr. Rihrd Dquil rdquil@mukigum.edu btrt: The tudy o otiued rtio h produed

More information

CH 19 SOLVING FORMULAS

CH 19 SOLVING FORMULAS 1 CH 19 SOLVING FORMULAS INTRODUCTION S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Laws of Integral Indices

Laws of Integral Indices A Lws of Itegrl Idices A. Positive Itegrl Idices I, is clled the se, is clled the idex lso clled the expoet. mes times.... Exmple Simplify 5 6 c Solutio 8 5 6 c 6 Exmple Simplify Solutio The results i

More information

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES

APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Scietific Reserch of the Istitute of Mthetics d Coputer Sciece 3() 0, 5-0 APPLICATION OF DIFFERENCE EQUATIONS TO CERTAIN TRIDIAGONAL MATRICES Jolt Borows, Le Łcińs, Jowit Rychlews Istitute of Mthetics,

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

STRUNET CONCRETE DESIGN AIDS

STRUNET CONCRETE DESIGN AIDS Itrodutio to Corete Colum Deig Flow Chrt he Colum Deig Setio i Struet oti two mi prt: Chrt to develop tregth itertio digrm for give etio, d red -mde Colum Itertio Digrm, for quik deig of give olum. Corete

More information

LECTURE 23 SYNCHRONOUS MACHINES (3)

LECTURE 23 SYNCHRONOUS MACHINES (3) ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE 3 SYNCHRONOUS MACHINES (3) Acknowledgent-Thee hndout nd lecture note given in cl re bed on teril fro Prof. Peter Suer ECE 330 lecture note. Soe lide

More information

Exponents and Radical

Exponents and Radical Expoets d Rdil Rule : If the root is eve d iside the rdil is egtive, the the swer is o rel umber, meig tht If is eve d is egtive, the Beuse rel umber multiplied eve times by itself will be lwys positive.

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Tranformations. Some slides adapted from Octavia Camps

Tranformations. Some slides adapted from Octavia Camps Trformtio Some lide dpted from Octvi Cmp A m 3 3 m m 3m m Mtrice 5K C c m ij A ij m b ij B A d B mut hve the me dimeio m 3 Mtrice p m m p B A C H @K?J H @K?J m k kj ik ij b c A d B mut hve A d B mut hve

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

CH 20 SOLVING FORMULAS

CH 20 SOLVING FORMULAS CH 20 SOLVING FORMULAS 179 Itrodutio S olvig equtios suh s 2 + 7 20 is oviousl the orerstoe of lger. But i siee, usiess, d omputers it is lso eessr to solve equtios tht might hve vriet of letters i them.

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

A New Three-Frequency, Geometry-Free, Technique for Ambiguity Resolution

A New Three-Frequency, Geometry-Free, Technique for Ambiguity Resolution A New Three-Frequey, Geometry-Free, Tehique or Amiguity Reolutio Rold R. Hth, NvCom Tehology, I. BIOGRAPHY Rold R. Hth w oe o the ouder o NvCom Tehology, Joh Deere Compy, d i urretly the Diretor o Nvigtio

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

4 Application to the TA-40 Manipulator Introduction Description of the Manipulator

4 Application to the TA-40 Manipulator Introduction Description of the Manipulator Applitio to the TA-0 Mipultor.. Itrodutio Util ow ol the theoretil priiple ued i thi thei hve ee overed. Thi hpter over how thi theor i pplied to the TA-0 mipultor. The TA-0 i rooti mipultor ued PETROBRAS

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

Chapter 2. LOGARITHMS

Chapter 2. LOGARITHMS Chpter. LOGARITHMS Dte: - 009 A. INTRODUCTION At the lst hpter, you hve studied bout Idies d Surds. Now you re omig to Logrithms. Logrithm is ivers of idies form. So Logrithms, Idies, d Surds hve strog

More information

, so the state may be taken to be l S ÅÅÅÅ

, so the state may be taken to be l S ÅÅÅÅ hw4-7.b: 4/6/04:::9:34 Hoework: 4-7 ü Skuri :, G,, 7, 8 ü. bel the eigefuctio of the qure well by S, with =,,. The correpodig wve fuctio re x = px i Iitilly, the prticle i kow to be t x =, o the tte y

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Vector Integration. Line integral: Let F ( x y,

Vector Integration. Line integral: Let F ( x y, Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion ble, eplin the flow of het in tr, nd put tellite in orbit.

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration www.boopr.om VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vetor Integrtion Thi hpter tret integrtion in vetor field. It i the mthemti tht engineer nd phiit ue to deribe fluid flow, deign underwter trnmiion

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

LAWS OF INDICES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

LAWS OF INDICES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mthetics Revisio Guides Lws of Idices Pge of 7 Author: Mrk Kudlowski M.K. HOME TUITION Mthetics Revisio Guides Level: GCSE Higher Tier LAWS OF INDICES Versio:. Dte: 0--0 Mthetics Revisio Guides Lws of

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms Uit Chpter- Prtil Frctios, Algeric Reltioships, Surds, Idices, Logriths. Prtil Frctios: A frctio of the for 7 where the degree of the uertor is less th the degree of the deoitor is referred to s proper

More information

ON n-fold FILTERS IN BL-ALGEBRAS

ON n-fold FILTERS IN BL-ALGEBRAS Jourl of Alger Numer Theor: Adves d Applitios Volume 2 Numer 29 Pges 27-42 ON -FOLD FILTERS IN BL-ALGEBRAS M. SHIRVANI-GHADIKOLAI A. MOUSSAVI A. KORDI 2 d A. AHMADI 2 Deprtmet of Mthemtis Trit Modres Uiversit

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Chapter 4: Angle Modulation

Chapter 4: Angle Modulation 57 Chapter 4: Agle Modulatio 4.1 Itrodutio to Agle Modulatio This hapter desribes frequey odulatio (FM) ad phase odulatio (PM), whih are both fors of agle odulatio. Agle odulatio has several advatages

More information

Formal Languages The Pumping Lemma for CFLs

Formal Languages The Pumping Lemma for CFLs Forl Lguges The Pupig Le for CFLs Review: pupig le for regulr lguges Tke ifiite cotext-free lguge Geertes ifiite uer of differet strigs Exple: 3 I derivtio of log strig, vriles re repeted derivtio: 4 Derivtio

More information

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function Math 3b Sprig 005 Yum-og Siu Expliit Formula for Logarithmi Derivative of Riema Zeta Futio he expliit formula for the logarithmi derivative of the Riema zeta futio i the appliatio to it of the Perro formula

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fll 5 Microelectroic evice ircuit Lecture 4 P Juctio Lecture Mteril Lt lecture I mufcturig roce iffuio curret Review of electrottic I ccitor Thi lecture P uctio rrier ocetrtio Potetil I therml equilibrium,

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Applications of Regular Closure

Applications of Regular Closure Applictios of Regulr Closure 1 The itersectio of cotext-free lguge d regulr lguge is cotext-free lguge L1 L2 cotext free regulr Regulr Closure L1 L 2 cotext-free 2 Liz 6 th, sectio 8.2, exple 8.7, pge

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root Suer MA 00 Lesso Sectio P. I Squre Roots If b, the b is squre root of. If is oegtive rel uber, the oegtive uber b b b such tht, deoted by, is the pricipl squre root of. rdicl sig rdicl expressio rdicd

More information

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin

Fourier Series. Topic 4 Fourier Series. sin. sin. Fourier Series. Fourier Series. Fourier Series. sin. b n. a n. sin Topic Fourier Series si Fourier Series Music is more th just pitch mplitue it s lso out timre. The richess o sou or ote prouce y musicl istrumet is escrie i terms o sum o umer o istict requecies clle hrmoics.

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information