Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Size: px
Start display at page:

Download "Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are"

Transcription

1 Chaper 6 DEECIO AD EIMAIO: Fundamenal ssues n dgal communcaons are. Deecon and. Esmaon Deecon heory: I deals wh he desgn and evaluaon of decson makng processor ha observes he receved sgnal and guesses whch parcular symbol was ransmed accordng o some se of rules. Esmaon heory: I deals wh he desgn and evaluaon of a processor ha uses nformaon n he receved sgnal o exrac esmaes of physcal parameers or waveforms of neres. he resuls of deecon and esmaon are always subec o errors Model of dgal communcaon sysem Consder a source ha ems one symbol every seconds, wh he symbols belongng o an alphabe of M symbols whch we denoe as m, m, m M. We assume ha all M symbols of he alphabe are equally lkely. hen p p m emed M for all

2 he oupu of he message source s presened o a vecor ransmer producng vecor of real number.,,..., M.. Where he dmenson M. he modulaor hen consrucs a dsnc sgnal s of duraon seconds. he sgnal s s necessarly of fne energy. he Channel s assumed o have wo characerscs: Channel s lnear, wh a bandwdh ha s large enough o accommodae he ransmsson of he modulaor oupu s whou dsoron. he ransmed sgnal s s perurbed by an addve, zero-mean, saonary, whe, Gaussan nose process. such a channel s referred as AWG addve whe Gaussan nose channel GRAM CHMID ORHOGOALIZAIO PROCEDURE: In case of Gram-chmd Orhogonalzaon procedure, any se of M energy sgnals {} can be represened by a lnear combnaon of orhonormal bass funcons where M. ha s we may represen he gven se of real valued energy sgnals, M each of duraon seconds n he form M.... M M M,,... M 6.

3 Where he Co-effcen of expanson are defned by,,..... M d,, Vecor he basc funcons,... are orhonormal by whch f d f 6. he co-effcen may be vewed as he h elemen of he dmensonal herefore ' ' ' ' =,, M Le Vecor 4 4

4 Geomerc nerpreaon of sgnal: Usng orhonormal bass funcons we can represen M sgnals as Coeffcens are gven by,,..., M 6.4 d,,..., M,,..., 6.5 Gven he se of coeffcens {s }, =,,. operang as npu we may use he scheme as shown n fga o generae he sgnal s = o M. I consss of a bank of mulplers, wh each mulpler suppled wh s own basc funcon, followed by a summer. fga conversely gven a se of sgnals s = o M operang as npu we may use he scheme shown n fg b o calculae he se of coeffcens {s }, =,,.

5 fgb.,,..., M.. he vecor s s called sgnal vecor We may vsualze sgnal vecors as a se of M pons n an dmensonal Eucldean space, whch s also called sgnal space he squared-lengh of any vecor s s gven by nner produc or he do produc of s, E Where s are he elemens of s wo vecors are orhogonal f her nner produc s zero he energy of he sgnal s gven by E d subsung he value s from equaon 6. ] [ k [ k k ] d nerchangng he order of summaon and negraon E k k k d

6 snce forms an orhonormal se, he above equaon reduce o E hs shows ha he energy of he sgnal s s equal o he squared-lengh of he sgnal vecor s he Eucldean dsance beween he pons represened by he sgnal vecors s and s k s k [ ] d Response of bank of correlaors o nosy npu Receved gnal s gven by k k W,,..., M 6.6 where W s AWG wh Zero Mean and PD / Oupu of each correlaor s a random varable defned by o W d,, he frs Componen s deermnsc quany conrbued by he ransmed sgnal, s defned by d 6.8 he second Componen W s a random varable due o he presence of he nose a he npu, s defned by o W W d 6.9

7 le ' s a new random varable defned as subsung he values of from 6.6 and from 6.7 we ge whch depends only on nose W a he fron end of he recever and no a all on he ransmed sgnal s. hus we may express he receved random process as ow we may characerze he se of correlaor oupu, { }, = o, snce he receved random process s Gaussan, we deduce ha each s a Gaussan random varable. Hence, each s characerzed compleely by s mean and varance. Mean and varance: he nose process W has zero mean, hence he random varable W exraced from W also has zero mean. hus he mean value of he h correlaor oupu depends only on as varance of s gven by 6. ' ' ' W W W W W ' ' W x E W bu E W W E eqn from E m ] [ ] [ ] [ 6.7 ] [ ] [ 6.7 ] [ ] [ ] [ x x x E W equon from E m subsung m E Var

8 subsung he value of W from eqn 6.9 x x E E W d W u u W W u u E[ W W u] u R w u du d du d du, u d du 6. where R w, u = E[ W W u ] auocorrelaon funcon of he nose process W.cence he nose s saonary, wh psd /,R w,u depends only on he me ference -u and expressed as R w, u u 6. subsung hs value n he equaon 6. we ge x d u u d du cence he have un energy, he above equaon reduce o x hs shows ha all he correlaor oupus { }, = o have a varance equal o he psd o / of he addve nose process W. cence he forms an orhogonal se, hen he are muually uncorrelaed, as shown by for all

9 Cov[ k ] E[ E[ E m E[ W W ] W k x k k d u R, u d du k k w u u d du u d m k k x k k W u u du nce he are Gaussan random varables, from he above equaon s mpled ha hey are also sascally ndependen. ] ] k Deecon of known sgnals n nose Assume ha n each me slo of duraon seconds, one of he M possble sgnals, M s ransmed wh equal probably of /M. hen for an AWG channel a possble realzaon of sample funcon x, of he receved random process s gven by x w,,,..., M where w s sample funcon of he whe Gaussan nose process W, wh zero mean and PD /. he recever has o observe he sgnal x and make a bes esmae of he ransmed sgnal s or equvalenly symbol m he ransmed sgnal s, = o M, s appled o a bank of correlaors, wh a common npu and suppled wh an approprae se of orhonormal basc funcons, he resulng correlaor oupus defne he sgnal vecor. knowng s as good as knowng he ransmed sgnal self, and vce versa. We may represens s by a pon n a Eucldean space of dmensons M.. uch a pon s referred as ransmed sgnal pon or message pon. he collecon of M message pons n he Eucldean space s called a sgnal consellaon. When he receved sgnal x s appled o he bank o correlaors, he oupu of he correlaor defne a new vecor x called observaon vecor. hs vecor x fers from he sgnal vecor s by a random nose vecor w x w,,,..., M

10 he vecors x and w are sampled values of he random vecors and W respecvely. he nose vecor w represens ha poron of he nose w whch wll nerfere wh he deeced process. Based on he observaon vecor x, we represen he receved sgnal sby a pon n he same Eucldean space, we refer hs pon as receved sgnal pon. he relaon beween hem s as shown n he fg Fg: Illusrang he effec of nose perurbaon on locaon of he receved sgnal pon In he deecon problem, he observaon vecor x s gven, we have o perform a mappng from x o an esmae of he ransmed symbol, n away ha would mnmze he average probably of symbol error n he decson. he maxmum lkelhood deecor provdes soluon o hs problem. Opmum ransmer & recever Probably of error depends on sgnal o nose rao As he R ncreases he probably of error decreases An opmum ransmer and recever s one whch maxmze he R and mnmze he probably of error.

11 Correlave recever Observaon Vecor x For an AWG channel and for he case when he ransmed sgnals are equally lkely, he opmum recever consss of wo subsysems.recever consss of a bank of M produc-negraor or correlaors Φ,Φ.Φ M orhonormal funcon he bank of correlaor operae on he receved sgnal x o produce observaon vecor x

12 . Implemened n he form of maxmum lkelhood deecor ha operaes on observaon vecor x o produce an esmae of he ransmed symbol m = o M, n a way ha would mnmze he average probably of symbol error. he elemens of he observaon vecor x are frs mulpled by he correspondng elemens of each of he M sgnal vecors s, s s M, and he resulng producs are successvely summed n accumulaor o form he correspondng se of Inner producs {x, s k } k=,..m. he nner producs are correced for he fac ha he ransmed sgnal energes may be unequal. Fnally, he larges n he resulng se of numbers s seleced and a correspondng decson on he ransmed message made. he opmum recever s commonly referred as a correlaon recever MACHED FILER cence each of he orhonormal basc funcons are Φ,Φ.Φ M s assumed o be zero ousde he nerval. we can desgn a lnear fler wh mpulse response h, wh he receved sgnal x he fer oupu s gven by he convoluon negral y x h uppose he mpulse response of he sysem s h hen he fler oupu s y d x d samplng hs oupu a me =, we ge y x d Φ s zero ousde he nerval,we ge y x d y = x where x s he h correlaor oupu produced by he receved sgnal x. A fler whose mpulse response s me-reversed and delayed verson of he npu sgnal s sad o be mached o. correspondngly, he opmum recever based on hs s referred as he mached fler recever. For a mached fler operang n real me o be physcally realzable, mus be causal.

13 For causal sysem h causaly condon s sasfed provded ha he sgnal s zero ousde he nerval Maxmzaon of oupu R n mached fler Le x = npu sgnal o he mached fler h = mpulse response of he mached fler w =whe nose wh power specral densy o / = known sgnal Inpu o he mached fler s gven by x w scence he fler s lnear, he resulng oupu y s gven by y n where and n are produced by he sgnal and nose componens of he npu x.

14 he sgnal o nose rao a he oupu of he mached fler a = s R E[ n ] am s o fnd he condon whch maxmze he R le f h H f 6. are he Fourer ransform pars, hence he oupu sgnal H f f exp f s gven by oupu a = s H f f exp f 6.4 For he recever npu nose wh psd o / he recever oupu nose psd s gven by f H f 6.5 and he nose power s gven by E[ n ] f H f 6.6 R subsung he values of eqns 6.4 & 6.5 n 6. we ge H f f exp f H f 6.7

15 usng chwarz s nequaly Eqn 6.6 s equal when f = k * f le f = Hf & f = f exp f under equaly condon * Hf = K f exp f 6.9 hus subsung n 6.6 we ge he value f f f f 6.8 H f f exp f H f f subsung n eqn 6,7 and smplfyng R f Usng Raylegh s energy heorem d f E, energy of he sgnal R E, max 6. Under maxmum R condon, he ransfer funcon s gven by k=, eqn 6.9 H op f * f exp f he mpulse response n me doman s gven by h op f exp[ f ]exp f hus he mpulse response s folded and shfed verson of he npu sgnal

16 MACHED FILER Φ = npu sgnal h = mpulse response W =whe nose he mpulse response of he mached fler s me-reversed and delayed verson of he npu sgnal h For causal sysem h Mached fler properes PROPERY he specrum of he oupu sgnal of a mached fler wh he mached sgnal as npu s, excep for a me delay facor, proporonal o he energy specral densy of he npu sgnal. le denoes he Fourer ransform of he fler oupu, hence f f H op f f * f f exp f f susung exp f 6. from 6.9

17 PROPERY he oupu sgnal of a Mached Fler s proporonal o a shfed verson of he auocorrelaon funcon of he npu sgnal o whch he fler s mached. he auocorrelaon funcon and energy specral densy of a sgnal forms he Fourer ransform par, hus akng nverse Fourer ransform for eqn 6. R A me = R E where E s energy of he sgnal PROPERY he oupu gnal o ose Rao of a Mached fler depends only on he rao of he sgnal energy o he power specral densy of he whe nose a he fler npu. R a he oupu of mached fler s eqn 6. R E[ n ] 6. oupu of mached fler s H f f exp f sgnal power a = H f f exp f nose psd a he oupu of recever s f H f

18 nose power s E[ n ] subsung he values n 6. we ge usng chwarz s nequaly f Eqn 6.4 s equal when f = k * f le f = Hf & f = f exp f under equaly condon * Hf = K f exp f 6.5 hus subsung n 6.4 we ge he value H f H f f exp f R 6. H f f f f f 6.4 H f f exp f H f f subsung n eqn 6, and smplfyng R f Usng Raylegh s energy heorem d f E, energy of he sgnal R E,max 6.6

19 PROPERY 4 he Mached Flerng operaon may be separaed no wo machng condons; namely specral phase machng ha produces he desred oupu peak a me, and he specral amplude machng ha gves hs peak value s opmum sgnal o nose densy rao. In polar form he specrum of he sgnal beng mached may be expressed as f f exp f where f s magnude specrum and f s phase specrum of he sgnal. he fler s sad o be specral phase mached o he sgnal f he ransfer funcon of he fler s defned by he oupu of such a fler s H f H f exp f f ' H f f exp f H f f exp[ f ] he produc H f f s real and non negave. he specral phase machng ensures ha all he specral componens of he oupu add consrucvely a =, here by causng he oupu o aan s maxmum value. ' ' f H f For specral amplude machng H f f

20 Problem-: Consder he four sgnals s, s, s and s 4 as shown n he fg-p.. Use Gram-chmd Orhogonalzaon Procedure o fnd he orhonormal bass for hs se of sgnals. Also express he sgnals n erms of he bass funcons. Fg-P.: gnals for he problem -. oluon: Gven se s no lnearly ndependen because s 4 = s + s ep-: Energy of he sgnal s E s d s E Frs bass funcon for ep-: Coeffcen s s s d Energy of s E s d

21 econd Bass funcon for s E s s ep-: Coeffcen s : d s s Coeffcen s d s s Inermedae funcon g = s - s Φ - s Φ g = for / < < / hrd Bass funcon for d g g he correspondng orhonormal funcons are shown n he fgure-p.. Fg-P.: Orhonormal funcons for he Problem- Represenaon of he sgnals 4

22 PROBLEM-: Consder he HREE sgnals s, s and s as shown n he fg P.. Use Gram-chmd Orhogonalzaon Procedure o fnd he orhonormal bass for hs se of sgnals. Also express he sgnals n erms of he bass funcons. Fg-P.: gnals for he problem -. oluon: he bass funcons are shown n fg-p.. Fg-P.: Orhonormal funcons for he Problem- Correspondngly he represenaon of he sgnals are: 4 4

23 PROBLEM-: Consder he sgnal s n fg-p. a Deermne he mpulse response of a fler mached o hs sgnal and skech as a funcon of me. b Plo he mached fler oupu as a funcon of me. c Wha s Peak value of he oupu? oluon: Fg P. he mpulse response of he mached fler s me-reversed and delayed verson of he npu sgnal, h = s- and he oupu of he fler, y = x * h. Gven s = + for < <.5 - for.5 < <. a Wh =, he mpulse response h s h = - for < <.5 + for.5 < <.

24 Fg. P. b he oupu of he fler y s obaned by convolvng he npu s and he mpulse response h. he correspondng oupu s shown n he fg. P.. c he peak value of he oupu s. un. Assgnmen Problem: Fg. P. pecfy a mached fler for he sgnal shown n Fg.-P4. kech he oupu of he fler mached o he sgnal s appled o he fler npu. Fg P4.

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are

Chapter 6 DETECTION AND ESTIMATION: Model of digital communication system. Fundamental issues in digital communications are Chaper 6 DCIO AD IMAIO: Fndaenal sses n dgal concaons are. Deecon and. saon Deecon heory: I deals wh he desgn and evalaon of decson ang processor ha observes he receved sgnal and gesses whch parclar sybol

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel

Bandlimited channel. Intersymbol interference (ISI) This non-ideal communication channel is also called dispersive channel Inersymol nererence ISI ISI s a sgnal-dependen orm o nererence ha arses ecause o devaons n he requency response o a channel rom he deal channel. Example: Bandlmed channel Tme Doman Bandlmed channel Frequency

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Chapter 5 Mobile Radio Propagation: Small-Scale Scale Fading and Multipath

Chapter 5 Mobile Radio Propagation: Small-Scale Scale Fading and Multipath Chaper 5 Moble Rado Propagaon: Small-Scale Scale Fadng and Mulpah Ymn Zhang, Ph.D. Deparmen of Elecrcal & Compuer Engneerng Vllanova Unversy hp://ymnzhang.com/ece878 Ymn Zhang, Vllanova Unversy Oulnes

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Chapter 5 Signal-Space Analysis

Chapter 5 Signal-Space Analysis Chaper 5 Sgnal-Space Analy Sgnal pace analy provde a mahemacally elegan and hghly nghful ool for he udy of daa ranmon. 5. Inroducon o Sacal model for a genec dgal communcaon yem n eage ource: A pror probable

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Equalization on Graphs: Linear Programming and Message Passing

Equalization on Graphs: Linear Programming and Message Passing Equalzaon on Graphs: Lnear Programmng and Message Passng Mohammad H. Taghav and Paul H. Segel Cener for Magnec Recordng Research Unversy of Calforna, San Dego La Jolla, CA 92093-0401, USA Emal: (maghav,

More information

Sklar: Sections (4.4.2 is not covered).

Sklar: Sections (4.4.2 is not covered). COSC 44: Dgal Councaons Insrucor: Dr. Ar Asf Deparen of Copuer Scence and Engneerng York Unversy Handou # 6: Bandpass Modulaon opcs:. Phasor Represenaon. Dgal Modulaon Schees: PSK FSK ASK APK ASK/FSK)

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis

Joint Channel Estimation and Resource Allocation for MIMO Systems Part I: Single-User Analysis 624 IEEE RANSACIONS ON WIRELESS COUNICAIONS, VOL. 9, NO. 2, FEBRUARY 200 Jon Channel Esmaon and Resource Allocaon for IO Sysems Par I: Sngle-User Analyss Alkan Soysal, ember, IEEE, and Sennur Ulukus, ember,

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Introduction to Boosting

Introduction to Boosting Inroducon o Boosng Cynha Rudn PACM, Prnceon Unversy Advsors Ingrd Daubeches and Rober Schapre Say you have a daabase of news arcles, +, +, -, -, +, +, -, -, +, +, -, -, +, +, -, + where arcles are labeled

More information

Adaptive Sequence Detection using T-algorithm for Multipath Fading ISI Channels

Adaptive Sequence Detection using T-algorithm for Multipath Fading ISI Channels 1/5 Adapve Sequence Deecon usng T-algorhm for Mulpah Fadng ISI Channels Heung-o ee and Gregory J Poe Elecrcal Engneerng Deparmen, Unversy of Calforna a os Angeles Box 951594 os Angeles, CA 995 Emal: poe@csluclaedu

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6) Econ7 Appled Economercs Topc 5: Specfcaon: Choosng Independen Varables (Sudenmund, Chaper 6 Specfcaon errors ha we wll deal wh: wrong ndependen varable; wrong funconal form. Ths lecure deals wh wrong ndependen

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

Stochastic Maxwell Equations in Photonic Crystal Modeling and Simulations

Stochastic Maxwell Equations in Photonic Crystal Modeling and Simulations Sochasc Maxwell Equaons n Phoonc Crsal Modelng and Smulaons Hao-Mn Zhou School of Mah Georga Insue of Technolog Jon work wh: Al Adb ECE Majd Bade ECE Shu-Nee Chow Mah IPAM UCLA Aprl 14-18 2008 Parall suppored

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

ECE 366 Honors Section Fall 2009 Project Description

ECE 366 Honors Section Fall 2009 Project Description ECE 366 Honors Secon Fall 2009 Projec Descrpon Inroducon: Muscal genres are caegorcal labels creaed by humans o characerze dfferen ypes of musc. A muscal genre s characerzed by he common characerscs shared

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

Control Systems. Mathematical Modeling of Control Systems.

Control Systems. Mathematical Modeling of Control Systems. Conrol Syem Mahemacal Modelng of Conrol Syem chbum@eoulech.ac.kr Oulne Mahemacal model and model ype. Tranfer funcon model Syem pole and zero Chbum Lee -Seoulech Conrol Syem Mahemacal Model Model are key

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Machine Learning Linear Regression

Machine Learning Linear Regression Machne Learnng Lnear Regresson Lesson 3 Lnear Regresson Bascs of Regresson Leas Squares esmaon Polynomal Regresson Bass funcons Regresson model Regularzed Regresson Sascal Regresson Mamum Lkelhood (ML)

More information

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS POBABILITY AD MATEMATICAL STATISTICS Vol., Fasc., pp. SELFSIMILA POCESSES WIT STATIOAY ICEMETS I TE SECOD WIEE CAOS BY M. M A E J I M A YOKOAMA AD C. A. T U D O LILLE Absrac. We sudy selfsmlar processes

More information

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems

Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems Genec Algorhm n Parameer Esmaon of Nonlnear Dynamc Sysems E. Paeraks manos@egnaa.ee.auh.gr V. Perds perds@vergna.eng.auh.gr Ah. ehagas kehagas@egnaa.ee.auh.gr hp://skron.conrol.ee.auh.gr/kehagas/ndex.hm

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecure Sldes for Machne Learnng nd Edon ETHEM ALPAYDIN, modfed by Leonardo Bobadlla and some pars from hp://www.cs.au.ac.l/~aparzn/machnelearnng/ The MIT Press, 00 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/mle

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Advanced Machine Learning & Perception

Advanced Machine Learning & Perception Advanced Machne Learnng & Percepon Insrucor: Tony Jebara SVM Feaure & Kernel Selecon SVM Eensons Feaure Selecon (Flerng and Wrappng) SVM Feaure Selecon SVM Kernel Selecon SVM Eensons Classfcaon Feaure/Kernel

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Chapter 5. Circuit Theorems

Chapter 5. Circuit Theorems Chaper 5 Crcu Theorems Source Transformaons eplace a olage source and seres ressor by a curren and parallel ressor Fgure 5.-1 (a) A nondeal olage source. (b) A nondeal curren source. (c) Crcu B-conneced

More information

A HIERARCHICAL KALMAN FILTER

A HIERARCHICAL KALMAN FILTER A HIERARCHICAL KALMAN FILER Greg aylor aylor Fry Consulng Acuares Level 8, 3 Clarence Sree Sydney NSW Ausrala Professoral Assocae, Cenre for Acuaral Sudes Faculy of Economcs and Commerce Unversy of Melbourne

More information

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations

[Link to MIT-Lab 6P.1 goes here.] After completing the lab, fill in the following blanks: Numerical. Simulation s Calculations Chaper 6: Ordnary Leas Squares Esmaon Procedure he Properes Chaper 6 Oulne Cln s Assgnmen: Assess he Effec of Sudyng on Quz Scores Revew o Regresson Model o Ordnary Leas Squares () Esmaon Procedure o he

More information

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Time-interval analysis of β decay. V. Horvat and J. C. Hardy Tme-nerval analyss of β decay V. Horva and J. C. Hardy Work on he even analyss of β decay [1] connued and resuled n he developmen of a novel mehod of bea-decay me-nerval analyss ha produces hghly accurae

More information

On computing differential transform of nonlinear non-autonomous functions and its applications

On computing differential transform of nonlinear non-autonomous functions and its applications On compung dfferenal ransform of nonlnear non-auonomous funcons and s applcaons Essam. R. El-Zahar, and Abdelhalm Ebad Deparmen of Mahemacs, Faculy of Scences and Humanes, Prnce Saam Bn Abdulazz Unversy,

More information

Fundamentals of PLLs (I)

Fundamentals of PLLs (I) Phae-Locked Loop Fundamenal of PLL (I) Chng-Yuan Yang Naonal Chung-Hng Unvery Deparmen of Elecrcal Engneerng Why phae-lock? - Jer Supreon - Frequency Synhe T T + 1 - Skew Reducon T + 2 T + 3 PLL fou =

More information

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction ECOOMICS 35* -- OTE 9 ECO 35* -- OTE 9 F-Tess and Analyss of Varance (AOVA n he Smple Lnear Regresson Model Inroducon The smple lnear regresson model s gven by he followng populaon regresson equaon, or

More information

Networked Estimation with an Area-Triggered Transmission Method

Networked Estimation with an Area-Triggered Transmission Method Sensors 2008, 8, 897-909 sensors ISSN 1424-8220 2008 by MDPI www.mdp.org/sensors Full Paper Neworked Esmaon wh an Area-Trggered Transmsson Mehod Vnh Hao Nguyen and Young Soo Suh * Deparmen of Elecrcal

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

Efficient Asynchronous Channel Hopping Design for Cognitive Radio Networks

Efficient Asynchronous Channel Hopping Design for Cognitive Radio Networks Effcen Asynchronous Channel Hoppng Desgn for Cognve Rado Neworks Chh-Mn Chao, Chen-Yu Hsu, and Yun-ng Lng Absrac In a cognve rado nework (CRN), a necessary condon for nodes o communcae wh each oher s ha

More information

A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION

A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION S19 A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION by Xaojun YANG a,b, Yugu YANG a*, Carlo CATTANI c, and Mngzheng ZHU b a Sae Key Laboraory for Geomechancs and Deep Underground Engneerng, Chna Unversy

More information

Chapter 2 Linear dynamic analysis of a structural system

Chapter 2 Linear dynamic analysis of a structural system Chaper Lnear dynamc analyss of a srucural sysem. Dynamc equlbrum he dynamc equlbrum analyss of a srucure s he mos general case ha can be suded as akes no accoun all he forces acng on. When he exernal loads

More information

A Principled Approach to MILP Modeling

A Principled Approach to MILP Modeling A Prncpled Approach o MILP Modelng John Hooer Carnege Mellon Unvers Augus 008 Slde Proposal MILP modelng s an ar, bu need no be unprncpled. Slde Proposal MILP modelng s an ar, bu need no be unprncpled.

More information

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

Application of Morlet Wavelet Filter to. Frequency Response Functions Preprocessing

Application of Morlet Wavelet Filter to. Frequency Response Functions Preprocessing Applcaon of Morle Wavele Fler o Frequency Response Funcons Preprocessng Ln Yue Lngm Zhang Insue of Vbraon Engneerng, Nanjng Unversy of Aeronauc and Asronaucs Nanjng P.R. Chna 10016 ) ABSTRACT Frequency

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

PHYS 705: Classical Mechanics. Canonical Transformation

PHYS 705: Classical Mechanics. Canonical Transformation PHYS 705: Classcal Mechancs Canoncal Transformaon Canoncal Varables and Hamlonan Formalsm As we have seen, n he Hamlonan Formulaon of Mechancs,, are ndeenden varables n hase sace on eual foong The Hamlon

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information