Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages

Size: px
Start display at page:

Download "Work. Kinetic and Potential Energy. Work. Transference of Energy Work = Force x distance. Supplemental Text Material Pages"

Transcription

1 Kinetic and Potential Energy Supplemental Text Material Page Tranference of Energy = Force x ditance Lifting load againt the force of the weight of the object Twice the ditance reult in twice the work Twice the weight i twice the work Twice the weight Twice the ditance Weight lifter expend energy to keep the potential energy in the barbell But he doe no work on the barbell after it i lifted

2 Unit of force = Newton = Force x ditance = Newton meter Unit of work are Joule i energy = kg m m = =Joule kg m Power Nothing about time in definition Slow or fat Same force, ame ditance = ame work Power = work / time Unit Joule/econd kg m / = 1 = = watt 3 3 Power P = energy/time = watt Half the time =Twice the power Twice the time =Half the power Power P = energy/time Fuel burn Biodieel

3 v. Energy Same unit occur with tranfer of energy occur when you tore potential energy Energy tored in bow i done to create the potential energy v. Energy v. Energy Lift heavy ram of pile driver tranfer energy to lift into potential gravitational energy v. Energy Mechanical energy Moving thing ha two form 1. Potential mechanical energy Waiting to work. Kinetic mechanical energy being done Potential Energy Potential Energy Fuel i chemical potential energy

4 Due to object poition Relative to a urface = weight x height = mgh done for object to gain potential energy E P = ma x acceleration of gravity x height Height i above ome reference level Potential energy i alway referenced to a zero level defined in the ytem E P = mgh mg = weight h = height E P = mgh Path to the height i not factor in E P

5 E P = mgh Horizontal ditance i not factor in E P, Power and Energy How much work i done when you carry a 75 N bowling ball acro the room? Not any, no change in height, o no change in potential energy, Power and Energy Potential energy only important when it change Change of E P doe work E P tranformed to another form of energy, Power and Energy E P tranformed to another form of energy Kinetic energy of motion, Power and Energy Water behind the dam Potential energy Kinetic Energy of Motion E K = ½ mv i a change in kinetic energy W = E K Delta change

6 Kinetic Energy of Motion W = E K energy theorem Net work Due to net force Kinetic Energy of Motion Heat Sound Electricity and light Conervation of Energy Tranformation from one form to another Potential energy of tretched rubber of linghot Tranformed to kinetic energy of rock flying through air Conervation of Energy Kinetic energy of rock flying through air = Potential energy of tretched rubber of linghot Tranformed from potential to kinetic Conervation of Energy Rock tranfer it kinetic energy to the object it hit May be tranformed to heat upon impact Conervation of Energy Energy cannot be created or detroyed; it may be tranformed form one form into another, but the total amount never change.

7 Conervation of Energy Conervation of Energy E P = J E K = 0 J E P = 7500 J E P = 5000 J E P = 500 J E P = 0 J E K = 500 J E K = 5000 J E K = 7500 J E K = J Conervation of Energy Sun energy from fuion of hydrogen to helium 1 4 H 4 1 He + energy Sun energy converted to chemical energy by plant Sun heat converted to potential energy when it evaporate water Conervation of Energy Doe a car ue more fuel when it light are on? What about when the air conditioner i on? How about uing the radio when the engine i off?

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum

Momentum. Momentum and Energy. Momentum and Impulse. Momentum. Impulse. Impulse Increasing Momentum Momentum and Energy Chapter 3, page 59-80 Review quetion: 1,3,4,7, 8, 11, 1, 14-17, 0, 1 Momentum Momentum i inertia in motion Ma x velocity Ha both magnitude and direction Large ma or high peed can give

More information

Kinetic and Potential Energy. Supplemental Text Material Pages

Kinetic and Potential Energy. Supplemental Text Material Pages Kinetic and Potential Energy Supplemental Text Material Pages 326-333 Work Transference of Energy Work = Force x distance W=Fd Work Lifting load against the force of the weight of the object Twice the

More information

Momentum. Impulse = F t. Impulse Changes Momentum

Momentum. Impulse = F t. Impulse Changes Momentum Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

Momentum and Energy. Chapter 3

Momentum and Energy. Chapter 3 Momentum and Energy Chapter 3 Momentum Momentum is inertia in motion Mass x velocity Has both magnitude and direction Large mass or high speed can give object great amount of momentum Momentum = m v Change

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts.

Work. The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work The quantity of work done is equal to the amount of force the distance moved in the direction in which the force acts. Work falls into two categories: Work falls into two categories: work done against

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind. Nature of Energy You use energy when you: hit

More information

Energy can change from one form to another without a net loss or gain.

Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 HW and Exam #1 HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed

More information

CHAPTER 13.3 AND 13.4 ENERGY

CHAPTER 13.3 AND 13.4 ENERGY CHAPTER 13.3 AND 13.4 ENERGY Section 13.3 Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy

More information

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain.

In an avalanche, a mass of loose snow, soil, or rock suddenly gives way and slides down the side of a mountain. ENERGY Energy Objective 1: What is the relationship between energy and work? Objective 2: Identify the energy of position. Objective 3: The factors that kinetic energy depends on Objective 4: What is non-mechanical

More information

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers.

9 Energy. Ch 9 Energy. Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. Ch 9 Energy Be able to explain and calculate the work in and out of a machine. Identify and label three types of levers. 9.1 Work Work is the product of the force on an object and the distance through

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes The Energy Story Nature of Energy Energy is all around you! l You can hear energy as sound. l You can see energy as light. l And you can feel it as wind. Nature of Energy You

More information

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example)

Second Law of Motion. Force mass. Increasing mass. (Neglect air resistance in this example) Newton Law of Motion Moentu and Energy Chapter -3 Second Law of Motion The acceleration of an object i directly proportional to the net force acting on the object, i in the direction of the net force,

More information

a. Change of object s motion is related to both force and how long the force acts.

a. Change of object s motion is related to both force and how long the force acts. 0. Concept of Energy 1. Work. Power a. Energy is the most central concept underlying all sciences. Concept of energy is unknown to Isaac Newton. Its existence was still debated in the 1850s. Concept of

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena.

Energy is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena. Energy Energy "is an abstract concept invented by scientists in the nineteenth century to describe quantitatively a wide variety of natural phenomena." David Rose What is energy? Energy makes changes;

More information

Chapter 9 Conceptual Physics Study Guide

Chapter 9 Conceptual Physics Study Guide Name : Date: Period: Chapter 9 Conceptual Physics Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In physics, work is defined as a. force times

More information

Lecture Notes (Work & Energy)

Lecture Notes (Work & Energy) Lecture Notes (Work & Energy) Intro: - one of the most central concepts in science is energy; the combination energy and matter makes up our universe - matter is the substance of the universe, while energy

More information

is both a Thing and a Process

is both a Thing and a Process ENERGY = Matter + ENERGY is both a Thing and a Process Matter HAS Energy. Energy is usually observable only during transfer. Allows WORK to be done. Matter is bottled-up energy. Energy is the capacity

More information

Physics 2414 Group Exercise 8. Conservation of Energy

Physics 2414 Group Exercise 8. Conservation of Energy Physics 244 Group Exercise 8 Name : OUID : Name 2: OUID 2: Name 3: OUID 3: Name 4: OUID 4: Section Number: Solutions Solutions Conservation of Energy A mass m moves from point i to point f under the action

More information

9 Energy. Energy can change from one form to another without a net loss or gain.

9 Energy. Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Energy -- The money of physics Demo: Elastic Collisions Objects of equal mass exchange momentum in elastic collisions. 1 Demo: Blaster Balls

More information

Energy can change from one form to another without a net loss or gain. 9.1 Work

Energy can change from one form to another without a net loss or gain. 9.1 Work Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Momentum. Momentum. Momentum Momentum = mass velocity or Momentum = mass speed (when direction is unimportant) Momentum = mv. Impulse.

Momentum. Momentum. Momentum Momentum = mass velocity or Momentum = mass speed (when direction is unimportant) Momentum = mv. Impulse. Momentum Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 4 MOMENTUM AND ENERGY Momentum is inertia in motion defined as the product of mass and velocity: momentum: p = mv Momentum Momentum

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Sep. 28, 2005 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th

Chapter 2 Physics in Action Sample Problem 1 A weightlifter uses a force of 325 N to lift a set of weights 2.00 m off the ground. How much work did th Chapter Physics in Action Sample Problem 1 A weightlifter uses a force of 35 N to lift a set of weights.00 m off the ground. How much work did the weightlifter do? Strategy: You can use the following equation

More information

Energy: Forms and Changes

Energy: Forms and Changes Energy: Forms and Changes Nature of Energy Energy is all around you! You can hear energy as sound. You can see energy as light. And you can feel it as wind. Nature of Energy You use energy when you: hit

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy VELOCITY Velocity is a measure of how fast an object is traveling in a certain direction. Example: A bus traveling North at 150 m/s Example: A car is traveling 45 mph South.

More information

The work-energy theorem

The work-energy theorem The work-energy theorem Objectives Investigate quantities using the work-energy theorem in various situations. Calculate quantities using the work-energy theorem in various situations. Design and implement

More information

Machines: Can You lift a car?

Machines: Can You lift a car? Work=Force x Distance 10 m Units of work Nt-m=joules How much work? Machines: Can You lift a car? The ratio of the input force to the output force is called the Mechanical Advantage MA=5000/50=100 1 =

More information

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147)

Exercises. 9.1 Work (pages ) 9.2 Power (pages ) 9.3 Mechanical Energy (page 147) Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

More information

Work and Energy. Describing Energy. Energy comes in many forms. List as many types of energy as you can think of on the lines below.

Work and Energy. Describing Energy. Energy comes in many forms. List as many types of energy as you can think of on the lines below. chapter 4 Work and section 2 Describing Before You Read comes in many forms. List as many types of as you can think of on the lines below. What You ll Learn the different forms of how can be stored Read

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A ork and Energy MULTIPLE CHOICE In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. In which of the

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

Block 1: General Physics. Chapter 1: Making Measurements

Block 1: General Physics. Chapter 1: Making Measurements Chapter 1: Making Measurements Make measurements of length, volume, and time. Increase precision of measurements. Determine densities of solids and liquids Rulers and measuring cylinders are used to measure

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W Work and Energy WORK Work measures the effects of a force acting over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W WORK W = F*d WORK Q: You can lift a maximum of 1000 Newtons.

More information

law of conservation of energy energy

law of conservation of energy energy What happens when? 6.8A compare and contrast potential and kinetic energy 6.9 Law of Conservation of energy states that energy can neither be created nor destroyed. How does it work? Explanation If you

More information

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh?

1. A 500-kilogram car is driving at 15 meters/second. What's its kinetic energy? How much does the car weigh? 9. Solution Work & Energy Homework - KINETIC ENERGY. A 500-kilogram car i driing at 5 meter/econd. What' it kinetic energy? How much doe the car weigh? m= 500 kg 5 m/ Write Equation: Kinetic Energy = ½

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information

Chapter 4 Work and Energy

Chapter 4 Work and Energy James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 4 Work and Energy Work being done by applied force (F ) through a distance (d ) Work = Force distance, W (J) = F. d where F

More information

Mechanical Energy. Unit 4

Mechanical Energy. Unit 4 Mechanical Energy Unit 4 Expectations Cell phones put away, or upside down on your desk No talking during notes Raise your hand to ask a question Everyone will follow along and copy into their own notes

More information

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008 HNRS 227 Chapter 3 Energy presented by Prof. Geller Fall 2008 Don t Forget the Following Units of length, mass and time Metric Prefixes The Scientific Method Speed, velocity, acceleration Force Falling

More information

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel

5.3: Calculate kinetic energy, gravitational potential energy, and elastic potential energy. Do Now: 1. Hand in your Forms of Energy Wheel Do Now: 1. Hand in your Forms of Energy Wheel 2. Identify the following forms of energy: a. A hiker at the top of a mountain b. A dog chasing a cat c. A rubber band being stretched Agenda: How can we calculate

More information

Chapter 7: Work, Power & Energy

Chapter 7: Work, Power & Energy Chapter 7: Work, Power & Energy WORK My family owned at one point a Paletria in Tucson, AZ. As many already know, it is very hot in Tucson (usually have 100+ days over 100 o F or 40 o C) and therefore,

More information

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1

Physics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1 Physics 2111 Unit 7 Today s Concepts: Work & Kinetic Energy Power Mechanics Lecture 7, Slide 1 Work-Kinetic Energy Theorem The work done by force F as it acts on an object that moves between positions

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

40 N 40 N. Direction of travel

40 N 40 N. Direction of travel 1 Two ropes are attached to a box. Each rope is pulled with a force of 40 N at an angle of 35 to the direction of travel. 40 N 35 35 40 N irection of travel The work done, in joules, is found using 2 Which

More information

Work and Energy Energy Conservation

Work and Energy Energy Conservation Work and Energy Energy Conservation MidterM 1 statistics Mean = 16.48 Average = 2.74 2 Clicker Question #5 Rocket Science!!! The major principle of rocket propulsion is: a) Conservation of energy b) Conservation

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Momentum, impulse and energy

Momentum, impulse and energy Lecture 9 Momentum, impulse and energy Pre-reading: KJF 9.1 and 9.2 MOMENTUM AND IMPULSE KJF chapter 9 before after COLLISION complex interaction 3 Linear Momentum of a Body We define the momentum of an

More information

Work and the Work-Energy Theorem

Work and the Work-Energy Theorem Work and Energy Click on the topic to go to that section Energy and the Work-Energy Theorem Work and Energy 2009 by Goodman & Zavorotniy Forces and Potential Energy Conservation of Energy Power Conservation

More information

Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common?

Today. Exam 1. The Electric Force Work, Energy and Power. Comments on exam extra credit. What do these pictures have in common? Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by :00 pm Thursday February 18th. (It opens on LONCAPA today) The Electric Force Work, Energy and Power Number

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Phy Final Prep Chap 8 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If Nellie Newton pushes an object with twice the force

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Review of (don t write this down!)

Review of (don t write this down!) Homework Video Review of (don t write this down!) Unit Conversions SI (System Internationale) base units of measurement distance meter (m) time second (s) speed meter per second (m/s) mass gram (g) force

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

Energy transformations Sources and Effects and transmission of Energy

Energy transformations Sources and Effects and transmission of Energy Winnetonka 9 th Grade Physics: Unit 9 test Energy transformations Sources and Effects and transmission of Energy Kinetic Energy: E! =!! m v! Gravitational Potential Energy: E! = m g h Elastic Potential

More information

Physics 107: Ideas of Modern Physics

Physics 107: Ideas of Modern Physics 1 Physics 107: Ideas of Modern Physics Exam 1 Feb. 8, 2006 Name ID # Section # On the Scantron sheet, 1) Fill in your name 2) Fill in your student ID # (not your social security #) 3) Fill in your section

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

The relationship between force and distance has a name. WORK

The relationship between force and distance has a name. WORK EWP The relationship between force and distance has a name. WORK WORK - the product of the net force and distance through which an object moves in the direction of the net force. W=F d where W=work joules

More information

SCIENCE STUDENT BOOK. 12th Grade Unit 3

SCIENCE STUDENT BOOK. 12th Grade Unit 3 SCIENCE STUDENT BOOK 12th Grade Unit 3 Unit 3 WORK AND ENERGY SCIENCE 1203 WORK AND ENERGY INTRODUCTION 3 1. TYPE AND SOURCES OF ENERGY 5 MECHANICAL ENERGY 6 FORMS OF ENERGY 9 SELF TEST 1 12 2. CONSERVATION

More information

Work, Power and Energy Review

Work, Power and Energy Review Work, Power and Energy Review Each table will work as a team to earn points by answering questions. There will be 25 seconds to answer each question. Answers, with formula when needed will be recorded

More information

Scaler Quantity (definition and examples) Average speed. (definition and examples)

Scaler Quantity (definition and examples) Average speed. (definition and examples) Newton s First Law Newton s Second Law Newton s Third Law Vector Quantity Scaler Quantity (definition and examples) Average speed (definition and examples) Instantaneous speed Acceleration An object at

More information

KINETIC ENERGY AND WORK

KINETIC ENERGY AND WORK Chapter 7: KINETIC ENERGY AND WORK 1 Which of the following is NOT a correct unit for work? A erg B ft lb C watt D newton meter E joule 2 Which of the following groups does NOT contain a scalar quantity?

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

NCERT solution for Work and energy

NCERT solution for Work and energy 1 NCERT solution for Work and energy Question 1 A force of 7 N acts on an object. The displacement is, say 8 m, in the direction of the force (See below figure). Let us take it that the force acts on the

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122.

8th Grade. Energy of Objects in Motion. Energy and its Forms. Slide 1 / 122 Slide 2 / 122. Slide 3 / 122. Slide 4 / 122. Slide / 22 Slide 2 / 22 8th Grade Energy of Objects of Motion 205-0-28 www.njctl.org Slide 3 / 22 Energy of Objects in Motion Slide 4 / 22 Review from Last Unit Energy and its Forms Mechanical Energy Energy

More information

Topic 2: Mechanics 2.3 Work, energy, and power

Topic 2: Mechanics 2.3 Work, energy, and power Essential idea: The fundamental concept of energy lays the basis upon which much of science is built. Nature of science: Theories: Many phenomena can be fundamentally understood through application of

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below.

Period: Date: Review - UCM & Energy. Page 1. Base your answers to questions 1 and 2 on the information and diagram below. Base your answers to questions 1 and 2 on the information and diagram below. The diagram shows the top view of a -kilogram student at point A on an amusement park ride. The ride spins the student in a

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Exam 2--PHYS 101--F17

Exam 2--PHYS 101--F17 Name: Exam 2--PHYS 0--F7 Multiple Choice Identify the choice that best completes the statement or answers the question.. A ball is thrown in the air at an angle of 30 to the ground, with an initial speed

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

P3 Revision Questions

P3 Revision Questions P3 Revision Questions Part 1 Question 1 What is a kilometre? Answer 1 1000metres Question 2 What is meant by an average speed? Answer 2 The average distance covered per second Question 3 How do speed cameras

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Physics 101: Lecture 9 Work and Kinetic Energy

Physics 101: Lecture 9 Work and Kinetic Energy Exam II Physics 101: Lecture 9 Work and Kinetic Energy Today s lecture will be on Textbook Sections 6.1-6.4 Physics 101: Lecture 9, Pg 1 Forms Energy Kinetic Energy Motion (Today) Potential Energy Stored

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J)

WHAT IS ENERGY???? Energy can have many different meanings and. The ability of an object to do work. Measured in joules (J) WHAT IS ENERGY???? Energy can have many different meanings and forms The ability of an object to do work Measured in joules (J) N m = J Work in Progress So what is are the different types of energy? DIFFERENT

More information