Physics 111. Thursday, September 2, Ch 2: motion diagrams - position - displacement - average velocity graphing - position vs time graphs

Size: px
Start display at page:

Download "Physics 111. Thursday, September 2, Ch 2: motion diagrams - position - displacement - average velocity graphing - position vs time graphs"

Transcription

1 ics Thursday, ember 2, 2004 Ch 2: motion diagrams - position - displacement - average velocity graphing - position vs time graphs

2 Announcements Lab manuals are available in the bookstore for $10 each. Make sure to get a copy BEFORE coming to lab. There will be a short quiz at the beginning of lab, so be on time!

3 An event Using the center of the ball to define its location x = +0.5 cm clock = 0.3 sec The combination of the location of an object at the corresponding clock reading. x = 0 x = 1 cm x = 2 cm

4 Summary To locate a moving object, we describe the instantaneous position of the object at a particular instant in time. Can we use the information on position (x) and the clock reading to help us determine how fast the ball was moving?

5 Tennis Ball Watch the tennis ball. +y Which of the following best describes the y- components of velocity and acceleration at the top of the motion? 1) v y > 0; a y > 0 2) v y = 0; a y < 0 3) v y < 0; a y < 0 4) v y = 0; a y = 0 5) v y > 0; a y < 0 6) v y = 0; a y > 0 7) v y < 0; a y > 0 8) None of these

6 Positions x = -0.5 cm clock = 0.1 sec x = +0.5 cm clock = 0.3 sec x = +1.5 cm clock = 0.5 sec x = +2.5 cm clock = 0.7 sec x = 0 x = 1 cm x = 2 cm Motion diagrams summarize the motion. Start with a multiple exposure photo of the rolling ball.

7 x = -0.5 cm clock = 0.1 sec x = +0.5 cm clock = 0.3 sec x = +1.5 cm clock = 0.5 sec x = +2.5 cm clock = 0.7 sec x = 0 x = 1 cm x = 2 cm Always use the same time interval (Δt) within a given motion diagram.

8 Student Demo Need a student volunteer - walker. Need a 5 more volunteers - artists. Need a 1 more volunteer - official time keeper. Motion Diagrams, student demo

9 Student Demo Time keeper starts the motion, calls out each second. Walker walks at constant velocity. Artists draw on board a picture at location of the walker each second. Motion Diagrams, student demo

10 Student Demo 2 Need a student volunteer - walker. This time, start slowly and increase speed as you go across the room. Everyone else - sketch a motion diagram! Worksheet Problem #1 Q1: Motion Diagrams, student

11 Student Demo 2 x 1 x = 0 t 1 t 2 t 3 t 4 t 5 Δx x 2,1 2 Δx 3,2 x 3 x4 x 5 Δ x 2,1 = x 2 x 1 displacement Δ x 4,3 Δ x 5,4 Motion Diagrams, student demo

12 Ball Motion Diagrams - Displacement page 11 1) F, E, D, A, C, B 2) A, B, C, D, E, F 3) E, B, A=C, D=F 4) F, D=E, A, B, C 5) F=D, A=E, B=C 6) F=D, E, A, B, C 7) None of the Above

13 Given the following motion diagram Worksheet Problem #2 is the object 1) Moving left to right 2) Moving right to left 3) Can t tell x = 0

14 velocity The displacement vectors you drew earlier are directly proportional to the velocity vectors. v j,i = Δ x j,i Δt = x j x i t j t i t 0 v 1,0 t 1 t 2 t 3 t 4 t 5 v 2,1 v 3,2 v 4,3 v 5,4 x = 0 So, let s label these adjoining arrows as velocity vectors.

15 Ball Motion Diagrams - Velocity I page 1 1) A, D, F, E, B, C 2) A, E, D, B, F, C 3) A=D=F, E, B, C 4) A=D=F, B=E, C 5) E, B, A, D, C, F 6) A, C, D, B=E, F 7) None of the Above

16 Average Velocity v = Δ x j,i j,i Δt = x x j i t j t i Which means the average velocity over the time interval [t j, t i ]. Note that this is a vector quantity, although in 1-D kinematics, direction will be + or -.

17 x = -0.5 cm clock = 0.1 sec x = +0.5 cm clock = 0.3 sec x = +1.5 cm clock = 0.5 sec x = +2.5 cm clock = 0.7 sec v x = 0 initial Δx x = = Δt t f f x t i i x = +1 cm x = +2 cm final cm cm cm = ( 05. ) = + 3 = s 01. s 0. 6s cm s

18 x = +0.5 cm clock = 0.1 sec x = -0.5 cm clock = 0.3 sec x = -1.5 cm clock = 0.5 sec x = -2.5 cm clock = 0.7 sec v x = 0 initial Δx x = = Δt t f f x t i i x = -1 cm x = -2 cm final cm cm cm = 2. 5 ( ) = 3 = s 01. s 0. 6s cm s

19 So for the same motion, we got two different answers! v Δx = = Δt x t f f x t i i cm cm cm = ( 0. 5 ) = + 3 = s 01. s 0. 6s cm s v Δx = = Δt x t f f x t i i cm cm cm = 2. 5 ( ) = 3 = s 01. s 0. 6s cm s One answer > 0; one answer < 0. Which one is correct??? BOTH!

20 How can they both be correct??? Our Choice of coordinate systems was completely arbitrary! I could just as easily put the origin 10 m to the left of where it was in the preceding plots! As with position, the velocity must be related to a well-defined coordinate system. The magnitude is NOT enough to describe the motion!!

21 Ball Motion Diagrams - Velocity II page 3 1) A=D, C, B=E, F 2) A, E, D, B, F, C 3) A=D=F, E, B, C 4) A=D=F, B=E, C 5) E, B, A, D, C, F 6) F, B=E, C, A=D 7) None of the Above

22 Worksheet Problem #3 graphing 1 Sketch on your worksheet a plot of position versus clock reading for the red and blue balls. Discuss your graph with your neighbor. position clock reading edge of page x = 0 x = 1 cm x = 2 cm

23 position edge of page clock reading Just from looking at the plot, can you tell which ball is moving faster, red or blue? If I were to add a yellow ball, which is the fastest? The slowest? How do you know?

24 How does velocity relate to this graph? position clock reading edge of page Ahhhh the velocity is related to the slope of the line!!! Steeper lines mean greater velocity magnitudes (speed). Be careful: negative slopes mean negative velocities!

25 Worksheet Problem #4 graphing 2 What type of motion does this graph represent? Try to mimic this motion by moving your finger across your desktop. position NONSENSE! clock reading Discuss with your neighbor!

26 Worksheet Problem #5

27 Worksheet Problem #5 A person initially at point P in the illustration stays there a moment and then moves along the axis to Q and stays there a moment. She then runs quickly to R, stays there a moment, and then strolls slowly back to P, where she stays to end the problem. Which of the position vs. time graphs at right correctly represents this motion? PI, Mazur (1997)

28 Ball Motion Diagrams - Average Speed page 10 1) A, E, C, F, D, B 2) E, F, C, D, A=B 3) E, C, D, A=B=F 4) E, C, D, A=B, F 5) C, D, A=B, F, E 6) C, D, A=B=F, E 7) None of the Above

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Lesson 7: Slopes and Functions: Speed and Velocity

Lesson 7: Slopes and Functions: Speed and Velocity Lesson 7: Slopes and Functions: Speed and Velocity 7.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes.

More information

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099

Physics 111. Help sessions meet Sunday, 6:30-7:30 pm in CLIR Wednesday, 8-9 pm in NSC 098/099 ics Announcements day, ember 7, 2007 Ch 2: graphing - elocity s time graphs - acceleration s time graphs motion diagrams - acceleration Free Fall Kinematic Equations Structured Approach to Problem Soling

More information

LECTURE 04: Position, Velocity, and Acceleration Graphs

LECTURE 04: Position, Velocity, and Acceleration Graphs Lectures Page 1 LECTURE 04: Position, Velocity, and Acceleration Graphs Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Qualitatively and quantitatively describe motion of an object based

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: Tutorials Thursday and Friday in G2B60, G2B75, & G2B77 Students on wait list should attend lectures and tutorials. CAPA assignments are in bins in G2B hallway. No

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations

Review. Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Linear Motion Review Distance vs. Displacement Scalar vs. Vectors Speed vs. Velocity Acceleration Motion at Constant Acceleration Freefall Kinematic Equations Distance vs. Displacement Distance is the

More information

Matthew W. Milligan. Kinematics. What do you remember?

Matthew W. Milligan. Kinematics. What do you remember? Kinematics What do you remember? Kinematics Unit Outline I. Six Definitions: Distance, Position, Displacement, Speed, Velocity, Acceleration II. Graphical Interpretations III. Constant acceleration model

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Distributive property and its connection to areas

Distributive property and its connection to areas February 27, 2009 Distributive property and its connection to areas page 1 Distributive property and its connection to areas Recap: distributive property The distributive property says that when you multiply

More information

Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111. Free-Body diagrams - block. Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. ics day, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Help this week: Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

Chapter 2 Motion in One Dimension. Slide 2-1

Chapter 2 Motion in One Dimension. Slide 2-1 Chapter 2 Motion in One Dimension Slide 2-1 MasteringPhysics, PackBack Answers You should be on both by now. MasteringPhysics first reading quiz Wednesday PackBack should have email & be signed up 2014

More information

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

Physics I P H Y S I C S U N I O N M A T H E M A T I C S. Kinematics. Student Edition

Physics I P H Y S I C S U N I O N M A T H E M A T I C S. Kinematics. Student Edition P H Y S I C S U N I O N M A T H E M A T I C S Physics I Kinematics Student Edition Supported by the National Science Foundation (DRL-0733140) and Science Demo, Ltd. PUM Physics I Kinematics Adapted from:

More information

Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction

Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction Motion Graphing Focus Questions: 3-1: Describe how objects speed up and slow down 3-2: Describes how objects change direction Motion Graphing Speed Graphs A typical speed graph will have distance or position

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-1 02-1 1 Last time: Displacement, velocity, graphs Today: Using graphs to solve problems Constant acceleration, free fall 02-1 2 1-2.6-8: Acceleration from graph of

More information

Physics 111. = v i. v f. + v i. = x i. (Δt) + 1. x f. Keq - graphs. Keq - graphs. Δt t f. t i

Physics 111. = v i. v f. + v i. = x i. (Δt) + 1. x f. Keq - graphs. Keq - graphs. Δt t f. t i ics Announcements day, ember 9, 004 Ch 3: Kinematic Equations Structured Approach to Problem Solving Ch 4: Projectile Motion EXAMPLES! Help sessions meet Sunday, 6:30-8 pm in CCLIR 468 Wednesday, 8-9 pm

More information

Introduction to 1-D Motion Distance versus Displacement

Introduction to 1-D Motion Distance versus Displacement Introduction to 1-D Motion Distance versus Displacement Kinematics! Kinematics is the branch of mechanics that describes the motion of objects without necessarily discussing what causes the motion.! 1-Dimensional

More information

(UNIT I) Measuring Activity Name

(UNIT I) Measuring Activity Name (UNIT I) Measuring Activity Name Purpose: To become more familiar with the metric system (SI) of measurement. Make estimates first and then measure it. Pre Lab reading: http://www.cnn.com/tech/space/9909/30/mars.metric.02/#1

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

We can make a motion diagram of the student walking across the room:

We can make a motion diagram of the student walking across the room: Lecture 2 / Day 1 Motion and Kinematics Intro. Motion Diagrams Vector Subtraction Velocity We ve gone through the basics of measurement and using vectors now we re ready to get into Kinematics, which is

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

average speed instantaneous origin resultant average velocity position particle model scalar

average speed instantaneous origin resultant average velocity position particle model scalar REPRESENTING MOTION Vocabulary Review Write the term that correctly completes the statement. Use each term once. average speed instantaneous origin resultant average velocity position particle model scalar

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Problem: What affect does the force of launch have on the average speed of a straw rocket?

Problem: What affect does the force of launch have on the average speed of a straw rocket? Describing Motion and Measuring Speed A Straw Rocket Lab Background: An object is in motion when its distance from another object is changing. Whether an object is moving or not depends on your point of

More information

Physics 111. Tuesday, September 21, 2004

Physics 111. Tuesday, September 21, 2004 ics Tuesday, ember 21, 2004 Ch 5: Free-Body Diagrams Newton s Laws Newton s 2nd Law - force & acceleration Newton s 1st Law - Inertia Gravitational vs. Inertial Mass Announcements Help this week: Wednesday,

More information

Physics 111. Thursday, September 9, Ch 3: Kinematic Equations Structured Approach to Problem Solving. Ch 4: Projectile Motion EXAMPLES!

Physics 111. Thursday, September 9, Ch 3: Kinematic Equations Structured Approach to Problem Solving. Ch 4: Projectile Motion EXAMPLES! ics Thursday, ember 9, 2004 Ch 3: Kinematic Equations Structured Approach to Problem Solving Ch 4: Projectile Motion EXAMPLES! Announcements Help sessions meet Sunday, 6:30-8 pm in CCLIR 468 Wednesday,

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Chapter 2 Motion in One Dimension

Chapter 2 Motion in One Dimension Lecture Outline Chapter 2 Motion in One Dimension Slide 2-1 MasteringPhysics, PackBack Answers You should be on both by now. MasteringPhysics problems? Pearson publishing rep is here today will end early

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

PHY 221 Lab 2. Acceleration and Uniform Motion

PHY 221 Lab 2. Acceleration and Uniform Motion PHY 221 Lab 2 Name: Partner: Partner: Acceleration and Uniform Motion Introduction: Recall the previous lab During Lab 1, you were introduced to computer aided data acquisition. You used a device called

More information

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object.

Worksheet 3. Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. Worksheet 3 Sketch velocity vs time graphs corresponding to the following descriptions of the motion of an object. 1. The object is moving away from the origin at a constant (steady) speed. 2. The object

More information

Worksheet 1: One-Dimensional Kinematics

Worksheet 1: One-Dimensional Kinematics Worksheet 1: One-Dimensional Kinematics Objectives Relate,, and in examples of motion along one dimension. Visualize motion using graphs of,, and vs.. Solve numeric problems involving constant and constant.

More information

Lesson 11: Motion of a Falling Object

Lesson 11: Motion of a Falling Object Lesson 11: Motion of a Falling Object 11.1 Observe and find a pattern using your choice of one of the following: 1. The video at this web site: http://paer.rutgers.edu/pt3/experiment.php?topicid=2&exptid=38

More information

Constant Acceleration

Constant Acceleration Constant Acceleration Ch. in your text book Objectives Students will be able to: ) Write the definition of acceleration, either in words or as an equation ) Create an equation for the movement of an object

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Topic 1: 1D Motion PHYSICS 231

Topic 1: 1D Motion PHYSICS 231 Topic 1: 1D Motion PHYSICS 231 Current Assignments Reading Chapter 1.5 and 3 due Tuesday, Jan 18, beginning of class Homework Set 1 already open (covers this week) due Thursday, Jan 20, 11 pm Recommended

More information

Experiment 2: Projectile Motion

Experiment 2: Projectile Motion Experiment 2: Projectile Motion You will verify that a projectile s velocity and acceleration components behave as described in class. A ball bearing rolls off of a ramp, becoming a projectile. It flies

More information

Name: Date: Partners: LAB 2: ACCELERATED MOTION

Name: Date: Partners: LAB 2: ACCELERATED MOTION Name: Date: Partners: LAB 2: ACCELERATED MOTION OBJECTIVES After completing this lab you should be able to: Describe motion of an object from a velocitytime graph Draw the velocitytime graph of an object

More information

ACTIVITY 2: Motion and Energy

ACTIVITY 2: Motion and Energy Developing Ideas ACTIVITY 2: Motion and Purpose We use the idea of energy in many ways in everyday life. For example, there is sometimes talk of an energy crisis when fuel supplies run low; people eat

More information

Physics Notes Part III. Uniform/Non-uniform Motion and Graphing

Physics Notes Part III. Uniform/Non-uniform Motion and Graphing Physics Notes Part III Uniform/Non-uniform Motion and Graphing Uniform Motion Rolling ball is an example of uniform motion. 1) Speed of the ball is constant (with no friction). 2) In a straight line (direction

More information

Unit 01 Motion with constant velocity. What we asked about

Unit 01 Motion with constant velocity. What we asked about Unit 01 Motion with constant velocity Outline for this unit: Displacement, Velocity: numerically and graphically Mechanics Lecture 1, Slide 1 What we asked about Would like to see more practice problems

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Measuring Motion. Day 1

Measuring Motion. Day 1 Measuring Motion Day 1 Objectives I will identify the relationship between motion and a reference point I will identify the two factors that speed depends on I will determine the difference between speed

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

Physics 8 Friday, September 6, 2013

Physics 8 Friday, September 6, 2013 Physics 8 Friday, September 6, 2013 HW1 took most people about 2 hours; if HW1 took you 3-4 hours, you should find a couple of classmates with whom you can discuss the HW. Also come by on Wed/Thu evenings.

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

Physics 207 Lecture 9. Lecture 9

Physics 207 Lecture 9. Lecture 9 Lecture 9 Today: Review session Assignment: For Thursday, Read Chapter 8, first four sections Exam Wed., Feb. 18 th from 7:15-8:45 PM Chapters 1-7 One 8½ X 11 note sheet and a calculator (for trig.) Place:

More information

Thursday Jan 18. Today s Material: 1-d Motion/Kinematics Displacement Velocity Acceleration Graphing Motion

Thursday Jan 18. Today s Material: 1-d Motion/Kinematics Displacement Velocity Acceleration Graphing Motion Thursday Jan 18 Assign 1 Friday Long Pre-class for Tuesday Math Quiz Due Monday Lab next week Print lab and do pre-lab NO OPEN-TOED SHOES NO FOOD/GUM/DRINKS Help Room Tonight 6-9 - Walter 245 Office Hours:

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Making measurements. density the ratio of mass to volume for a substance

Making measurements. density the ratio of mass to volume for a substance Block 1 General physics 1A definition to learn density the ratio of mass to volume for a substance Making measurements An equation to learn and use density = mass volume Exercise 1.1 Accurate measurements

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Chapter 2 Describing Motion

Chapter 2 Describing Motion Chapter 2 Describing Motion Chapter 2 Overview In chapter 2, we will try to accomplish two primary goals. 1. Understand and describe the motion of objects. Define concepts like speed, velocity, acceleration,

More information

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs,

Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Distance vs. Displacement, Speed vs. Velocity, Acceleration, Free-fall, Average vs. Instantaneous quantities, Motion diagrams, Motion graphs, Kinematic formulas. A Distance Tells how far an object is from

More information

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use Name Outcomes Date Interpret graphical evidence of angular motion (uniform speed & uniform acceleration). Apply

More information

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN

Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN Physics 101 Lecture 3 Motion in 1D Dr. Ali ÖVGÜN EMU Physics Department Motion along a straight line q Motion q Position and displacement q Average velocity and average speed q Instantaneous velocity and

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 Simplest case with non-zero acceleration Constant acceleration: a

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

Student Exploration: Free-Fall Laboratory

Student Exploration: Free-Fall Laboratory Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these

More information

Friction Can Be Rough

Friction Can Be Rough 10.1 Observe and Find a Pattern Friction Can Be Rough Observe the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Lesson 3 Acceleration

Lesson 3 Acceleration Lesson 3 Acceleration Student Labs and Activities Page Launch Lab 45 Content Vocabulary 46 Lesson Outline 47 MiniLab 49 Content Practice A 50 Content Practice B 51 Language Arts Support 52 Math Skills

More information

Energy Flow in Technological Systems. December 01, 2014

Energy Flow in Technological Systems. December 01, 2014 Energy Flow in Technological Systems Scientific Notation (Exponents) Scientific notation is used when we are dealing with very large or very small numbers. A number placed in scientific notation is made

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

Review of Scientific Notation and Significant Figures

Review of Scientific Notation and Significant Figures II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information

have tried with your racer that are working well? you would like to make to your car?

have tried with your racer that are working well? you would like to make to your car? 1. What is energy? 2. What are some things you have tried with your racer that are working well? 3. What are some changes you would like to make to your car? Chapter 5 Section 1 Energy is the ability to

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

LAB: FORCE AND MOTION

LAB: FORCE AND MOTION LAB: FORCE AND MOTION Introduction In this lab we will apply a force to a cart and look at the motion that results. Therefore, we are asking the question: "How does the motion depend on the force?" More

More information

Practice Test What two units of measurement are necessary for describing speed?

Practice Test What two units of measurement are necessary for describing speed? Practice Test 1 1. What two units of measurement are necessary for describing speed? 2. What kind of speed is registered by an automobile? 3. What is the average speed in kilometers per hour for a horse

More information

AP Physics 1 Summer Assignment 2016

AP Physics 1 Summer Assignment 2016 AP Physics 1 Summer Assignment 2016 You need to do this assignment on your own paper AND YOU MUST SHOW ALL OF YOUR WORK TO RECEIVE CREDIT. You can put the answers on this assignment sheet or you can put

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics

Physics 201, Lecture 2. The Big Picture. Kinematics: Position and Displacement. Today s Topics Physics 01, Lecture Today s Topics n Kinematics (Chap..1-.) n Position, Displacement (, and distance) n Time and Time Interval n Velocity (, and speed) n Acceleration *1-Dimension for today,,3-d later.

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6 Linear Motion Dane, Ben, Julian, and Lilliana P. 6 Concepts: Kinematics vs. Dynamics Reference Frames Distance vs. Displacement Scalars vs. Vectors Speed vs. Velocity Acceleration Objects in motion Freefall

More information

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below:

1. In Activity 1-1, part 3, how do you think graph a will differ from graph b? 3. Draw your graph for Prediction 2-1 below: PRE-LAB PREPARATION SHEET FOR LAB 1: INTRODUCTION TO MOTION (Due at the beginning of Lab 1) Directions: Read over Lab 1 and then answer the following questions about the procedures. 1. In Activity 1-1,

More information

Physics 1110: Mechanics

Physics 1110: Mechanics Physics 1110: Mechanics Announcements: CAPA set available in bins. Lectures can be found at the Course Calendar link. Written homework #1 (on website) due at beginning of recitation. The Moving Man simulation

More information

Lecture 2. When we studied dimensional analysis in the last lecture, I defined speed. The average speed for a traveling object is quite simply

Lecture 2. When we studied dimensional analysis in the last lecture, I defined speed. The average speed for a traveling object is quite simply Lecture 2 Speed Displacement Average velocity Instantaneous velocity Cutnell+Johnson: chapter 2.1-2.2 Most physics classes start by studying the laws describing how things move around. This study goes

More information

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information