LAB: FORCE AND MOTION

Size: px
Start display at page:

Download "LAB: FORCE AND MOTION"

Transcription

1 LAB: FORCE AND MOTION Introduction In this lab we will apply a force to a cart and look at the motion that results. Therefore, we are asking the question: "How does the motion depend on the force?" More specifically, we will look at a particular motion variable. Which motion variable do you suppose it is? (Hint: Look at Newton's 2 nd law.) What is the variable that will not be changing (kept constant)? (Hint: It is also in Newton's 2 nd law.) Using different words than mine, and including the particular motion variable that is suggested by Newton's 2 nd law, write a purpose for the lab in the space below. Include the variables that we will be comparing. Make sure you also mention the things that will be kept constant. Purpose: Write a purpose using the information in the introduction. Materials You will need the following materials to complete this activity: Low-Friction Cart Frictionless Pulley Track (we will use PASCO tracks this time) 2 PASCO Photogates (1 pair) String Set of 50 or 100-Gram Masses Mass Hook Setting Up The Experiment 1. If it hasn t been already, attach the frictionless pulley to the end of the track. 2. Set the track on a lab bench so that the end with the pulley just hangs over the edge of the table. 3. Tie a loop at one end of the string, and attach the other to the low friction cart. (You will attach the mass hook to the loop at the end.) 4. Place the cart on the track, and run the string over the frictionless pulley. You will set up the photogates in a few moments Measuring the Variables You will need to work through the following questions before conducting the experiment.

2 Lab: Force and Motion page 2?? Setting up the Photogates The instant you let the mass go, the cart will move. This motion is what we need to look at. (Remember the purpose?) You will need to measure some motion information each time a different weight force is applied. You will use the photogates to take measurements that can be used to find the acceleration. To help you figure out how to come up with a procedure to find the acceleration, let s look at what you can measure. That is what you have to work with. The possible kinematic quantities are: Acceleration Position Time Velocity You can't measure acceleration directly. So what can you measure directly? Hint: What can you measure with photogates? What can you measure with the markings on the track??? Finding Acceleration a.) Let's assume that you have made a measurement. Finish the Motion Diagram below according to what you know before running the Cart. Then circle the values that you will know after making a run with the Cart. x v t a x v t b.) Use your kinematic equations to come up with a method to calculate the acceleration of the cart from the values that you can measure. Explain your method. Clearly show your equation. Make sure that you use this method later when calculating the acceleration from your measured data. Check with your instructor at this point.

3 Lab: Force and Motion page 3 Theory: You will need to write an experimental theory for this lab. Think about all the things discussed above and well as what you expect for an answer to your purpose. Be sure to cite any ideas you use from the text or another person s work. Procedure: You will have to make several decisions in order to complete the procedure. For example, how will you decide how far the cart can run? Your Track has a special stopping barrier that will need to be set up to prevent the Cart from going too far. Listen in class for directions on how to change the applied force. Make one sample run to check out everything and then summarize your procedure: Conducting the Experiment You are now ready to run the experiment. 1. Hold the cart at its starting position. Attach the mass hook (which has a mass of 50 g) to the string, and place the 50 and 100 g masses on the cart. 2. Let the cart go, and record the necessary data in a table.?? Observing the Motion Let s make sure that you are observing well and that you know how to do the calculations. a.) What is the total amount of mass that is accelerating? (Include uncertainty.) b.) What is the hanging mass? (Include uncertainty.) c.) What else was measured? (Include uncertainty.) d.) Calculate the force. e.) Calculate the acceleration. Check with your instructor before going to step 3 of the experiment. 3. Move one 50 g mass from the cart to the hanger and take data for another run. Continue to move 50 g masses from the cart to the hanger.

4 Lab: Force and Motion page 4?? Do you understand? Why do we change the masses this way, instead of simply adding mass to the hanger? Data What columns will you need in a data table for your measured data? What columns will you need in a data table for your derived data? Create a table for both measured and derived data. Be sure to label the columns with units. The measured data should also have a +/- range heading to the columns. Analyzing the Results Plot a Force vs. Average Acceleration graph.?? Analysis from your graph We will now look at the graphed results and come to an understanding of the relationship between force and acceleration from the graph. Give your observations below: a.) From your graph, write the equation of the best-fit line. Include all your slope calculations. Don't forget to include your slope units. b.) What does the shape of the graph tell you about how force and acceleration are related? Do not use numbers here - just explain using qualitative words like "more", "less", "up", or "down". c.) Now be more specific. What does the equation of your line tell you about the relationship? It should match the qualitative observation that you made above. d.) What is the physical meaning of the slope of the line? e.) What is the physical meaning of the value of the "y-intercept"?

5 Lab: Force and Motion page 5 Conclusion Write a short conclusion that answers the question you wrote in your Purpose.?? What if? Think about the following situation: What if you repeated the experiment with a bigger cart with twice the mass? You might get different data this time. If you then plotted a Force vs. Acceleration graph, how would it compare to the graph you got when you did the experiment with the smaller cart? Sketch a Force vs. Acceleration graph that shows your prediction. Include a sketch of the graph of your experimental result on the same sketch so that they can be compared. Explain your reasoning. Turn In: A Formal Lab Report, written in your own words and including everything suggested above.

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law MECH-2: Newton's Second Law Page 1 of 5 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law 1 250 g Stackable Masses (set of 2) ME-6757A 1 Smart Cart Blue ME-1241 1 Mass

More information

reflector screen 10 g masses

reflector screen 10 g masses LAB SECTION: NAME: EXPERIMENT : NEWTON S SECOND LAW Introduction: In this lab, we will minimize friction on a moving cart by using carts having small wheels with nearly frictionless bearings. You will

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m.

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. Newton s Second Law Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. F net = ma (1) It should come as no surprise that this force produces an

More information

Lab 6 Forces Part 2. Physics 225 Lab

Lab 6 Forces Part 2. Physics 225 Lab b Lab 6 Forces Part 2 Introduction This is the second part of the lab that you started last week. If you happen to have missed that lab then you should go back and read it first since this lab will assume

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1

More information

Newton s Second Law Physics Lab V

Newton s Second Law Physics Lab V Newton s Second Law Physics Lab V Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart

More information

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Newton's Law Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 NEWTON S SECOND LAW Purpose: 1. To become familiar

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track. Experiment 4 Newton s Second Law 4.1 Objectives Test the validity of Newton s Second Law. Measure the frictional force on a body on a low-friction air track. 4.2 Introduction Sir Isaac Newton s three laws

More information

The purpose of this laboratory exercise is to verify Newton s second law.

The purpose of this laboratory exercise is to verify Newton s second law. Newton s Second Law 3-1 Newton s Second Law INTRODUCTION Sir Isaac Newton 1 put forth many important ideas in his famous book The Principia. His three laws of motion are the best known of these. The first

More information

Theory An important equation in physics is the mathematical form of Newton s second law, F = ma

Theory An important equation in physics is the mathematical form of Newton s second law, F = ma EXPERIMENT 5 NEWTON S SECOND LAW WITH A CONSTANT MASS Objectives 1. To find the acceleration of a cart using the graph of its velocity versus time 2. To establish a mathematical relation between the acceleration

More information

Applications of Newton's Laws

Applications of Newton's Laws Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that are applied. Apparatus: Pasco track, Pasco cart,

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill. In this lab, the two variables you are focusing on are time

More information

1. What does the catapult exert on or apply to the plane?

1. What does the catapult exert on or apply to the plane? Unit 1: Forces and Motion Lesson 2.b Newton s Second Law of Motion Newton s laws predict the motion of most objects. As a basis for understanding this concept: Students know how to apply the law F = ma

More information

Conservation of Mechanical Energy Activity Purpose

Conservation of Mechanical Energy Activity Purpose Conservation of Mechanical Energy Activity Purpose During the lab, students will become familiar with solving a problem involving the conservation of potential and kinetic energy. A cart is attached to

More information

Physics 104S12 Guide Lines for Exam 2 phy104s12. Class Exam

Physics 104S12 Guide Lines for Exam 2 phy104s12. Class Exam Physics 104S12 Guide Lines for Exam 2 phy104s12 When: March 7 th 11 11:50 PM Class Exam Where: Normal Classroom Chapters: 4 and 5 Format: 25 multiple choice questions Bring: Green Scantron Sheet, Calculator,

More information

Testing Newton s 2nd Law

Testing Newton s 2nd Law Testing Newton s 2nd Law Goal: To test Newton s 2nd law (ΣF = ma) and investigate the relationship between force, mass, and acceleration for objects. Lab Preparation To prepare for this lab you will want

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton's Laws P10 Atwood s.ds P13 Atwood's Machine P13_ATWD.SWS Equipment

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

Friction Lab. 1. Study the relationship between the frictional force and the normal force.

Friction Lab. 1. Study the relationship between the frictional force and the normal force. Name: Friction Lab Goals: 1. Study the relationship between the frictional force and the normal force. Static Frictional Force: In the first part of this lab we will use the weight of a hanging mass to

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

Visual Physics Forces & Acceleration Lab 3

Visual Physics Forces & Acceleration Lab 3 In this experiment you will be evaluating the vector nature of forces and Newton s 2 nd Law of Motion using a free-body diagram. You will accomplish this by performing experiments involving both static

More information

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P08 Constant Force.DS P11 Constant Force P11_CONF.SWS

More information

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY PHYSICS 183 - LAB Experiment 6 Fall 004 WORK AND ENERGY GRAVITY In this experiment we will study the effects of the work-energy theorem, which states that the change in the kinetic energy (1/Mv ) of an

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Conservation of Mechanical Energy Activity Purpose

Conservation of Mechanical Energy Activity Purpose Conservation of Mechanical Energy Activity Purpose During the lab, students will become familiar with solving a problem involving the conservation of potential and kinetic energy. A cart is attached to

More information

Centripetal Force Lab

Centripetal Force Lab Centripetal Force Lab Saddleback College Physics Department, adapted from PASCO Scientific 1. Purpose To use a PASCO apparatus containing a rotating brass object to confirm Newton s Second Law of rotation

More information

LABORATORY IV OSCILLATIONS

LABORATORY IV OSCILLATIONS LABORATORY IV OSCILLATIONS You are familiar with many objects that oscillate -- a tuning fork, a pendulum, the strings of a guitar, or the beating of a heart. At the microscopic level, you have probably

More information

To verify Newton s Second Law as applied to an Atwood Machine.

To verify Newton s Second Law as applied to an Atwood Machine. Atwood Machine Equipment Computer, PASCO Interface Table Clamp Double pulley apparatus (one smart pulley) Smart Pulley Data Cable String Two Mass Hangers One Mass Set (1 500, 2 200, 1 100, 1 50, 2 20,

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Force on a Free Body Lab 5.1

Force on a Free Body Lab 5.1 Purpose To investigate the relationship among mass, force, and acceleration Required Equipment Meter stick or meter tape Masking tape Timer Discussion In this experiment, you will investigate how increasing

More information

CME Conservation of Mechanical Energy revised May 25, 2017

CME Conservation of Mechanical Energy revised May 25, 2017 CME Conservation of Mechanical Energy revised May 25, 2017 Learning Objectives: During this lab, you will 1. learn how to communicate scientific results in writing. 2. estimate the uncertainty in a quantity

More information

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include

More information

Inclined Plane. Department of Physics, Case Western Reserve University Cleveland, OH

Inclined Plane. Department of Physics, Case Western Reserve University Cleveland, OH Inclined Plane Department of Physics, Case Western Reserve University Cleveland, OH 44016-7079 Abstract: I have tested the theory of Newton s Second Law of Motion with a system of a cart on an inclined

More information

3.2 Forces and Motion

3.2 Forces and Motion 3 DYNAMICS NEWTON S LAWS 3.2 Forces and Motion Name: 3.2 Forces and Motion So far in this course, we have analyzed the motion of objects, but have not yet discussed what might make an object move or change

More information

EXPERIMENT 2 Acceleration of Gravity

EXPERIMENT 2 Acceleration of Gravity Name Date: Course number: Laboratory Section: Partners Names: Last Revised on Februrary 3, 08 Grade: EXPERIENT Acceleration of Gravity. Pre-Laboratory Work [0 pts]. You have just completed the first part

More information

LABORATORY III FORCES

LABORATORY III FORCES LABORATORY III FORCES The problems in this laboratory will help you investigate the effect of forces on the motion of objects. In the first problem, you will investigate the effects of forces on a sliding

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

PHY 123 Lab 4 - Conservation of Energy

PHY 123 Lab 4 - Conservation of Energy 1 PHY 123 Lab 4 - Conservation of Energy The purpose of this lab is to verify the conservation of mechanical energy experimentally. Important! You need to print out the 1 page worksheet you find by clicking

More information

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System)

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System) Name Class Date Activity P21: Kinetic Friction (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P21 Kinetic Friction.DS P25 Kinetic Friction P25_KINE.SWS

More information

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics CoreModels Dynamics Newton s First Two Laws of Motion A Core Learning Goals Activity for Science and Mathematics Summary: Students will investigate the first and second laws of motion in laboratory activities.

More information

Visual Physics 218 Forces & Acceleration [Lab 3]

Visual Physics 218 Forces & Acceleration [Lab 3] In this experiment, you will be evaluating the vector nature of forces and Newton s 2 nd Law of Motion using a free-body diagram. You will accomplish this by performing experiments involving both static

More information

= mgcos" w. = mgsin! Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p ) 1, 3, 7, 8, 10, 12

= mgcos w. = mgsin! Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p ) 1, 3, 7, 8, 10, 12 Unit 3: Newtonʼs Laws NAME: Text: Chapter 5: All sections of Chapter 5. Chapter 6: All sections of Chapter 6. Questions (p. 106-7) 1, 3, 7, 8, 10, 12 Problems (p. 108-15) #1: 3, 4, 5, 7, 10, 12 #2: 19,

More information

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW PHYSICS 83 - LAB Experiment 4 Fall 004 ATWOOD S MACHINE: NEWTON S SECOND LAW th In this experiment we will use a machine, used by George Atwood in the 8 century, to measure the gravitational acceleration,

More information

How to Write a Laboratory Report

How to Write a Laboratory Report How to Write a Laboratory Report For each experiment you will submit a laboratory report. Laboratory reports are to be turned in at the beginning of the lab period, one week following the completion of

More information

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion 1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic

More information

Straight Line Motion (Motion Sensor)

Straight Line Motion (Motion Sensor) Straight Line Motion (Motion Sensor) Name Section Theory An object which moves along a straight path is said to be executing linear motion. Such motion can be described with the use of the physical quantities:

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

LABORATORY II FORCE AND CONSERVATION OF ENERGY

LABORATORY II FORCE AND CONSERVATION OF ENERGY LABORATORY II FORCE AND CONSERVATION OF ENERGY After studying forces and material bodies in equilibrium, it is natural to examine how forces may affect bodies when they move. We will also explore the relationship

More information

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES Lab Section M / T / W / Th /24 pts Name: Partners: PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES OBJECTIVES 1. To verify the conditions for static equilibrium. 2. To get practice at finding components

More information

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Semester I lab quiz Study Guide (Mechanics) Physics 135/163 Semester I lab quiz Study Guide (Mechanics) Physics 135/163 In this guide, lab titles/topics are listed alphabetically, with a page break in between each one. You are allowed to refer to your own handwritten

More information

Physics 2101, First Exam, Spring 2006

Physics 2101, First Exam, Spring 2006 Physics 2101, First Exam, Spring 2006 January 24, 2006 Name : KEY Section: (Circle one) 1 (Rupnik, MWF 7:40am) 4 (Kirk, MWF 2:40pm) 2 (Rupnik, MWF 9:40am) 5 (Kirk, TTh 10:40am) 3 (Rupnik, MWF 11:40am)

More information

PHY 123 Lab 4 The Atwood Machine

PHY 123 Lab 4 The Atwood Machine PHY 123 Lab 4 The Atwood Machine The purpose of this lab is to study Newton s second law using an Atwood s machine, and to apply the law to determine the acceleration due to gravity experimentally. This

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

PC1141 Physics I Circular Motion

PC1141 Physics I Circular Motion PC1141 Physics I Circular Motion 1 Purpose Demonstration the dependence of the period in circular motion on the centripetal force Demonstration the dependence of the period in circular motion on the radius

More information

LAB 3: VELOCITY AND ACCELERATION

LAB 3: VELOCITY AND ACCELERATION Lab 3 - Velocity & Acceleration 25 Name Date Partners LAB 3: VELOCITY AND ACCELERATION A cheetah can accelerate from to 5 miles per hour in 6.4 seconds. A Jaguar can accelerate from to 5 miles per hour

More information

EXPERIMENT 4: UNIFORM CIRCULAR MOTION

EXPERIMENT 4: UNIFORM CIRCULAR MOTION LAB SECTION: NAME: EXPERIMENT 4: UNIFORM CIRCULAR MOTION Introduction: In this lab, you will calculate the force on an object moving in a circle at approximately constant speed. To calculate the force

More information

Newton s Second Law. Sample

Newton s Second Law. Sample Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Lab 3. Adding Forces with a Force Table

Lab 3. Adding Forces with a Force Table Lab 3. Adding Forces with a Force Table Goals To describe the effect of three balanced forces acting on a ring or disk using vector addition. To practice adding force vectors graphically and mathematically

More information

Lab 3. Adding Forces with a Force Table

Lab 3. Adding Forces with a Force Table Lab 3. Adding Forces with a Force Table Goals To describe the effect of three balanced forces acting on a ring or disk using vector addition. To practice adding force vectors graphically and mathematically

More information

The Circular Motion Lab

The Circular Motion Lab Name Date Class Answer questions in complete sentences The Circular Motion Lab Introduction We have discussed motion in straight lines and parabolic arcs. But many things move in circles or near circles,

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information

PHY 123 Lab 6 - Angular Momentum

PHY 123 Lab 6 - Angular Momentum 1 PHY 123 Lab 6 - Angular Momentum (updated 10/17/13) The purpose of this lab is to study torque, moment of inertia, angular acceleration and the conservation of angular momentum. If you need the.pdf version

More information

LAB 4: FORCE AND MOTION

LAB 4: FORCE AND MOTION Lab 4 - Force & Motion 37 Name Date Partners LAB 4: FORCE AND MOTION A vulgar Mechanik can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct

More information

PHY 221 Lab 5 Diverse Forces, Springs and Friction

PHY 221 Lab 5 Diverse Forces, Springs and Friction Name: Partner: Partner: PHY 221 Lab 5 Diverse Forces, Springs and Friction Goals: To explore the nature of forces and the variety of ways in which they can be produced. Characterize the nature of springs

More information

Laboratory 3: Acceleration due to gravity

Laboratory 3: Acceleration due to gravity Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity

More information

Date Course Name Instructor Name Student(s) Name. Atwood s Machine

Date Course Name Instructor Name Student(s) Name. Atwood s Machine Date Course Name Instructor Name Student(s) Name Atwood s Machine A classic experiment in physics is the Atwood s machine: Two masses on either side of a pulley connected by a light string. When released,

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES 83 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES OVERVIEW And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly

More information

Ch.8: Forces as Interactions

Ch.8: Forces as Interactions Name: Lab Partners: Date: Ch.8: Forces as Interactions Investigation 1: Newton s Third Law Objective: To learn how two systems interact. To identify action/reaction pairs of forces. To understand and use

More information

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment Rotational Motion Introduction In this lab you will investigate different aspects of rotational motion, including moment of inertia and the conservation of energy using the smart pulley and the rotation

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Lab 3. Newton s Second Law

Lab 3. Newton s Second Law Lab 3. Newton s Second Law Goals To determine the acceleration of a mass when acted on by a net force using data acquired using a pulley and a photogate. Two cases are of interest: (a) the mass of the

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

Physics 1020 Experiment 5. Momentum

Physics 1020 Experiment 5. Momentum 1 2 What is? is a vector quantity which is a product of a mass of the object and its velocity. Therefore p = mv If your system consists of more then one object (for example if it consists of two carts)

More information

Kinematics. Become comfortable with the data aquisition hardware and software used in the physics lab.

Kinematics. Become comfortable with the data aquisition hardware and software used in the physics lab. Kinematics Objective Upon completing this experiment you should Become comfortable with the data aquisition hardware and software used in the physics lab. Have a better understanding of the graphical analysis

More information

MITOCW MIT8_01F16_w02s05v06_360p

MITOCW MIT8_01F16_w02s05v06_360p MITOCW MIT8_01F16_w02s05v06_360p One of our classic problems to analyze using Newton's second law is the motion of two blocks with a rope that's wrapped around a pulley. So imagine we have a pulley, P,

More information

PHY 123 Lab 9 Simple Harmonic Motion

PHY 123 Lab 9 Simple Harmonic Motion PHY 123 Lab 9 Simple Harmonic Motion (updated 11/17/16) The purpose of this lab is to study simple harmonic motion of a system consisting of a mass attached to a spring. You will establish the relationship

More information

ACTIVITY 5: Changing Force-Strength and Mass

ACTIVITY 5: Changing Force-Strength and Mass UNIT FM Developing Ideas ACTIVITY 5: Changing Force-Strength and Mass Purpose In the previous activities of this unit you have seen that during a contact push/pull interaction, when a single force acts

More information

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion Universiti Teknologi MARA Fakulti Sains Gunaan Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion PHY406: A Physical Science Activity Name: HP: Lab # 5: The goal of today s activity

More information

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2. Force and Motion Team In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit.

Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit. Dynamics Assignment 3 Name: Multiple Choice. Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit. 1. Which statement is always true regarding

More information

Lab 4. Friction. Goals. Introduction

Lab 4. Friction. Goals. Introduction Lab 4. Friction Goals To determine whether the simple model for the frictional force presented in the text, where friction is proportional to the product of a constant coefficient of friction, µ K, and

More information

Laboratory Exercise. Newton s Second Law

Laboratory Exercise. Newton s Second Law Laboratory Exercise Newton s Second Law INTRODUCTION Newton s first law was concerned with the property of objects that resists changes in motion, inertia. Balanced forces were the focus of Newton s first

More information

Chapter 9: Circular Motion

Chapter 9: Circular Motion Text: Chapter 9 Think and Explain: 1-5, 7-9, 11 Think and Solve: --- Chapter 9: Circular Motion NAME: Vocabulary: rotation, revolution, axis, centripetal, centrifugal, tangential speed, Hertz, rpm, rotational

More information

Conservation of Linear Momentum

Conservation of Linear Momentum 1 Conservation of Linear Momentum Purpose: To understand conservation of linearl momentum; to investigate whether or not momentum and energy are conserved in elastic and inelastic collisions. To examine

More information

Prelab for Friction Lab

Prelab for Friction Lab Prelab for Friction Lab 1. Predict what the graph of force vs. time will look like for Part 1 of the lab. Ignore the numbers and just sketch a qualitative graph 12-1 Dual-Range Force Sensor Friction and

More information

Newton's Laws and Atwood's Machine

Newton's Laws and Atwood's Machine Newton's Laws and Atwood's Machine Purpose: In this lab we will verify Newton's Second Law of Motion within estimated uncertainty and propose an explanation if verification is not within estimated uncertainty.

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment Static and Kinetic Friction Prelab Questions 1. Examine the Force vs. time graph and the Position vs. time graph below. The horizontal time scales are the same. In Region I, explain how an object

More information

EXPERIMENT 11 The Spring Hooke s Law and Oscillations

EXPERIMENT 11 The Spring Hooke s Law and Oscillations Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Lab 3: Equilibrium of a Particle

Lab 3: Equilibrium of a Particle Lab 3: Equilibrium of a Particle 1 Purpose To investigate force equilibrium for a particle at rest. To get practice in propagation of errors. 2 Theory Newton s 2nd law states that the vector sum of the

More information

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS

Otterbein University Department of Physics Physics Laboratory Partner s Name: EXPERIMENT D FORCE VECTORS Name: Partner s Name: EXPERIMENT 1500-7 2D FORCE VECTORS INTRODUCTION A vector is represented by an arrow: it has a direction and a magnitude (or length). Vectors can be moved around the page without changing

More information