Maths 381 The First Midterm Solutions

Size: px
Start display at page:

Download "Maths 381 The First Midterm Solutions"

Transcription

1 Maths 38 The First Midterm Solutions As Given by Peter Denton October 8, 8 # From class, we have that If we make the substitution y = x 3/, we get # Once again, we use the fact that and substitute into the above to get e y dy = π. dy = 3 xdx y = x = and y = x = 3 xe x3 dx = π xe x 3 dx = π. 3 e y dy = π y = logx dy = x logx dx y = x = and y = x = log x e x log x dx = π x x logx dx = π dx log x = π

2 Maths 38 The First Midterm #3 We have, from class, that for strings fixed at x = and x = with small vibrations, the displacement is u(x, t) = sin (πnx) (a n cosπnt + b n sin πnt) where the coefficients are defined by the initial conditions u(x, ) = a n sin πnx u t (x, ) = b n sin πnx = The second of which implies that all the b n =. Our equation becomes where u(x, t) = a n = a n sin (πnx) cos(πnt) f(x) sin(nπx)dx given that the initial velocity is uniformly, and the initial displacement is u(x, ) = f(x). { x x u(x, ) = x x We calculate the a n. ( ) a n = x sin(nπx)dx a n = a n = / xsin(nπx)dx + x nπ cos(nπx) / + nπ + x nπ cos(nπx) a n = / nπ ( x)sin(nπx)dx / / / ( cos(nπx)dx cos(nπx)dx nπ cos(nπ/) + n π sin(nπx) + nπ cos(nπ) nπ cos(nπ/) a n = n π sin(nπ/) / ( nπ cos(nπx) nπ cos(nπ) n π sin(nπx) / / + ) nπ cos(nπ/) +

3 Maths 38 The First Midterm 3 We obtain # u(x, t) = u(x, t) = u(x, t) = l= l= n π sin(nπ/)sin(nπx)cos(nπat) (l ) sin((l )π/)sin((l )πx)cos((l )πat) π ( ) l (l ) sin((l )πx)cos((l )πat) π Since f(x) = x is an even function, all the terms will be cosine terms. The Fourier series thus becomes f(x) a + a k coskx where a k = π In this case, we find the coefficients to be a k = π x coskxdx a k = xcoskxdx + π π a k = x π k sinkx + k a k = sinkxdx kπ a k = k π a k = k π We separately calculate a. Thus coskx + coskx π ( ( ) k ) a = π a = π f(x) π k= f(x)coskxdx. xcos kxdx sin kxdx + x k sinkx π sin kxdx k= f(x) π l= x dx xdx = π. k ( ( ) k ) k coskx; π cos((l )x) π(l ) sin kxdx

4 Maths 38 The First Midterm Remark. Note that the Fourier coefficients decay quadratically, and therefore the Fourier series we have obtained converges uniformly on, π but then, as we showed in class, it must converge to f. Thus in fact we have #5 f(x) = π k= f(x) = π l= ( ( ) k ) k coskx π cos((l )x) π(l ) Since f(x) = x is an even function, all the terms will be cosine terms. The Fourier series thus becomes f(x) = a + a k coskx where a k = π In this case, we find the coefficients to be k= a k = x coskxdx π a k = x π sin kx π k k a k = x kπ k coskx π a k = kπ a k = kπ We separately calculate a. Thus we have a k = ( )k k f(x)coskxdx. + k xsin kxdx cos kxdx π k cosπk π k cosπk + ( k sin kx π πk ( )k a = π a = a = 3π π x dx 3π x3 f(x) π 3 + π 3 + π 3 = π 3 k= ( ) k coskx k

5 Maths 38 The First Midterm 5 Remark. Note that the Fourier coefficients decay quadratically, and therefore the Fourier series we have obtained converges uniformly on, π but then, as we showed in class, it must converge to f. Thus in fact we have #6 We showed in # above that f(x) = π 3 + x = f(x) = π k= ( ) k coskx k cos((n )x). π(n ) (As remarked above, the Fourier coefficients decay quadratically, and therefore the Fourier series we have obtained converges uniformly on, π but then, as we showed in class, it must converge to f.) Setting x = and rearranging gives = π π(n ) cos() We showed in #5 above that π = π (n ) π 8 = (n ) x = f(x) = π 3 + ( ) n cosnx. (As remarked above, the Fourier coefficients decay quadratically, and therefore the Fourier series we have obtained converges uniformly on, π but then, as we showed in class, it must converge to f.) Setting x = and rearranging gives π 3 = π = n ( ) n n ( ) n+ Setting x = π into the equation from #5 and rearranging gives π = π 3 + n ( ) n cos(πn) n

6 Maths 38 The First Midterm 6 #7 J n(x) = π 3 = J n (x) = k= ( ) n ( ) n n π 6 = n k= ( ) ( ) k x k+n k!(k + n)! (k + ( n)( )k x k!(k + n)! ) k+n Every term in J n() = except that for when k + n = or k = ( n)/. Thus for n even, J n () =. We look at n odd. J n() = ( )( n)/ k!( k)! We note that the numerator is bounded, and look at the denominator k!( k)! = Γ(k + )Γ( k). The first of which goes to ± for k and the second goes to ± for k k =, n = ± (note: all the k are integers). Thus J n () = (since the denominator goes to ± ) except for n = ±. We look at J () (n = and k = ). For J (), n = and k =. J () = J () = ( )( )/ =!( )!. ( )(+)/ =!( )! Thus, in summary, J n () = unless n = ± in which case J ± () = ±/. #8 We showed in class the following relations d dx (xp J p (x)) = x p J p (x) d dx (x p J p (x)) = x p J p+ (x). Expanding the LHS of each equation and rearranging, we get px p J p (x) + x p d dx J p(x) = x p J p (x) d dx J p(x) = J p (x) p x J p(x)

7 Maths 38 The First Midterm 7 px p J p (x) + x p d dx J p(x) = x p J p+ (x) d dx J p(x) = J p+ (x) + p x J p(x). We then add these two equations to get #9 d dx J p(x) = J p (x) J p+ (x) J p(x) = J p (x) J p+ (x) Since J n (x) = ( ) n J n (x) (J n (x)) = (J n (x)) we can write the RHS as =(J (x)) + = (J n (x)) (J n (x)) + We take the derivative of both sides of the equation to get = Using the identity from #8, this becomes = = = (J n (x)) J n (x)j n(x). J n (x)j n (x) J n (x)j n+ (x) J n (x)j n (x) J n (x)j n (x) J n (x)j n+ (x) J n n(x)j n (x) the desired identity. Thus we have proved that the RHS is constant and need to evaluate the constant, which is independent of x. We choose x =, and we have, by definition of the Bessel functions, that J () =, J n () = for n, which concludes the proof of the identity. Rearranging, we get that (J (x)) = (J n (x)). Since we get that (J n (x)) (J (x))

8 Maths 38 The First Midterm 8 Similarly, we look at J (x) Rearranging, we get that n = (J (x)) + (J k (x)) + (J n (x)) + k= n (J n (x)) = (J (x)) (J k (x)) k= l=n+ l=n+ (J l (x)). (J l (x)). Since we have that n (J (x)) + (J k (x)) + k= (J n (x)) l=n+ (J l (x)) J n (x).

Midterm 2: Sample solutions Math 118A, Fall 2013

Midterm 2: Sample solutions Math 118A, Fall 2013 Midterm 2: Sample solutions Math 118A, Fall 213 1. Find all separated solutions u(r,t = F(rG(t of the radially symmetric heat equation u t = k ( r u. r r r Solve for G(t explicitly. Write down an ODE for

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

G: Uniform Convergence of Fourier Series

G: Uniform Convergence of Fourier Series G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) u t = Du xx 0 < x < l, t > 0 u(0, t) = 0 = u(l, t) t > 0 u(x, 0) = f(x) 0 < x < l () we developed

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

Mathematics for Engineers II. lectures. Power series, Fourier series

Mathematics for Engineers II. lectures. Power series, Fourier series Power series, Fourier series Power series, Taylor series It is a well-known fact, that 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x if 1 < x < 1. On the left hand side of the equation there is sum containing

More information

Fourier Series. Department of Mathematical and Statistical Sciences University of Alberta

Fourier Series. Department of Mathematical and Statistical Sciences University of Alberta 1 Lecture Notes on Partial Differential Equations Chapter IV Fourier Series Ilyasse Aksikas Department of Mathematical and Statistical Sciences University of Alberta aksikas@ualberta.ca DEFINITIONS 2 Before

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 2015, Professor David Levermore

Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 2015, Professor David Levermore Solutions to the Sample Problems for the Final Exam UCLA Math 135, Winter 15, Professor David Levermore Every sample problem for the Midterm exam and every problem on the Midterm exam should be considered

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

a k cos(kx) + b k sin(kx), (1.1)

a k cos(kx) + b k sin(kx), (1.1) FOURIER SERIES. INTRODUCTION In this chapter, we examine the trigonometric expansion of a function f(x) defined on an interval such as x π. A trigonometric expansion is a sum of the form a 0 + k a k cos(kx)

More information

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) November 12, 2018 Wave equation in one dimension This lecture Wave PDE in 1D Method of Separation of

More information

Fourier Series and the Discrete Fourier Expansion

Fourier Series and the Discrete Fourier Expansion 2 2.5.5 Fourier Series and the Discrete Fourier Expansion Matthew Lincoln Adrienne Carter sillyajc@yahoo.com December 5, 2 Abstract This article is intended to introduce the Fourier series and the Discrete

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

Fourier Series for Functions Defined on Arbitrary Limited Intervals with Polynomial Expansion

Fourier Series for Functions Defined on Arbitrary Limited Intervals with Polynomial Expansion American Review of Mathematics and Statistics December 2016, Vol. 4, No.2, pp. 10-17 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright The Author(s).All Rights Reserved. Published by American Research

More information

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012

Emily Jennings. Georgia Institute of Technology. Nebraska Conference for Undergraduate Women in Mathematics, 2012 δ 2 Transform and Fourier Series of Functions with Multiple Jumps Georgia Institute of Technology Nebraska Conference for Undergraduate Women in Mathematics, 2012 Work performed at Kansas State University

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

Mathematical Methods: Fourier Series. Fourier Series: The Basics

Mathematical Methods: Fourier Series. Fourier Series: The Basics 1 Mathematical Methods: Fourier Series Fourier Series: The Basics Fourier series are a method of representing periodic functions. It is a very useful and powerful tool in many situations. It is sufficiently

More information

Math 5440 Problem Set 7 Solutions

Math 5440 Problem Set 7 Solutions Math 544 Math 544 Problem Set 7 Solutions Aaron Fogelson Fall, 13 1: (Logan, 3. # 1) Verify that the set of functions {1, cos(x), cos(x),...} form an orthogonal set on the interval [, π]. Next verify that

More information

Solutions to Exercises 8.1

Solutions to Exercises 8.1 Section 8. Partial Differential Equations in Physics and Engineering 67 Solutions to Exercises 8.. u xx +u xy u is a second order, linear, and homogeneous partial differential equation. u x (,y) is linear

More information

multiply both sides of eq. by a and projection overlap

multiply both sides of eq. by a and projection overlap Fourier Series n x n x f xa ancos bncos n n periodic with period x consider n, sin x x x March. 3, 7 Any function with period can be represented with a Fourier series Examples (sawtooth) (square wave)

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

More on Fourier Series

More on Fourier Series More on Fourier Series R. C. Trinity University Partial Differential Equations Lecture 6.1 New Fourier series from old Recall: Given a function f (x, we can dilate/translate its graph via multiplication/addition,

More information

More Series Convergence

More Series Convergence More Series Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University December 4, 218 Outline Convergence Analysis for Fourier Series Revisited

More information

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

Math 308 Final. May 3, 2018

Math 308 Final. May 3, 2018 Math 38 Final May 3, 28 Name: Show your work. If you solve a problem with anything other than a straightforward computation, write one complete sentence explaining what you re doing. For example, if you

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Afdeling Toegepaste Wiskunde/ Division of Applied Mathematics Fourier analysis 1(Alternative to Gonzalez& Woods: ) SLIDE 1/13 L 2 L 2

Afdeling Toegepaste Wiskunde/ Division of Applied Mathematics Fourier analysis 1(Alternative to Gonzalez& Woods: ) SLIDE 1/13 L 2 L 2 Fourier analysis (Alternative to Gonzalez& Woods: 4.- 4.6) SLIDE /3 FOURIER SERIES Considerafunction,f(x),definedontheinterval[ L,L ]: f ( x) L L We now want to approximate f(x) on the interval [ L,L ]

More information

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series.

Overview of Fourier Series (Sect. 6.2). Origins of the Fourier Series. Overview of Fourier Series (Sect. 6.2. Origins of the Fourier Series. Periodic functions. Orthogonality of Sines and Cosines. Main result on Fourier Series. Origins of the Fourier Series. Summary: Daniel

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y.

MATH 391 Test 1 Fall, (1) (12 points each)compute the general solution of each of the following differential equations: = 4x 2y. MATH 391 Test 1 Fall, 2018 (1) (12 points each)compute the general solution of each of the following differential equations: (a) (b) x dy dx + xy = x2 + y. (x + y) dy dx = 4x 2y. (c) yy + (y ) 2 = 0 (y

More information

Section 6: Summary Section 7

Section 6: Summary Section 7 Section 6: Summary Section 7 a n = 2 ( 2πnx cos b n = 2 ( 2πnx sin d = f(x dx f(x = d + n= [ a n cos f(x dx f(x dx ( ( ] 2πnx 2πnx + b n sin You can sometimes combine multiple integrals using symmetry

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Exercise 11. Isao Sasano

Exercise 11. Isao Sasano Exercise Isao Sasano Exercise Calculate the value of the following series by using the Parseval s equality for the Fourier series of f(x) x on the range [, π] following the steps ()-(5). () Calculate the

More information

LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM

LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM LECTURE 33: NONHOMOGENEOUS HEAT CONDUCTION PROBLEM 1. General Solving Procedure The general nonhomogeneous 1-dimensional heat conduction problem takes the form Eq : [p(x)u x ] x q(x)u + F (x, t) = r(x)u

More information

PRACTICE PROBLEM SET

PRACTICE PROBLEM SET PRACTICE PROBLEM SET NOTE: On the exam, you will have to show all your work (unless told otherwise), so write down all your steps and justify them. Exercise. Solve the following inequalities: () x < 3

More information

The Pseudospectral Method

The Pseudospectral Method The Pseudospectral Method Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Heiner Igel Computational Seismology 1 / 43 Outline 1 Introduction Motivation History

More information

PHYSICS 116C Homework 4 Solutions

PHYSICS 116C Homework 4 Solutions PHYSICS 116C Homework 4 Solutions 1. ( Simple hrmonic oscilltor. Clerly the eqution is of the Sturm-Liouville (SL form with λ = n 2, A(x = 1, B(x =, w(x = 1. Legendre s eqution. Clerly the eqution is of

More information

Chapter 10: Partial Differential Equations

Chapter 10: Partial Differential Equations 1.1: Introduction Chapter 1: Partial Differential Equations Definition: A differential equations whose dependent variable varies with respect to more than one independent variable is called a partial differential

More information

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation

MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation MA4001 Engineering Mathematics 1 Lecture 15 Mean Value Theorem Increasing and Decreasing Functions Higher Order Derivatives Implicit Differentiation Dr. Sarah Mitchell Autumn 2014 Rolle s Theorem Theorem

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations ecture Notes for Ch 10 Fourier Series and Partial Differential Equations Part III. Outline Pages 2-8. The Vibrating String. Page 9. An Animation. Page 10. Extra Credit. 1 Classic Example I: Vibrating String

More information

swapneel/207

swapneel/207 Partial differential equations Swapneel Mahajan www.math.iitb.ac.in/ swapneel/207 1 1 Power series For a real number x 0 and a sequence (a n ) of real numbers, consider the expression a n (x x 0 ) n =

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

student id: MATH 202 FINAL EXAM SOLUTION KEY total 20 pts 20 pts 20 pts 20 pts 20 pts 25 pts 25 pts 150 pts

student id: MATH 202 FINAL EXAM SOLUTION KEY total 20 pts 20 pts 20 pts 20 pts 20 pts 25 pts 25 pts 150 pts Date: January 5, 4 name, surname: Time: 9:-:3 math number: student id: MATH FINAL EXAM SOLUTION KEY IMPORTANT. Write your name, surname on top of each page.. The exam consists of 7 questions some of which

More information

23 Elements of analytic ODE theory. Bessel s functions

23 Elements of analytic ODE theory. Bessel s functions 23 Elements of analytic ODE theory. Bessel s functions Recall I am changing the variables) that we need to solve the so-called Bessel s equation 23. Elements of analytic ODE theory Let x 2 u + xu + x 2

More information

Math 45, Linear Algebra 1/58. Fourier Series. The Professor and The Sauceman. College of the Redwoods

Math 45, Linear Algebra 1/58. Fourier Series. The Professor and The Sauceman. College of the Redwoods Math 45, Linear Algebra /58 Fourier Series The Professor and The Sauceman College of the Redwoods e-mail: thejigman@yahoo.com Objectives To show that the vector space containing all continuous functions

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

General Inner Product and The Fourier Series

General Inner Product and The Fourier Series A Linear Algebra Approach Department of Mathematics University of Puget Sound 4-20-14 / Spring Semester Outline 1 2 Inner Product The inner product is an algebraic operation that takes two vectors and

More information

MAGIC058 & MATH64062: Partial Differential Equations 1

MAGIC058 & MATH64062: Partial Differential Equations 1 MAGIC58 & MATH6462: Partial Differential Equations Section 6 Fourier transforms 6. The Fourier integral formula We have seen from section 4 that, if a function f(x) satisfies the Dirichlet conditions,

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

1 A complete Fourier series solution

1 A complete Fourier series solution Math 128 Notes 13 In this last set of notes I will try to tie up some loose ends. 1 A complete Fourier series solution First here is an example of the full solution of a pde by Fourier series. Consider

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Cable Convergence. James K. Peterson. May 7, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Cable Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 2018 Outline 1 Fourier Series Convergence Redux 2 Fourier Series

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du.

1 x 7/6 + x dx. Solution: We begin by factoring the denominator, and substituting u = x 1/6. Hence, du = 1/6x 5/6 dx, so dx = 6x 5/6 du = 6u 5 du. Circle One: Name: 7:45-8:35 (36) 8:5-9:4 (36) Math-4, Spring 7 Quiz #3 (Take Home): 6 7 Due: 9 7 You may discuss this quiz solely with me or other students in my discussion sessions only. Use a new sheet

More information

Since the exponential function is a continuous function, it suffices to find the limit: lim sin x ln x. sin x ln x = ln x

Since the exponential function is a continuous function, it suffices to find the limit: lim sin x ln x. sin x ln x = ln x Math 180 Written Homework Assignment #9 Due Tuesday, November 18th at the beginning of your discussion class. Directions. You are welcome to work on the following problems with other MATH 180 students,

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0.

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0. MATH 64: FINAL EXAM olutions Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j ( t π). olution: We assume a > b >. A = 1 π (xy yx )dt = 3ab π

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri

Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS. with FOURIER SERIES and BOUNDARY VALUE PROBLEMS. NAKHLÉ H. ASMAR University of Missouri Students Solutions Manual PARTIAL DIFFERENTIAL EQUATIONS with FOURIER SERIES and BOUNDARY VALUE PROBLEMS Second Edition NAKHLÉ H. ASMAR University of Missouri Contents Preface Errata v vi A Preview of

More information

Mathematics 324 Riemann Zeta Function August 5, 2005

Mathematics 324 Riemann Zeta Function August 5, 2005 Mathematics 324 Riemann Zeta Function August 5, 25 In this note we give an introduction to the Riemann zeta function, which connects the ideas of real analysis with the arithmetic of the integers. Define

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test Math 0 009 These problems are meant to help you study. The presence of a problem on this sheet does not imply that there will be a similar problem on the test. And the absence

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Math 5587 Midterm II Solutions

Math 5587 Midterm II Solutions Math 5587 Midterm II Solutions Prof. Jeff Calder November 3, 2016 Name: Instructions: 1. I recommend looking over the problems first and starting with those you feel most comfortable with. 2. Unless otherwise

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

MS327. Diagnostic Quiz. Are you ready for MS327? Copyright c 2017 The Open University 1.4

MS327. Diagnostic Quiz. Are you ready for MS327? Copyright c 2017 The Open University 1.4 Faculty of Science, Technology, Engineering and Mathematics MS327 Deterministic and stochastic dynamics MS327 Diagnostic Quiz Are you ready for MS327? This diagnostic quiz is designed to help you decide

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

HILBERT SPACES AND FOURIER SERIES

HILBERT SPACES AND FOURIER SERIES California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of Graduate Studies 9-05 HILBERT SPACES AND FOURIER SERIES Terri Joan Harris Mrs. terri.harris34@gmail.com

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Electrostatic II Notes: Most of the material presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartolo, Chap... Mathematical Considerations.. The Fourier series and the Fourier

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

FOURIER SERIES PART III: APPLICATIONS

FOURIER SERIES PART III: APPLICATIONS FOURIER SERIES PART III: APPLICATIONS We extend the construction of Fourier series to functions with arbitrary eriods, then we associate to functions defined on an interval [, L] Fourier sine and Fourier

More information

Homework 7 Solutions

Homework 7 Solutions Homework 7 Solutions # (Section.4: The following functions are defined on an interval of length. Sketch the even and odd etensions of each function over the interval [, ]. (a f( =, f ( Even etension of

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02 1 MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions December 6 2017 Wednesday 10:40-12:30 SA-Z02 QUESTIONS: Solve any four of the following five problems [25]1. Solve the initial and

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016

2016 EF Exam Texas A&M High School Students Contest Solutions October 22, 2016 6 EF Exam Texas A&M High School Students Contest Solutions October, 6. Assume that p and q are real numbers such that the polynomial x + is divisible by x + px + q. Find q. p Answer Solution (without knowledge

More information

Assignment 11 Assigned Mon Sept 27

Assignment 11 Assigned Mon Sept 27 Assignment Assigned Mon Sept 7 Section 7., Problem 4. x sin x dx = x cos x + x cos x dx ( = x cos x + x sin x ) sin x dx u = x dv = sin x dx du = x dx v = cos x u = x dv = cos x dx du = dx v = sin x =

More information