Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based)

Size: px
Start display at page:

Download "Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based)"

Transcription

1 Feaure Sace 4. Feaure Sace ad Feaure Exraco Alex M. Marez Hadous Hadousfor forece ECE S S2007 May roblems scece ad egeerg ca be formulaed as a PR oe. For hs, we eed o defe a feaure sace. A feaure sace s a colleco of feaures relaed o some roeres of he objec or eve uder sudy. Feaure: A dvdually measurable roery of he heomeo beg observed. Examle: DA DA sequecg ucleode order: adee (A), guae (G), cyose (C), hyme (). Each sequece s receded by a 5 marker ad eds wh a 3. E.g.: 5'-AAGCG-3'. Dscree feaure sace x,, x x x A, G, C, Examle: Faces (aearace-based) he four bases are deeced usg dffere fluoresce labels. hese are deeced ad rereseed as 'eaks' of dffere colors. I comuer vso (ad mage rocessg) may be covee o rerese mages as a sequece of xel eses. he Huma Geome Projec was fuded a may laboraores aroud he U.S. by he Dearme of Eergy (DOE), ad he aoal Isues of Healh (IH).

2 ???? Couous feaure sace: x, x, x Examle: Shae Aalyss I may alcaos of shae aalyss, such as morhomercs, bology, sychology, ad mage rocessg, 2D shaes are rereseed as feaure vecors he comlex doma. Each xel s esy defes a dmeso (feaure) of hs feaure sace. Here, we have assumed we have xels. A ew mage ca be comared o a se of samle face mages. x x 2. x,. x x x 2 or. x SC. x 2. Shf ad Scale Ivarace u[ xy, x2y 2,..., x u u uc u z CS u 2 r y ] C, Im...u Re f ( ze c CB A) c ( A)ex{ e CB * f ( z) f ( ze f ( z A) c CB ( A)ex{( ze ) ( A)ex{ z * Az}, * ) A( ze z Aze } f ( z A) )} Shercal Feaure Saces Huma Evoluo I may cases, he daa descrbg our objec s shercal (e.g., crcular). 2

3 Shercal Feaure Saces orm ad Var ormalzao Shae-based objec recogo: we would lke our algorhm o be vara o scale ad -lae roaos. = s Aearace-based recogo: brghess esy should o affec recogo. = s = sh orm ormalzao Ivara o esy sh x orm ormalzao: s x x ~ x x x ~ x x S x. S - y sh y s y Ivara o scale Varace ormalzao: ~ x x x 2. oe: Le us ow look a he case where we rerese he daa a feaure sace of dmesos he real doma, x. We wll laer see how our resuls exed o he oher feaure rereseaos. hus, uless oherwse oed, we wll assume x. Feaure Exraco I our feaure rereseao, x, we are rereseg he feaures x ad x j as orhogoal dmesos. We ca ow deerme how much correlaed each ar of dmesos are. Correlaos Lear correlaos (or co-relaos) raslaes o a lear relao bewee varables. If x ad x 2 are learly deede, we ca wre x 2 =f(x ), where f(.) s lear. Ex: If hey are o 00% correlaed, we have Lear leas-squares Our error fuco s a se of homogeous equaos: wh >. We ca rewre hese as Xa=0. Error fuco. 3

4 If rak(x)=, here s a uque soluo. Whe rak(x)>, R 2 >0. he, o mmze R 2, we eed o mmze (Xa) 2 = a X Xa. ha s: we wa o fd he dmeso R where he daa has larges varace. Le Q=X X. Ad assume. We ca he wre a Qa. symmerc, osve semdefe marx ow, le A a,, a. We have: Schur decomoso A QA. Ege decomoso Sce he colums of A defe a orhogoal bases,.e., A A=I, we ca wre QAA. hs s he well-kow egevalue decomoso equao. I he equaos above dag,,, ad we assume 0. Fg a lear fuco o X Sce, we wa o mmze R 2, we have he covarace marx o mmze (Ua) 2, we eed o fd he egevecors of X U U, where a=(a,a 2 ) s he ormal ad d he offse. hs ca be saed as Ua=0, where hs ew marx s called he covarace marx. Is geeral form s gve by Ierreg X he dagoal elemes are he varaces, c = 2. he off-dagoal are he covaraces, gve by c j = j j. he ew values j are fac he correlaos we were lookg for. Auocorrelao marx he correlao values defed above, are o o be cofused wh he auoxorrelao marx, defed as S=X X. he auocorrelao marx s decal o he covarace marx whe he daa has zero mea or has bee mea-ormalzed. 4

5 Proeres of X We oe ha X s a symmerc marx. I s also osve sem-defe,.e., x X x s greaer or equal ha 0 for all x. he equaly holds whe he samles used o esmae X le o a sub-saces of q dmesos, wh q<, or whe <. We oe ha we ca defe a ew covarace marx q dmesos. hs wll be symmerc ad osve defe for ay q=<dm(ra(x)). Rage ad ull sace he rage sace of a marx s gve by Or, he ull sace (orhogoal o he rage) s Ad, we have rak(m)=dm(ra(m)), ad Whe rak( X )<, he X s semdefe. Prcal Comoes Aalyss We ca ow fd he mos rereseave dmesos (.e., lear combao of feaures) from Σ X VV, where V v,, v, Λdag,,, 0. v s he vecor ha bes descrbed he daa. v s he h bes. 00% 99.8% 52.7% Prcal Comoes Aalyss he frs obvous dea s o rerese a - dmesoal sgal as closely as osble wh a -dmesoal feaure sace <<. We wa o fd a lear mag. X y Y We wa o mmze he mea-square error. Dscree Karhue-Loeve exaso Sce our rojeco s lear: 0. he colums ofare called bass vecors. We ow assume ha he colums ofform a orhoormal se: j 0 j herefore: y X. hus, Y s oly a orhoormal rasformao of X. 5

6 We ca rerese X wh < feaures: ˆ( ) y b. X redefed cosas he error s: X( ) X Xˆ(m) X y b ( y b ). hs omal choce s gve by he wellkow egevalue decomoso equao: X. If b 0,, he: X( ) y. o mmze he error we wa o elmae he smalles varaces or covaraces oly. Defos ad Dervaos he bass vecor s chose such ha x has maxmum varace..e.. s a vecor of dmesos; We ca wre: x j x j. j s a lear combao of he feaures of he orgal feaure-sace. 2 x s he vecor where he varace s max, cosraed o beg ucorrelaed o x. Ad so o. Aga, oe ha he quay o be. maxmzed s Sce eeds o be as large as ossble, we wll selec ha egevecor assocaed o he larges egevalue. I geeral, var[ k x] k, where k s he kh larges egevalue of Proery. Le y=bx, where B s a xq marx, q. Le y he, r( y) s maxmzed whe y q. o maxmze var[ x], we eed some addoal cosras.. ycally, we assume We ca ow maxmze, where s he Lagrage muller. Dffereag wh resec o, gves 0, I 0. I follows ha s a egevalue of. Idey marx. Comresso Frs q egevecors of. 6

7 Alcaos Examle : Face comresso Perhas he mos oular s daa comresso. Feaure exraco for rereseao: 0 egevecors Comuer vso ad mage rocessg. Aearace-based recogo. Saele magg. Rereseao of shaes (mah). Seech recogo. Gee rereseao ad recogo (geomcs). all egevecors Sascs, lguscs, bra magg, ec. Readg Examle 2: Bra magg regular words MRI (magec resoace magg) uses rado waves ad a srog magec feld raher ha x-rays o rovde clear ad dealed cures of eral orgas ad ssues. fmri (fucoal MRI) uses MRI o measure he quck, y meabolc chages ha ake lace a acve ar of he bra. haks o hs echology we ca deec he oso of he geeral areas of he bra (e.g., seech, sesao ad memory) he huma bra. fmri s a valuable resource o hyscas oo. How o comue PCA If he umber of samles s much smaller ha he ~ umber of feaures, he we comue Q X X sead. he egevecors ad egevalues of hs marx ~ / 2 ~ are relaed o Q by: e X e ~. rregular words Muldmesoal Scalg PCA s symmerc, he sese ha x x 2 x 2 x. MDS ca be formulaed for ay gve dsace measure. For examle, magg we have a ma of ces. he dsace bewee hese ces s he flyg me (whch s o symmerc). From hs, we ca cosruc a able of dsaces: D {d j }. MDS s a echque ha aems o solve he verse roblem: gve he able, fd he (ma) rereseao. 7

8 Merc MDS f (d j ) Smlar o PCA, merc MDS mmzes he recosruco error of he daa: d j (dj f (dj ))2 j where f (d j ) d j s a lear fuco. If he Eucldea dsace s used o calculae he dssmlares, d j, he merc MDS=PCA. Oher mercs: Mkowsk, Caberra, Agular, ec. Projeco Pursu omerc MDS hs s a more comlex verso of MDS. I s geerally dffcul o esmae all he arameers. Soluos usually clude evoluoary sraeges, e.g. geec algorhms ad smulag aealg. Ye aoher geeral aroach o dmesoaly reduco. Searches for hose dmesos ha have he mos e r e s g r o j e c o. PCA Comuaoally exesve. Exloraory PP searches hose feaures where he daa devaes PP from Gaussa. PPC, PPR, ec. Projeco Pursu Regresso Covergece Searches for hose low-dmesoal rojecos ha maxmze (mmze) a objecve fuco called rojeco dex. PCA s a arcular case of PP (whe he daa varace alog he chose rojeco s seleced as he rojeco dex). E.g., mmze he error fuco feaure vecor (u) arge M (ouu) err [ y g m ( wm x )] quas-ewo aroach): g ( w x ) g ( w x ) g ' ( w x )( w w ) x, m Rdge fuco. over he fuco g m ad dreco vecor wm. We seek wm so ha he model fs he daa correcly, hece he ame Projeco Pursu. Selec a al w, =0. Calculae v=wx. Aroxmae g() usg a sle (-surface). Wh hs ew g(), esmae he ew w (usg a err y g (w 2 2 y g ( w x ) x ) g ' ( w x ) w x g ' ( w x ) w x. 5. Go back o se 2; ul err s small (cov.) Mmze wh LS. 8

9 Ideede Comoe Aalyss Isead of mmzg he error, ICA seeks o fd deede comoes of he daa. x ( ) s our se of deede sources: d [x( )] [ x ( )] x s o observable, bu we ca assume: s( ) Ax( ). he goal s o fd a se y ( ) x ( ). x (ad, herefore, y)m g hbeas e o f a b s r a c (robably ukow) sources (comoes). We ca model he rasformao from s o y as: Oe such aroach s o use he eroy: Our goal ow s o esmae W ad w 0 so as o make he comoes of y deede from each oher. here s o close form soluo o hs roblem. We ca, however, buld a erave mehod; whch case our goal s o fd a W ha roduces a se of deede sources: Le be a loss fuco wh arge W A ad: he: whch s based o he observao ha o maxmze he eroy we eed o maxmze he muual formao bewee u ad ouu. FasICA uses a dffere fuco: y f [ Ws w 0 ]. (x) l ( x) dx here G() s a o-quadrac fuco, v s Gaussa ad c s a cosa (c>0). Examle : Bld source searao s ( ) x( ) 9

10 Examle 2: Image refleco y ( ) Examle 3: Bra erface 0

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Geometric Modeling

Geometric Modeling Geomerc Modelg 9.58. Crves coed Cc Bezer ad B-Sle Crves Far Chaers 4-5 8 Moreso Chaers 4 5 4 Tycal Tyes of Paramerc Crves Corol os flece crve shae. Ierolag Crve asses hrogh all corol os. Herme Defed y

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Bilinear estimation of pollution source profiles in receptor models. Clifford H Spiegelman Ronald C. Henry NRCSE

Bilinear estimation of pollution source profiles in receptor models. Clifford H Spiegelman Ronald C. Henry NRCSE Blear esmao of olluo source rofles receor models Eu Sug Park Clfford H Segelma Roald C Hery NRCSE T e c h c a l R e o r S e r e s NRCSE-TRS No 9 Blear esmao of olluo source rofles receor models Eu Sug

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Reve: Fal Exam (//005) Reve-Fal- Fal Exam Dec. 6 h Frday :0-3 pm, Mudd Rm 644 Reve Fal- Chap 5: Lear Dscrma Fucos Reve

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008 Mache Learg 0-70/5 70/5-78 78 Fall 2008 Hdde Marov Model Erc Xg Lecure 7 March 24 2008 Readg: Cha. 3 C.B boo Erc Xg Erc Xg 2 Hdde Marov Model: from sac o damc mure models Sac mure Damc mure Y Y Y 2 Y 3

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p

The MacWilliams Identity of the Linear Codes over the Ring F p +uf p +vf p +uvf p Reearch Joural of Aled Scece Eeer ad Techoloy (6): 28-282 22 ISSN: 2-6 Maxwell Scefc Orazao 22 Submed: March 26 22 Acceed: Arl 22 Publhed: Auu 5 22 The MacWllam Idey of he Lear ode over he R F +uf +vf

More information

NUMERICAL EVALUATION of DYNAMIC RESPONSE

NUMERICAL EVALUATION of DYNAMIC RESPONSE NUMERICAL EVALUATION of YNAMIC RESPONSE Aalycal solo of he eqao of oo for a sgle degree of freedo syse s sally o ossble f he excao aled force or grod accelerao ü g -vares arbrarly h e or f he syse s olear.

More information

Three Main Questions on HMMs

Three Main Questions on HMMs Mache Learg 0-70/5-78 78 Srg 00 Hdde Marov Model II Erc Xg Lecure Februar 4 00 Readg: Cha. 3 CB Three Ma Quesos o HMMs. Evaluao GIVEN a HMM M ad a sequece FIND Prob M ALGO. Forward. Decodg GIVEN a HMM

More information

Unit 10. The Lie Algebra of Vector Fields

Unit 10. The Lie Algebra of Vector Fields U 10. The Le Algebra of Vecor Felds ================================================================================================================================================================ -----------------------------------

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Statistics: Part 1 Parameter Estimation

Statistics: Part 1 Parameter Estimation Hery Sar ad Joh W. Woods, robably, Sascs, ad Radom ables for geers, h ed., earso ducao Ic., 0. ISBN: 978-0-3-33-6 Chaer 6 Sascs: ar arameer smao Secos 6. Iroduco 30 Ideede, Idecally Dsrbued (..d.) Observaos

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A, OF THE ROMANIAN ACADEMY Volume 0, Number /009,. 000-000 ON ZALMAI EMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH

More information

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Optimal Eye Movement Strategies in Visual Search (Supplement)

Optimal Eye Movement Strategies in Visual Search (Supplement) Opmal Eye Moveme Sraeges Vsual Search (Suppleme) Jr Naemk ad Wlso S. Gesler Ceer for Percepual Sysems ad Deparme of Psychology, Uversy of exas a Aus, Aus X 787 Here we derve he deal searcher for he case

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecure 12 Chaper 4 Fresel quaos co. Toal eral refleco ad evaesce waves Opcal properes of meals Laer: Famlar aspecs of he eraco of lgh ad maer Fresel quaos r 2 Usg Sell s law, we ca re-wre: r s s r a a

More information

Continuous Random Variables: Conditioning, Expectation and Independence

Continuous Random Variables: Conditioning, Expectation and Independence Cotuous Radom Varables: Codtog, xectato ad Ideedece Berl Che Deartmet o Comuter cece & Iormato geerg atoal Tawa ormal Uverst Reerece: - D.. Bertsekas, J.. Tstskls, Itroducto to robablt, ectos 3.4-3.5 Codtog

More information

Broadband Constraint Based Simulated Annealing Impedance Inversion

Broadband Constraint Based Simulated Annealing Impedance Inversion Joural of Comuaoal Scece & Egeerg 8 (213) 3-34 Joural of Comuaoal Scece & Egeerg Avalable a h://wwwasocseorg SSN 171-468 Broadbad Cosra Based Smulaed Aealg medace verso Guagxua Che 1, a, Yahu Du 1,b, Pae

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) BBM406 - Itroduc0o to ML Sprg 204 Prcpal Compoet Aalyss PCA Aykut Erdem Dept. of Computer Egeerg HaceDepe Uversty Today Mo0va0o PCA algorthms Applca0os PCA shortcomgs Kerel PCA Sldes adopted from Barabás

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

EMD Based on Independent Component Analysis and Its Application in Machinery Fault Diagnosis

EMD Based on Independent Component Analysis and Its Application in Machinery Fault Diagnosis 30 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 0 EMD Based o Idepede Compoe Aalyss ad Is Applcao Machery Faul Dagoss Fegl Wag * College of Mare Egeerg, Dala Marme Uversy, Dala, Cha Emal: wagflsky997@sa.com

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

BILINEAR GARCH TIME SERIES MODELS

BILINEAR GARCH TIME SERIES MODELS BILINEAR GARCH TIME SERIES MODELS Mahmoud Gabr, Mahmoud El-Hashash Dearme of Mahemacs, Faculy of Scece, Alexadra Uversy, Alexadra, Egy Dearme of Mahemacs ad Comuer Scece, Brdgewaer Sae Uversy, Brdgewaer,

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

A Remark on Polynomial Mappings from to

A Remark on Polynomial Mappings from to Aled Mahemacs 6 7 868-88 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 A Remar o Polyomal Mags from o ad a Alcao of he Sofware Male Research Th Bch Thuy Nguye UNESP Uversdade Esadual Paulsa

More information

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models Ieraoal Bomerc Coferece 22/8/3, Kobe JAPAN Survval Predco Based o Compoud Covarae uder Co Proporoal Hazard Models PLoS ONE 7. do:.37/oural.poe.47627. hp://d.plos.org/.37/oural.poe.47627 Takesh Emura Graduae

More information

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations Global Joural of Scece Froer Research Mahemacs a Decso Sceces Volume Issue 7 Verso. Jue Te : Double Bl Peer Revewe Ieraoal Research Joural Publsher: Global Jourals Ic. (USA Ole ISSN: 49-466 & Pr ISSN:

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Part II Image recognition

Part II Image recognition Image ad speech recogo Lecure oes Włodzmerz Kasprza Proec s co-faced by Europea Uo wh Europea Socal Fud. Paer recogo. Paer rasformao 3. Paer classfcao 4. Image pre-processg CONTENT Par I Paer recogo Par

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION Joural of Appled Maemacs ad ompuaoal Mecacs 24 3(2 5-62 GENERALIZED METHOD OF LIE-ALGEBRAI DISRETE APPROXIMATIONS FOR SOLVING AUHY PROBLEMS WITH EVOLUTION EQUATION Arkad Kdybaluk Iva Frako Naoal Uversy

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

Dimension Reduction. Curse of dimensionality

Dimension Reduction. Curse of dimensionality Deso Reuco Deso Reuco Curse of esoaly h 5 feaures esos, each quaze o levels, creae 5 possble feaure cobaos, age ho ay saples you ee o esae p? ho o you vsualze he srucure a 5 esoal space? Oher probles ze

More information

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin Egeerg Leers, 4:2, EL_4_2_4 (Advace ole publcao: 6 May 27) Sablzao of LTI Swched Sysems wh Ipu Tme Delay L L Absrac Ths paper deals wh sablzao of LTI swched sysems wh pu me delay. A descrpo of sysems sablzao

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Outline. Computer Networks: Theory, Modeling, and Analysis. Delay Models. Queuing Theory Framework. Delay Models. Little s Theorem

Outline. Computer Networks: Theory, Modeling, and Analysis. Delay Models. Queuing Theory Framework. Delay Models. Little s Theorem Oule Couer Newors: Theory, Modelg, ad Aalyss Guevara Noubr COM35, lecure 3 Delay Models Lle s Theore The M/M/ queug syse The M/G/ queug syse F, COM35 Couer Newors Lecure 3, F, COM35 Couer Newors Lecure

More information

The Optimal Combination Forecasting Based on ARIMA,VAR and SSM

The Optimal Combination Forecasting Based on ARIMA,VAR and SSM Advaces Compuer, Sgals ad Sysems (206) : 3-7 Clausus Scefc Press, Caada The Opmal Combao Forecasg Based o ARIMA,VAR ad SSM Bebe Che,a, Mgya Jag,b* School of Iformao Scece ad Egeerg, Shadog Uversy, Ja,

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

The Bernstein Operational Matrix of Integration

The Bernstein Operational Matrix of Integration Appled Mahemacal Sceces, Vol. 3, 29, o. 49, 2427-2436 he Berse Operaoal Marx of Iegrao Am K. Sgh, Vee K. Sgh, Om P. Sgh Deparme of Appled Mahemacs Isue of echology, Baaras Hdu Uversy Varaas -225, Ida Asrac

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information