Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008

Size: px
Start display at page:

Download "Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008"

Transcription

1 Mache Learg 0-70/5 70/ Fall 2008 Hdde Marov Model Erc Xg Lecure 7 March Readg: Cha. 3 C.B boo Erc Xg Erc Xg 2

2 Hdde Marov Model: from sac o damc mure models Sac mure Damc mure Y Y Y 2 Y 3 Y X N X X 2 X 3 X Erc Xg 3 Hdde Marov Models he uderlg source: geomc ees dce he sequece: Y X Y 2 Y 3 X 2 X 3 Y X Plo N sequece of rolls Erc Xg 4 2

3 Eamle: he Dshoes Caso caso has wo dce: Far de P P2 P3 P5 P6 /6 Loaded de P P2 P3 P5 /0 P6 /2 Caso laer swches bac-&-forh bewee far ad loaded de oce ever 20 urs Game:. You be $ 2. You roll alwas wh a far de 3. Caso laer rolls mabe wh far de mabe wh loaded de 4. Hghes umber ws $2 Erc Xg 5 Puzzles Regardg he Dshoes Caso GIVEN: sequece of rolls b he caso laer QUESION How lel s hs sequece gve our model of how he caso wors? hs s he EVLUION roblem HMMs Wha oro of he sequece was geeraed wh he far de ad wha oro wh he loaded de? hs s he DECODING queso HMMs How loaded s he loaded de? How far s he far de? How ofe does he caso laer chage from far o loaded ad bac? hs s he LERNING queso HMMs Erc Xg 6 3

4 Sochasc Geerave Model Observed sequece: B Hdde sequece a arse or segmeao: B B B Erc Xg 7 Defo of HMM Observao sace lhabec se: Eucldea sace: C { c c 2 L c K } d R Ide se of hdde saes I { 2 LM} raso robables bewee a wo saes j a or j ~ Mulomal a a 2 K a M I Sar robables ~ Mulomal π π 2 K π M. Emsso robables assocaed wh each sae or geeral:. ~ Mulomal b b K b. 2 K I θ. ~ f I Grahcal model K 2 Sae auomaa Erc Xg 8 4

5 Probabl of a Parse Gve a sequece ad a arse o fd how lel s he arse: gve our HMM ad he sequece Jo robabl P π M Margal robabl: Poseror robabl: def M + j j [ j ] + def def Le π [ ] a a π ad b [ ] b a La 2 b Lb Erc Xg 9 M K L π a 2 N 2 / he Dshoes Caso Model FIR LODED P F /6 P2 F /6 P3 F /6 P4 F /6 P5 F /6 P6 F / P L /0 P2 L /0 P3 L /0 P4 L /0 P5 L /0 P6 L /2 Erc Xg 0 5

6 Eamle: he Dshoes Caso Le he sequece of rolls be: he wha s he lelhood of Far Far Far Far Far Far Far Far Far Far? sa al robs a 0Far ½ a oloaded ½ ½ P Far PFar Far P2 Far PFar Far P4 Far ½ / Erc Xg Eamle: he Dshoes Caso So he lelhood he de s far all hs ru s jus OK bu wha s he lelhood of π Loaded Loaded Loaded Loaded Loaded Loaded Loaded Loaded Loaded Loaded? ½ P Loaded PLoaded Loaded P4 Loaded ½ /0 8 / herefore s afer all 6.59 mes more lel ha he de s far all he wa ha ha s loaded all he wa Erc Xg 2 6

7 Eamle: he Dshoes Caso Le he sequece of rolls be: Now wha s he lelhood π F F F? ½ / same as before Wha s he lelhood L L L? ½ /0 4 / So s 00 mes more lel he de s loaded Erc Xg 3 hree Ma Quesos o HMMs. Evaluao GIVEN a HMM M ad a sequece FIND Prob M LGO. Forward 2. Decodg GIVEN a HMM M ad a sequece FIND he sequece of saes ha mamzes e.g. P M or he mos robable subsequece of saes LGO. Verb Forward-bacward 3. Learg GIVEN a HMM M wh usecfed raso/emsso robs. ad a sequece FIND arameers θ π a j η ha mamze P θ LGO. Baum-Welch EM Erc Xg 4 7

8 lcaos of HMMs Some earl alcaos of HMMs face bu we ever saw hem seech recogo modellg o chaels I he md-lae 980s HMMs eered geecs ad molecular bolog ad he are ow frml ereched. Some curre alcaos of HMMs o bolog mag chromosomes algg bologcal sequeces redcg sequece srucure ferrg evoluoar relaoshs fdg gees DN sequece Erc Xg 5 cal srucure of a gee Erc Xg 6 8

9 GENSCN Burge & Karl 5'UR Forward + srad Reverse - srad E0 E E2 I 0 I I 2 E romoer E s ergec rego E ol- 3'UR Forward + srad Reverse - srad θ θ θ θ GGCGGGGGGGGCGCCGCGCCGC CGGGCCCGCGCCGCCGCGCCGG GGCGCCCGCCGCC GCGCCCCGCCGGCCCCCC CCGCGCGGCGGGGGCGCC CGGCCGGCCCGCGCGCGC GCGCGGCGCGCG GCGGCCGCCGGGGCGCCGCGCCC GCGCCCGGCCCCCCGCCGGC CCGGCGGGCGGCCGCGGCGGCGCC GGGGGGGCGCGGCCGCGCGCCG CGGCGGGCGCGGGCCGCCCC GCGGGGGCCCGCCCCGCG GGCGGGCCCCG CGGCGGGCGCCGCGGGC CCCGGGCCCGCCCGCGCGCCC GCGGCCGCGCCCCCCCCCCG CCCCGCCCGCCGCCCCCCCG GCCGCGGGCGGCGCGGGCCGC GGGCGCGCCGCC CGGGCGCCCGG GGGCGGCCGCGG GCGGGCCCGG GGGCGCCGG GGGCGCGGGGCGGCCG CCGGCGGCGG GGCGCGCCGGGCGC GGGGCCCGGGGCGC GGGCGGGCGGGGC GCCCCCCG GCCCCGGCCGG GGCGCGGCGG CCGCGGGCCGGCGG CCCCGCGCGCCGCGCC GCGCCGCGC CCGGCCC CCCCGCCGGGCGCCC CCGGGGGCGCCCCGGG GCGGCCGGCGCCCCGCGG Erc Xg 7 he HMM lgorhms Quesos: Evaluao: Wha s he robabl of he observed sequece? Forward Decodg: Wha s he robabl ha he sae of he 3rd roll s loaded gve he observed sequece? Forward- Bacward Decodg: Wha s he mos lel de sequece? Verb Learg: Uder wha arameerzao are he observed sequeces mos robable? Baum-Welch EM Erc Xg 8 9

10 he Forward lgorhm We wa o calculae P he lelhood of gve he HMM Sum over all ossble was of geerag : 2 N 2 L π a o avod summg over a eoeal umber of ahs defe α def α P he forward robabl he recurso: α P α α a Erc Xg 9 he Forward lgorhm dervao Comue he forward robabl: - α P P P P P P P P P P P P α a - Cha rule : P B C P P B C P C B Erc Xg 20 0

11 he Forward lgorhm α We ca comue for all usg damc rogrammg! Ialzao: Ierao: α P π α P P P P π α P α a ermao: P α Erc Xg 2 he Bacward lgorhm We wa o comue P he oseror robabl dsrbuo o he h oso gve We sar b comug P P + P P + P P he recurso: Forward α Bacward β a + + β + β P + Erc Xg 22

12 he Bacward lgorhm dervao Defe he bacward robabl: + β P + P P P P P β a Cha rule : P B C α P α P B C α P C B α Erc Xg 23 he Bacward lgorhm β We ca comue for all usg damc rogrammg! Ialzao: β Ierao: β β ermao: a P P α β Erc Xg 24 2

13 Poseror decodg We ca ow calculae P α β P P P he we ca as Wha s he mos lel sae a oso of sequece : * Noe ha hs s a MP of a sgle hdde sae wha f we wa o a MP of a whole hdde sae sequece? Poseror Decodg: arg ma P hs s dffere from MP of a whole sequece of hdde saes P hs ca be udersood as b error rae vs. word error rae Eamle: MP of X? MP of X Y? 0.3 Erc Xg 25 * { : } L Verb decodg GIVEN we wa o fd such ha P s mamzed: Le V * argma P argma π P ma } P - - { - Probabl of mos lel sequece of saes edg a sae he recurso: N Sae 2 V ma a V Uderflows are a sgfca roblem K K π a La b Lb K 2 hese umbers become eremel small uderflow Soluo: ae he logs of all values: log V log a + V V + ma Erc Xg 26 3

14 he Verb lgorhm dervao Defe he verb robabl: V + ma } P + + { ma { } P + + ma } P P { P ma P + ma{ } P ma P + + a V P + + ma a V Erc Xg 27 he Verb lgorhm Iu: Ialzao: V Ierao: V P ma a V * P ma V racebac: P π Pr arg ma a V ermao: * arg ma V * * Pr Erc Xg 28 4

15 Comuaoal Comle ad mlemeao deals Wha s he rug me ad sace requred for Forward ad Bacward? α α a β a + + β+ V ma a V me: OK 2 N; Sace: OKN. Useful mlemeao echque o avod uderflows Verb: sum of logs Forward/Bacward: rescalg a each oso b mullg b a cosa Erc Xg 29 Learg HMM: wo scearos Suervsed learg: esmao whe he rgh aswer s ow Eamles: GIVEN: GIVEN: a geomc rego where we have good eermeal aoaos of he CG slads he caso laer allows us o observe hm oe eveg as he chages dce ad roduces 0000 rolls Usuervsed learg: esmao whe he rgh aswer s uow Eamles: GIVEN: GIVEN: he orcue geome; we do ow how freque are he CG slads here eher do we ow her comoso 0000 rolls of he caso laer bu we do see whe he chages dce QUESION: Udae he arameers θ of he model o mamze P θ --- Mamal lelhood ML esmao Erc Xg 30 5

16 Suervsed ML esmao Gve N for whch he rue sae ah N s ow Defe: j # mes sae raso j occurs # mes sae ems B We ca show ha he mamum lelhood arameers θ are: a ML j b ML # j # # # j 2 2 Homewor! Wha f s couous? We ca rea : : : N as N observaos of e.g. a Gaussa ad al learg rules for Gaussa Homewor! Erc Xg 3 j j ' ' B B j ' ' { } Suervsed ML esmao cd. Iuo: Whe we ow he uderlg saes he bes esmae of θ s he average frequec of rasos & emssos ha occur he rag daa Drawbac: Gve lle daa here ma be overfg: P θ s mamzed bu θ s ureasoable 0 robables VERY BD Eamle: Gve 0 caso rolls we observe F F F F F F F F F F he: a FF ; a FL 0 b F b F3.2; b F2.3; b F4 0; b F5 b F6. Erc Xg 32 6

17 Pseudocous Soluo for small rag ses: dd seudocous j B # mes sae raso j occurs + R j # mes sae ems + S R j S j are seudocous rereseg our ror belef oal seudocous: R Σ j R j S Σ S --- "sregh" of ror belef --- oal umber of magar saces he ror Larger oal seudocous srog ror belef Small oal seudocous: jus o avod 0 robables --- smoohg Erc Xg 33 Usuervsed ML esmao Gve N for whch he rue sae ah N s uow EXPECION MXIMIZION 0. Sarg wh our bes guess of a model M arameers θ:. Esmae j B he rag daa j How? j B How? homewor 2. Udae θ accordg o j B Now a "suervsed learg" roblem 3. Reea & 2 ul covergece hs s called he Baum-Welch lgorhm We ca ge o a rovabl more or equall lel arameer se θ each erao Erc Xg 34 7

18 8 Erc Xg 35 he Baum Welch algorhm he comlee log lelhood he eeced comlee log lelhood EM he E se he M se "smbolcall" decal o MLE c 2 log log ; θ l + + j j c b a 2 log log log ; θ π l γ j j j ξ j ML j a 2 γ ξ ML b γ γ N ML γ π Erc Xg 36 he Baum-Welch algorhm -- commes me Comle: # eraos OK 2 N Guaraeed o crease he log lelhood of he model No guaraeed o fd globall bes arameers Coverges o local omum deedg o al codos oo ma arameers / oo large model: Over-fg

Three Main Questions on HMMs

Three Main Questions on HMMs Mache Learg 0-70/5-78 78 Srg 00 Hdde Marov Model II Erc Xg Lecure Februar 4 00 Readg: Cha. 3 CB Three Ma Quesos o HMMs. Evaluao GIVEN a HMM M ad a sequece FIND Prob M ALGO. Forward. Decodg GIVEN a HMM

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Advanced Machine Learning

Advanced Machine Learning dvaced ache Learg Learg rahcal odels Learg full observed ad arall observed BN rc g Lecure 4 ugus 3 009 Readg: rc g rc g @ U 006-009 Iferece ad Learg BN descrbes a uque robabl dsrbuo P Tcal asks: Task :

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

Speech, NLP and the Web

Speech, NLP and the Web peech NL ad he Web uhpak Bhaacharyya CE Dep. IIT Bombay Lecure 38: Uuperved learg HMM CFG; Baum Welch lecure 37 wa o cogve NL by Abh Mhra Baum Welch uhpak Bhaacharyya roblem HMM arg emac ar of peech Taggg

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition

Discrete Markov Process. Introduction. Example: Balls and Urns. Stochastic Automaton. INTRODUCTION TO Machine Learning 3rd Edition EHEM ALPAYDI he MI Press, 04 Lecure Sldes for IRODUCIO O Machne Learnng 3rd Edon alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/ml3e Sldes from exboo resource page. Slghly eded and wh addonal examples

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

Statistics: Part 1 Parameter Estimation

Statistics: Part 1 Parameter Estimation Hery Sar ad Joh W. Woods, robably, Sascs, ad Radom ables for geers, h ed., earso ducao Ic., 0. ISBN: 978-0-3-33-6 Chaer 6 Sascs: ar arameer smao Secos 6. Iroduco 30 Ideede, Idecally Dsrbued (..d.) Observaos

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure Sldes for INTRDUCTIN T Machne Learnng ETHEM ALAYDIN The MIT ress, 2004 alpaydn@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/2ml CHATER 3: Hdden Marov Models Inroducon Modelng dependences n npu; no

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Broadband Constraint Based Simulated Annealing Impedance Inversion

Broadband Constraint Based Simulated Annealing Impedance Inversion Joural of Comuaoal Scece & Egeerg 8 (213) 3-34 Joural of Comuaoal Scece & Egeerg Avalable a h://wwwasocseorg SSN 171-468 Broadbad Cosra Based Smulaed Aealg medace verso Guagxua Che 1, a, Yahu Du 1,b, Pae

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

Foundations of State Estimation Part II

Foundations of State Estimation Part II Foundaons of Sae Esmaon Par II Tocs: Hdden Markov Models Parcle Flers Addonal readng: L.R. Rabner, A uoral on hdden Markov models," Proceedngs of he IEEE, vol. 77,. 57-86, 989. Sequenal Mone Carlo Mehods

More information

of Manchester The University COMP14112 Hidden Markov Models

of Manchester The University COMP14112 Hidden Markov Models COMP42 Lecure 8 Hidden Markov Model he Univeriy of Mancheer he Univeriy of Mancheer Hidden Markov Model a b2 0. 0. SAR 0.9 0.9 SOP b 0. a2 0. Imagine he and 2 are hidden o he daa roduced i a equence of

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms Course organzaon Inroducon Wee -2) Course nroducon A bref nroducon o molecular bology A bref nroducon o sequence comparson Par I: Algorhms for Sequence Analyss Wee 3-8) Chaper -3, Models and heores» Probably

More information

Outline. Computer Networks: Theory, Modeling, and Analysis. Delay Models. Queuing Theory Framework. Delay Models. Little s Theorem

Outline. Computer Networks: Theory, Modeling, and Analysis. Delay Models. Queuing Theory Framework. Delay Models. Little s Theorem Oule Couer Newors: Theory, Modelg, ad Aalyss Guevara Noubr COM35, lecure 3 Delay Models Lle s Theore The M/M/ queug syse The M/G/ queug syse F, COM35 Couer Newors Lecure 3, F, COM35 Couer Newors Lecure

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Machine Learning. Topic 4: Measuring Distance

Machine Learning. Topic 4: Measuring Distance Mache Learg Topc 4: Measurg Dstace Bra Pardo Mache Learg: EECS 349 Fall 2009 Wh measure dstace? Clusterg requres dstace measures. Local methods requre a measure of localt Search eges requre a measure of

More information

Outline. Queuing Theory Framework. Delay Models. Fundamentals of Computer Networking: Introduction to Queuing Theory. Delay Models.

Outline. Queuing Theory Framework. Delay Models. Fundamentals of Computer Networking: Introduction to Queuing Theory. Delay Models. Oule Fudaeals of Couer Neworg: Iroduco o ueug Theory eadg: Texboo chaer 3. Guevara Noubr CSG5, lecure 3 Delay Models Lle s Theore The M/M/ queug syse The M/G/ queug syse F3, CSG5 Fudaeals of Couer Neworg

More information

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based)

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based) Feaure Sace 4. Feaure Sace ad Feaure Exraco Alex M. Marez alex@ece.osu.edu Hadous Hadousfor forece ECE874 874S S2007 May roblems scece ad egeerg ca be formulaed as a PR oe. For hs, we eed o defe a feaure

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB

Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB ache Learg 0-70/5 70/5-78 78 all 006 Iroduco o Regresso Erc g Lecure 3 Sepember 9 006 Readg: Chap. 3 C Iferece wh he Jo Compue Codoals 0.4 0. P lu eadhead P lu eadhead P eadhead 0.7 0. 0.05 0.05 0.05 0.05

More information

RATIO ESTIMATORS USING CHARACTERISTICS OF POISSON DISTRIBUTION WITH APPLICATION TO EARTHQUAKE DATA

RATIO ESTIMATORS USING CHARACTERISTICS OF POISSON DISTRIBUTION WITH APPLICATION TO EARTHQUAKE DATA The 7 h Ieraoal as of Sascs ad Ecoomcs Prague Sepember 9-0 Absrac RATIO ESTIMATORS USING HARATERISTIS OF POISSON ISTRIBUTION WITH APPLIATION TO EARTHQUAKE ATA Gamze Özel Naural pulaos bolog geecs educao

More information

Mathematical Formulation

Mathematical Formulation Mahemacal Formulao The purpose of a fe fferece equao s o appromae he paral ffereal equao (PE) whle maag he physcal meag. Eample PE: p c k FEs are usually formulae by Taylor Seres Epaso abou a po a eglecg

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is Webll Dsbo: Des Bce Dep of Mechacal & Idsal Egeeg The Uvesy of Iowa pdf: f () exp Sppose, 2, ae mes o fale of a gop of mechasms. The lelhood fco s L ( ;, ) exp exp MLE: Webll 3//2002 page MLE: Webll 3//2002

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

Reliability Analysis. Basic Reliability Measures

Reliability Analysis. Basic Reliability Measures elably /6/ elably Aaly Perae faul Πelably decay Teporary faul ΠOfe Seady ae characerzao Deg faul Πelably growh durg eg & debuggg A pace hule Challeger Lauch, 986 Ocober 6, Bac elably Meaure elably:

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

2007 Spring VLSI Design Mid-term Exam 2:20-4:20pm, 2007/05/11

2007 Spring VLSI Design Mid-term Exam 2:20-4:20pm, 2007/05/11 7 ri VLI esi Mid-erm xam :-4:m, 7/5/11 efieτ R, where R ad deoe he chael resisace ad he ae caaciace of a ui MO ( W / L μm 1μm ), resecively., he chael resisace of a ui PMO, is wo R P imes R. i.e., R R.

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Comuter Scece Probablstc rahcal Models Parameter Est. fully observed Bs Erc Xg X X X X Lecture 7 February 5 04 X X 3 X X X 3 X 3 Readg: KF-cha 7 X 4 X 4 Erc Xg @ CMU 005-04 Learg rahcal Models

More information

A New Iterative Method for Solving Initial Value Problems

A New Iterative Method for Solving Initial Value Problems A New Ierave Meod or Solvg Ial Value Problems Mgse Wu ad Weu Hog Dearme o Ma., Sascs, ad CS, Uvers o Wscos-Sou, Meomoe, WI 5475, USA Dearme o Maemacs, Clao Sae Uvers, Morrow, GA 36, USA Absrac - I s aer,

More information

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I CEE49b Chaper - Free Vbrao of M-Degree-of-Freedo Syses - I Free Udaped Vbrao The basc ype of respose of -degree-of-freedo syses s free daped vbrao Aaogos o sge degree of freedo syses he aayss of free vbrao

More information

Queuing Theory: Memory Buffer Limits on Superscalar Processing

Queuing Theory: Memory Buffer Limits on Superscalar Processing Cle/ Model of I/O Queug Theory: Memory Buffer Lms o Superscalar Processg Cle reques respose Devce Fas CPU s cle for slower I/O servces Buffer sores cle requess ad s a slower server respose rae Laecy Tme

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION

STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION The Bk of Thld Fcl Isuos Polcy Group Que Models & Fcl Egeerg Tem Fcl Mhemcs Foudo Noe 8 STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION. ก Through he use of ordry d/or prl deres, ODE/PDE c rele

More information

General Complex Fuzzy Transformation Semigroups in Automata

General Complex Fuzzy Transformation Semigroups in Automata Joural of Advaces Compuer Research Quarerly pissn: 345-606x eissn: 345-6078 Sar Brach Islamc Azad Uversy Sar IRIra Vol 7 No May 06 Pages: 7-37 wwwacrausaracr Geeral Complex uzzy Trasformao Semgroups Auomaa

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecure 12 Chaper 4 Fresel quaos co. Toal eral refleco ad evaesce waves Opcal properes of meals Laer: Famlar aspecs of he eraco of lgh ad maer Fresel quaos r 2 Usg Sell s law, we ca re-wre: r s s r a a

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

Chapter 8: Temporal Analysis

Chapter 8: Temporal Analysis Lecure Noes for Maagg ad Mg Mulplayer Ole Games Summer semeser 7 Chaper 8: Temporal Aalyss Lecure Noes Mahas Schuber hp://www.dbs.f.lmu.de/cms/vo_maagg_massve_mulplayer_ole_games Chaper Overvew Behavor

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

NUMERICAL EVALUATION of DYNAMIC RESPONSE

NUMERICAL EVALUATION of DYNAMIC RESPONSE NUMERICAL EVALUATION of YNAMIC RESPONSE Aalycal solo of he eqao of oo for a sgle degree of freedo syse s sally o ossble f he excao aled force or grod accelerao ü g -vares arbrarly h e or f he syse s olear.

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis Probably /4/6 CS 5 elably Aaly Yahwa K. Malaya Colorado Sae very Ocober 4, 6 elably Aaly: Oule elably eaure: elably, avalably, Tra. elably, T M MTTF ad (, MTBF Bac Cae Sgle u wh perae falure, falure rae

More information

Redundancy System Fault Sampling Under Imperfect Maintenance

Redundancy System Fault Sampling Under Imperfect Maintenance A publcao of CHEMICAL EGIEERIG TRASACTIOS VOL. 33, 03 Gues Edors: Erco Zo, Pero Barald Copyrgh 03, AIDIC Servz S.r.l., ISB 978-88-95608-4-; ISS 974-979 The Iala Assocao of Chemcal Egeerg Ole a: www.adc./ce

More information

Lecture 15: Three-tank Mixing and Lead Poisoning

Lecture 15: Three-tank Mixing and Lead Poisoning Lecure 15: Three-ak Miig ad Lead Poisoig Eigevalues ad eigevecors will be used o fid he soluio of a sysem for ukow fucios ha saisfy differeial equaios The ukow fucios will be wrie as a 1 colum vecor [

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

An Optimized FPN Network Attack Model Based on. Improved Ant Colony Algorithm

An Optimized FPN Network Attack Model Based on. Improved Ant Colony Algorithm 3rd Ieraoal Coferece o Mecharocs ad Idusral Iformacs (ICMII 5) A Omzed FPN Newor Aac Model Based o Imroved A Coloy Algorhm Hul Wu,a, Weua Wu,b* Hebe Academy of Sceces Isue of Aled Mahemacs, Shazhuag 58

More information

Competitive Facility Location Problem with Demands Depending on the Facilities

Competitive Facility Location Problem with Demands Depending on the Facilities Aa Pacc Maageme Revew 4) 009) 5-5 Compeve Facl Locao Problem wh Demad Depedg o he Facle Shogo Shode a* Kuag-Yh Yeh b Hao-Chg Ha c a Facul of Bue Admrao Kobe Gau Uver Japa bc Urba Plag Deparme Naoal Cheg

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

ECE 340 Lecture 15 and 16: Diffusion of Carriers Class Outline:

ECE 340 Lecture 15 and 16: Diffusion of Carriers Class Outline: ECE 340 Lecure 5 ad 6: iffusio of Carriers Class Oulie: iffusio rocesses iffusio ad rif of Carriers Thigs you should kow whe you leave Key Quesios Why do carriers diffuse? Wha haes whe we add a elecric

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Reliability Analysis of Sparsely Connected Consecutive-k Systems: GERT Approach

Reliability Analysis of Sparsely Connected Consecutive-k Systems: GERT Approach Relably Aalyss of Sparsely Coece Cosecuve- Sysems: GERT Approach Pooa Moha RMSI Pv. L Noa-2131 poalovely@yahoo.com Mau Agarwal Deparme of Operaoal Research Uversy of Delh Delh-117, Ia Agarwal_maulaa@yahoo.com

More information