Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB

Size: px
Start display at page:

Download "Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB"

Transcription

1 ache Learg 0-70/5 70/ all 006 Iroduco o Regresso Erc g Lecure 3 Sepember Readg: Chap. 3 C Iferece wh he Jo Compue Codoals P lu eadhead P lu eadhead P eadhead Geeral dea: compue dsrbuo o quer arable b fg edece arables ad summg oer hdde arables

2 Codoal depedece Wre ou full o dsrbuo usg cha rule: Peadache;lu;Vrus;Drkeer Peadache lu;vrus;drkeer Plu;Vrus;Drkeer Peadache lu;vrus;drkeer Plu Vrus;Drkeer PVrus Drkeer PDrkeer Assume depedece ad codoal depedece Peadache lu;drkeer Plu Vrus PVrus PDrkeer I.e.? depede parameers I mos cases he use of codoal depedece reduces he sze of he represeao of he o dsrbuo from epoeal o lear. Codoal depedece s our mos basc ad robus form of kowledge abou ucera eromes. Rules of Idepedece --- b eamples PVrus Drkeer PVrus ff Vrus s depede of Drkeer Plu Vrus;Drkeer Plu Vrus ff lu s depede of Drkeer ge Vrus Peadache lu;vrus;drkeer Peadache lu;drkeer ff eadache s depede of Vrus ge lu ad Drkeer

3 argal ad Codoal Idepedece Recall ha for ees E.e. ad sa Y he codoal probabl of E ge wre as PE s PE ad /P he probabl of boh E ad are rue ge s rue E ad are sascall depede f PE PE.e. prob. E s rue does' deped o wheher s rue; or equalel PE ad PEP. E ad are codoall depede ge f PE PE or equalel PE PE P Wh kowledge of Idepedece s useful Lower comple me space search oaes effce ferece for all kds of queres Sa ued!! Srucured kowledge abou he doma eas o learg boh from eper ad from daa eas o grow 3

4 Where do probabl dsrbuos come from? Idea Oe: uma Doma Epers Idea wo: Smpler probabl facs ad some algebra e.g. P P P P Idea hree: Lear hem from daa! A good chuk of hs course s esseall abou arous was of learg arous forms of hem! Des Esmao A Des Esmaor lears a mappg from a se of arbues o a Probabl Ofe kow as parameer esmao f he dsrbuo form s specfed omal Gaussa hree mpora ssues: aure of he daa d correlaed Obece fuco LE AP Algorhm smple algebra grade mehods E Ealuao scheme lkelhood o es daa predcabl cossec 4

5 Parameer Learg from d daa Goal: esmae dsrbuo parameers from a daase of depede decall dsrbued d full obsered rag cases D {... } amum lkelhood esmao LE. Oe of he mos commo esmaors. Wh d ad full-obserabl assumpos wre L as he lkelhood of he daa: L P K ; P ; P ; K P P ; 3. pck he seg of parameers mos lkel o hae geeraed he daa we saw: ; * arg ma L arg ma log L Eample : eroull model Daa: We obsered d co ossg: D{ 0 0} Represeao: ar r.: odel: p P p for 0 for ow o wre he lkelhood of a sgle obserao? P { 0 } P he lkelhood of daased{ }: P... P #head #als 5

6 LE Obece fuco: h l ; D log P D log log log We eed o mamze hs w.r.. ake deraes wr h h l h h 0 h LE or LE Suffce sascs h where k requec as sample mea he cous are suffce sascs of daa D LE for dscree o dsrbuos ore geerall s eas o show ha # records whch ee s rue P ee oal umber of records hs s a mpora bu somemes o so effece learg algorhm!

7 Eample : uarae ormal Daa: We obsered d real samples: odel: D{ } P Log lkelhood: / πσ ep{ µ / σ } LE: ake derae ad se o zero: µ l ; D logp D log πσ σ l µ / σ µ µ LE l 4 σ σ σ µ σ LE µ L Oerfg Recall ha for eroull Dsrbuo we hae Wha f we ossed oo few mes so ha we saw zero head? We hae head ad we wll predc ha he probabl of L 0 seeg a head e s zero!!! he rescue: head L head Where ' s kow as he pseudo- magar cou head L u ca we make hs more formal? head al head ' head al ' 7

8 he aesa heor he aesa heor: e.g. for dae D ad model P D PD P/PD he poseror equals o he lkelhood mes he pror up o a cosa. hs allows us o capure ucera abou he model a prcpled wa erarchcal aesa odels are he parameers for he lkelhood p are he parameers for he pror p. We ca hae hper-hper-parameers ec. We sop whe he choce of hper-parameers makes o dfferece o he margal lkelhood; pcall make hperparameers cosas. Where do we ge he pror? Iellge guesses Emprcal aes pe-ii mamum lkelhood compug po esmaes of : LE arg ma p 8

9 9 aesa esmao for eroull ea dsrbuo: Poseror dsrbuo of : oce he somorphsm of he poseror o he pror such a pror s called a cougae pror β β h h p p p P Γ Γ Γ β β β β β β ; P aesa esmao for eroull co'd Poseror dsrbuo of : amum a poseror AP esmao: Poseror mea esmao: Pror sregh: Aβ A ca be eroperaed as he sze of a magar daa se from whch we oba he pseudo-cous β β h h p p p P β β d C d D p h aes h aa parameers ca be udersood as pseudo-cous... ma log arg AP P

10 Effec of Pror Sregh Suppose we hae a uform pror β/a ad we obsere h 8 Weak pror A. Poseror predco: p h h 8 ' Srog pror A 0. Poseror predco: 0 p h h 8 ' oweer f we hae eough daa washes awa he pror. e.g. h he he esmaes uder weak ad srog pror are 000 ad respecel boh of whch are close o 0. aesa esmao for ormal dsrbuo ormal Pror: Jo probabl: Poseror: / πτ ep{ µ µ τ } P µ / P µ / πσ ep µ σ / πτ ep{ µ µ / τ } 0 0 omework!!! 0

11 ache Learg 0-70/5 70/ all 006 Iroduco o Regresso Erc g Lecure 3 Sepember Readg: Chap. 3 C ache learg for aparme hug ow ou'e moed o Psburgh!! Ad ou wa o fd he mos reasoabl prced aparme sasfg our eeds: square-f. # of bedroom dsace o campus Lg area f # bedroom.5 Re $ ??

12 he learg problem eaures: Lg area dsace o campus # bedroom Deoe as [ k ] arge: Re Deoed as rag se: re Lg area re Lg area Locao k k k K K K Y or Lear Regresso Assume ha Y arge s a lear fuco of feaures: e.g.: le's assume a acuous "feaure" 0 hs s he ercep erm wh? ad defe he feaure ecor o be: he we hae he followg geeral represeao of he lear fuco: Our goal s o pck he opmal. ow! We seek ha mmze he followg cos fuco: 0 ˆ J ˆ

13 he Leas-ea-Square LS mehod he Cos uco: J Cosder a grade desce algorhm: J he Leas-ea-Square LS mehod ow we hae he followg desce rule: or a sgle rag po we hae: hs s kow as he LS updae rule or he Wdrow-off learg rule hs s acuall a "sochasc" "coordae" desce algorhm hs ca be used as a o-le algorhm 3

14 he Leas-ea-Square LS mehod Seepes desce oe ha: J J K J k hs s as a bach grade desce algorhm Some mar deraes or R m f : a R defe: f A A f A f A m race: ra A L O L A A m ra a f f r AC rca rca Some fac of mar deraes whou proof ra raa C CA C A A A A A A A 4

15 5 he ormal equaos Wre he cos fuco mar form: o mmze J ake derae ad se o zero: J 0 J r r r r he ormal equaos * A recap: LS updae rule Pros: o-le low per-sep cos Cos: coordae mabe slow-coergg Seepes desce Pros: fas-coergg eas o mpleme Cos: a bach ormal equaos Pros: a sgle-sho algorhm! Eases o mpleme. Cos: eed o compue pseudo-erse - epese umercal ssues e.g. mar s sgular.. *

16 Geomerc Ierpreao of LS he predcos o he rag daa are: ˆ * oe ha ˆ I ad ˆ I 0!! ŷ s he orhogoal proeco of o he space spaed b he colums of Probablsc Ierpreao of LS Le us assume ha he arge arable ad he pus are relaed b he equao: where ε s a error erm of umodeled effecs or radom ose ow assume ha ε follows a Gaussa 0σ he we hae: ε ep πσ σ ; p depedece assumpo: L p ; ep πσ σ 6

17 Probablsc Ierpreao of LS co. ece he log-lkelhood s: l log πσ σ Do ou recogze he las erm? Yes s: J hus uder depedece assumpo LS s equale o LE of! eod basc LR LR wh o-lear bass fucos Locall weghed lear regresso Regresso rees ad ullear Ierpolao 7

18 LR wh o-lear bass fucos LR does o mea we ca ol deal wh lear relaoshps We are free o desg o-lear feaures uder LR m 0 φ φ where he φ are fed bass fucos ad we defe φ 0. Eample: polomal regresso: 3 [ ] φ : We wll be cocered wh esmag dsrbuos oer he weghs ad choosg he model order. ass fucos here are ma bass fucos e.g.: Polomal Radal bass fucos Sgmodal φ φ µ φ σ s ep µ s Sples ourer Waeles ec 8

19 D ad D Rs D R Afer f: Good ad ad Rs A good D R wo bad D Rs 9

20 Locall weghed lear regresso Oerfg ad uderfg Locall weghed lear regresso he algorhm: Isead of mmzg ow we f o mmze Where do w 's come from? J J w ep τ w where s he quer po for whch we'd lke o kow s correspodg Esseall we pu hgher weghs o errors o rag eamples ha are close o he quer po ha hose ha are furher awa from he quer Do we also hae a probablsc erpreao here as we dd for LR? 0

21 Paramerc s. o-paramerc Locall weghed lear regresso s he frs eample we are rug o of a o-paramerc algorhm. he uweghed lear regresso algorhm ha we saw earler s kow as a paramerc learg algorhm because has a fed fe umber of parameers he whch are f o he daa; Oce we'e f he ad sored hem awa we o loger eed o keep he rag daa aroud o make fuure predcos. I coras o make predcos usg locall weghed lear regresso we eed o keep he ere rag se aroud. he erm "o-paramerc" roughl refers o he fac ha he amou of suff we eed o keep order o represe he hpohess grows learl wh he sze of he rag se. Robus Regresso he bes f from a quadrac regresso u hs s probabl beer ow ca we do hs?

22 LOESS-based Robus Regresso Remember wha we do "locall weghed lear regresso"? we "score" each po for s mpoece ow we score each po accordg o s "fess" Coures o Adrew oor Robus regresso or k o R Le k k be he kh daapo Le es k be predced alue of k Le w k be a wegh for daa po k ha s large f he daa po fs well ad small f fs badl: w φ k es k k he redo he regresso usg weghed daa pos. Repea whole hg ul coerged!

23 Robus regresso probablsc erpreao Wha regular regresso does: Assume k was orgall geeraed usg he followg recpe: k k 0 σ Compuaoal ask s o fd he amum Lkelhood esmao of Robus regresso probablsc erpreao Wha LOESS robus regresso does: Assume k was orgall geeraed usg he followg recpe: wh probabl p: k k 0 σ bu oherwse k ~ µ σ huge Compuaoal ask s o fd he amum Lkelhood esmaes of p µ ad σ huge. he algorhm ou saw wh erae reweghg/refg does hs compuao for us. Laer ou wll fd ha s a sace of he famous E.. algorhm 3

24 Regresso ree Decso ree for regresso Geder Rch? um. Chldre # rael per r. Age Geder? o o emale ale : Yes : : 0 : 7 : Predced age39 Predced age36 A cocepual pcure Assumg regular regresso rees ca ou skech a graph of he fed fuco * oer hs dagram? 4

25 ow abou hs oe? ullear Ierpolao We waed o creae a couous ad pecewse lear f o he daa ake home message Grade desce O-le ach ormal equaos Equalece of LS ad LE LR does o mea fg lear relaos bu lear combao or bass fucos ha ca be o-lear Weghg pos b mporace ersus b fess 5

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Introduction to Regression. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Mache Learg CSE6740/CS764/ISYE6740, Fall 0 Itroducto to Regresso Le Sog Lecture 4, August 30, 0 Based o sldes from Erc g, CMU Readg: Chap. 3, CB Mache learg for apartmet hutg Suppose ou are to move to

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

To Estimate or to Predict

To Estimate or to Predict Raer Schwabe o Esmae or o Predc Implcaos o he esg or Lear Mxed Models o Esmae or o Predc - Implcaos o he esg or Lear Mxed Models Raer Schwabe, Marya Prus raer.schwabe@ovgu.de suppored by SKAVOE Germa ederal

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Optimal Eye Movement Strategies in Visual Search (Supplement)

Optimal Eye Movement Strategies in Visual Search (Supplement) Opmal Eye Moveme Sraeges Vsual Search (Suppleme) Jr Naemk ad Wlso S. Gesler Ceer for Percepual Sysems ad Deparme of Psychology, Uversy of exas a Aus, Aus X 787 Here we derve he deal searcher for he case

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model Amerca Joural of Theorecal ad Appled Sascs 06; 5(3): 80-86 hp://www.scecepublshggroup.com/j/ajas do: 0.648/j.ajas.060503. ISSN: 36-8999 (Pr); ISSN: 36-9006 (Ole) Regresso Approach o Parameer Esmao of a

More information

Generative vs. Discriminative Classifiers

Generative vs. Discriminative Classifiers Geerate s. Dscrmate Classfers Goal: Wsh to lear f: Y, e.g., P(Y ) Geerate classfers (e.g., Naïe Baes): Assume some fuctoal form for P( Y), P(Y) hs s a geerate model of the data! Estmate parameters of P(

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Reve: Fal Exam (//005) Reve-Fal- Fal Exam Dec. 6 h Frday :0-3 pm, Mudd Rm 644 Reve Fal- Chap 5: Lear Dscrma Fucos Reve

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

PubH 7440 Spring 2010 Midterm 2 April

PubH 7440 Spring 2010 Midterm 2 April ubh 7440 Sprg 00 Mderm Aprl roblem a: Because \hea^_ s a lear combao of ormal radom arables wll also be ormal. Thus he mea ad arace compleel characerze he dsrbuo. We also use ha he Z ad \hea^{-}_ are depede.

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination Lecure 3 Topc : Drbuo, hypohe eg, ad ample ze deermao The Sude - drbuo Coder a repeaed drawg of ample of ze from a ormal drbuo of mea. For each ample, compue,,, ad aoher ac,, where: The ac he devao of

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01 ECO 745, Homework 6 Le Cabrera. Assume that the followg data come from the lear model: ε ε ~ N, σ,,..., -6. -.5 7. 6.9 -. -. -.9. -..6.4.. -.6 -.7.7 Fd the mamum lkelhood estmates of,, ad σ ε s.6. 4. ε

More information

RATIO ESTIMATORS USING CHARACTERISTICS OF POISSON DISTRIBUTION WITH APPLICATION TO EARTHQUAKE DATA

RATIO ESTIMATORS USING CHARACTERISTICS OF POISSON DISTRIBUTION WITH APPLICATION TO EARTHQUAKE DATA The 7 h Ieraoal as of Sascs ad Ecoomcs Prague Sepember 9-0 Absrac RATIO ESTIMATORS USING HARATERISTIS OF POISSON ISTRIBUTION WITH APPLIATION TO EARTHQUAKE ATA Gamze Özel Naural pulaos bolog geecs educao

More information

Unscented Transformation Unscented Kalman Filter

Unscented Transformation Unscented Kalman Filter Usceed rsformo Usceed Klm Fler Usceed rcle Fler Flerg roblem Geerl roblem Seme where s he se d s he observo Flerg s he problem of sequell esmg he ses (prmeers or hdde vrbles) of ssem s se of observos become

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

Efficient Estimators for Population Variance using Auxiliary Information

Efficient Estimators for Population Variance using Auxiliary Information Global Joural of Mahemacal cece: Theor ad Praccal. IN 97-3 Volume 3, Number (), pp. 39-37 Ieraoal Reearch Publcao Houe hp://www.rphoue.com Effce Emaor for Populao Varace ug Aular Iformao ubhah Kumar Yadav

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

Markov random field (MRF) that is used as our prior belief about the world. Data from range

Markov random field (MRF) that is used as our prior belief about the world. Data from range Ole learg occupacy grd maps for moble robos Hogju L *, Mguel Barão,, Luís Mguel Rao Deparme of Iformacs, Uersy of Eora, Eora, 7004-56, Porugal Corol of Dyamcal Sysems Group, INESC-ID, Lsboa, 000-09, Porugal

More information

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models Ieraoal Bomerc Coferece 22/8/3, Kobe JAPAN Survval Predco Based o Compoud Covarae uder Co Proporoal Hazard Models PLoS ONE 7. do:.37/oural.poe.47627. hp://d.plos.org/.37/oural.poe.47627 Takesh Emura Graduae

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Density estimation III.

Density estimation III. Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e

More information

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear combato of put compoets f + + + K d d K k - parameters

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

Mathematical Formulation

Mathematical Formulation Mahemacal Formulao The purpose of a fe fferece equao s o appromae he paral ffereal equao (PE) whle maag he physcal meag. Eample PE: p c k FEs are usually formulae by Taylor Seres Epaso abou a po a eglecg

More information

Competitive Facility Location Problem with Demands Depending on the Facilities

Competitive Facility Location Problem with Demands Depending on the Facilities Aa Pacc Maageme Revew 4) 009) 5-5 Compeve Facl Locao Problem wh Demad Depedg o he Facle Shogo Shode a* Kuag-Yh Yeh b Hao-Chg Ha c a Facul of Bue Admrao Kobe Gau Uver Japa bc Urba Plag Deparme Naoal Cheg

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008 Mache Learg 0-70/5 70/5-78 78 Fall 2008 Hdde Marov Model Erc Xg Lecure 7 March 24 2008 Readg: Cha. 3 C.B boo Erc Xg Erc Xg 2 Hdde Marov Model: from sac o damc mure models Sac mure Damc mure Y Y Y 2 Y 3

More information

Department of Economics University of Toronto

Department of Economics University of Toronto Deparmen of Economcs Unversy of Torono ECO408F M.A. Economercs Lecure Noes on Heeroskedascy Heeroskedascy o Ths lecure nvolves lookng a modfcaons we need o make o deal wh he regresson model when some of

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS Vol.7 No.4 (200) p73-78 Joural of Maageme Scece & Sascal Decso IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS TIANXIANG YAO AND ZAIWU GONG College of Ecoomcs &

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

Lecture VI Regression

Lecture VI Regression Lecure VI Regresson (Lnear Mehods for Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure VI: MLSC - Dr. Sehu Vjayakumar Lnear Regresson Model M

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

Pricing Asian Options with Fourier Convolution

Pricing Asian Options with Fourier Convolution Prcg Asa Opos wh Fourer Covoluo Cheg-Hsug Shu Deparme of Compuer Scece ad Iformao Egeerg Naoal Tawa Uversy Coes. Iroduco. Backgroud 3. The Fourer Covoluo Mehod 3. Seward ad Hodges facorzao 3. Re-ceerg

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Pricing of CDO s Based on the Multivariate Wang Transform*

Pricing of CDO s Based on the Multivariate Wang Transform* Prcg of DO s Based o he Mulvarae Wag Trasform* ASTIN 2009 olloquum @ Helsk 02 Jue 2009 Masaak Kma Tokyo Meropola versy/ Kyoo versy Emal: kma@mu.ac.p hp://www.comp.mu.ac.p/kmam * Jo Work wh Sh-ch Moomya

More information

Redundancy System Fault Sampling Under Imperfect Maintenance

Redundancy System Fault Sampling Under Imperfect Maintenance A publcao of CHEMICAL EGIEERIG TRASACTIOS VOL. 33, 03 Gues Edors: Erco Zo, Pero Barald Copyrgh 03, AIDIC Servz S.r.l., ISB 978-88-95608-4-; ISS 974-979 The Iala Assocao of Chemcal Egeerg Ole a: www.adc./ce

More information

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions EMA5 Lecue 3 Seady Sae & Noseady Sae ffuso - Fck s d Law & Soluos EMA 5 Physcal Popees of Maeals Zhe heg (6) 3 Noseady Sae ff Fck s d Law Seady-Sae ffuso Seady Sae Seady Sae = Equlbum? No! Smlay: Sae fuco

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1 STA 08 Appled Lear Models: Regresso Aalyss Sprg 0 Soluto for Homework #. Let Y the dollar cost per year, X the umber of vsts per year. The the mathematcal relato betwee X ad Y s: Y 300 + X. Ths s a fuctoal

More information

Advanced Machine Learning

Advanced Machine Learning dvaced ache Learg Learg rahcal odels Learg full observed ad arall observed BN rc g Lecure 4 ugus 3 009 Readg: rc g rc g @ U 006-009 Iferece ad Learg BN descrbes a uque robabl dsrbuo P Tcal asks: Task :

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

General Complex Fuzzy Transformation Semigroups in Automata

General Complex Fuzzy Transformation Semigroups in Automata Joural of Advaces Compuer Research Quarerly pissn: 345-606x eissn: 345-6078 Sar Brach Islamc Azad Uversy Sar IRIra Vol 7 No May 06 Pages: 7-37 wwwacrausaracr Geeral Complex uzzy Trasformao Semgroups Auomaa

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning Advaced Itroducto to Mache Learg 075, Fall 04 Lear Regresso ad Sparst Erc g Lecture, September 0, 04 Readg: Erc g @ CMU, 04 Mache learg for apartmet hutg ow ou've moved to Pttsburgh!! Ad ou wat to fd the

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

An Efficient Dual to Ratio and Product Estimator of Population Variance in Sample Surveys

An Efficient Dual to Ratio and Product Estimator of Population Variance in Sample Surveys "cece as True Here" Joural of Mahemacs ad ascal cece, Volume 06, 78-88 cece gpos Publshg A Effce Dual o Rao ad Produc Esmaor of Populao Varace ample urves ubhash Kumar Yadav Deparme of Mahemacs ad ascs

More information

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent oucms Couga Gas Mchal Kazha (6.657) Ifomao abou h Sma (6.757) hav b pos ol: hp://www.cs.hu.u/~msha Tch Spcs: o M o Tusay afoo. o Two paps scuss ach w. o Vos fo w s caa paps u by Thusay vg. Oul Rvw of Sps

More information

Speech, NLP and the Web

Speech, NLP and the Web peech NL ad he Web uhpak Bhaacharyya CE Dep. IIT Bombay Lecure 38: Uuperved learg HMM CFG; Baum Welch lecure 37 wa o cogve NL by Abh Mhra Baum Welch uhpak Bhaacharyya roblem HMM arg emac ar of peech Taggg

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information