EE 6885 Statistical Pattern Recognition

Size: px
Start display at page:

Download "EE 6885 Statistical Pattern Recognition"

Transcription

1 EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Reve: Fal Exam (//005) Reve-Fal- Fal Exam Dec. 6 h Frday :0-3 pm, Mudd Rm 644 Reve Fal-

2 Chap 5: Lear Dscrma Fucos Reve Fal-3 Lear Dscrma Classfers g( x) = x Augmeed Vecor 0 y fd egh ad bas o x x x d = = a 0 d 0 = = g( x) = g( y) = a y map y o class ω f g( y)>0, oherse class ω r [, x] Normalzao y class ω, y ( y ) y-space Desg Obecve a y >b, y a-space Reve Fal-4

3 Mmal Squared-Error Soluo y Y y = y rag sample marx dmeso: x (d) s ay b = defe J = ( ) = ajs Y ( Ya b) = 0 a= YY Yb= Yb ( ) ( ) Y = Y Y Y Obecve: a y =b, y Example rag samples: class ω: (, ),(,0) class ω : (3,),(,3) 0 * Y = b = fd Y, he compue a = Y b 3 3 Reve Fal-5 = Ya b = ( Ya b) ( Ya b) pseudo-verse : (d) x Vecor Dervave (Grade) ad Cha Rule Cosder scalar fuco of vecor pu: J ( x) Vecor dervave (grade) xj( x)=[ J / x, J / x,, J / x ] d = er produc J ab= akbk = a ab Marx-vecor mulplcao Herma J x Ax x A x b = = k b ab= ba b = a Geeralzed cha rule o cosder x= Ax, e.. x = Ax δx J J x = x x δx x A x x = A x A x J = A x J J = Ab b b = A δx / δ x = A HW#5 P. Reve Fal-6 3

4 Chap. 5. ad Burges 98 paper: Suppor Vecor Mache Reve Fal-7 Suppor Vecor Mache (uoral by Burges 98) Look for separao plae h he hghes marg Decso boudary : H 0 HW#5 P. 0 x b= Learly separable x b x class ω.e. y = x b x class ω.e. y = Iequaly cosras : y ( x b) 0, o parallel hyperplaes defg he marg hyperplae H( H ) : x b= hyperplae H( H ) : x b= Marg: sum of dsaces of he closes pos o he separao plae marg = / Bes plae defed by ad b Reve Fal-8 4

5 Fdg he maxmal marg mmze Use he Lagrage mulpler echque for he cosraed op. problem mmze L r... ad b p L = ( y ( b) ) l p α x = α 0 dl l p = 0 = αyx d = dl l p = 0 αy = 0 db = subec o equaly cosras y ( x b) 0 =,, l maxmze L r... ad b L D = = = = l l l = α αα y y x x h codos : l α 0 α y = 0 D Quadrac Programmg Prmal Problem Dual Problem Reve Fal-9 HW#6 P. KK codos for separable case l * = αyx = α > 0 α = 0 Ho o compue ad b? Ho o classfy e daa? f α > 0, x s o H or H ad s a suppor vecor Reve Fal-0 5

6 No-separable Add slack varables ξ f ξ >, he x s msclassfed (.e. rag error) Lagrage mulpler: mmze Ne obecve fuco Esure posvy Reve Fal- All he pos locaed he marg gap or he rog sde ll ge α = C 0 < α C α = C afer C creases Whe C creases, samples h errors ge more eghs beer rag accuracy, bu smaller marg less geeralzao performace Reve Fal- 6

7 Mappg o Hgher-Dmeso Space Map o a hgh dmesoal space, o make he daa separable Fd he SVM he hgh-dm space (embeddg space) N s g( x) = α yφ( s ) Φ ( x) b = defe kerel K ( s, x) = Φ( s ) Φ( x) N s = g( x) = α yk( s, x) b We ca use he same mehod (Dual Problem) o maxmze L D o fd l l l L = α αα y y Φ( x ) Φ( x ) D = = = l l l α αα yyk ( x, x ) = = = = HW#5 P. α Reve Fal-3 Chap. 9 : Aalyss of Learg Algorhms Reve Fal-4 7

8 Bas vs. varace for esmaor Assume F s a quay hose value s o be esmaed daa source Radomly dra samples D = x, x, x { } expeced esmao error: E D gd F = E ( g ) F E g E ( g ) D D D D D D g D Lear o esmae F Repea mulple mes Bas Varace Reve Fal-5 Bas vs. varace for classfcao Groud ruh: D Gaussa Complex models have smaller bases, more varaces ha smple models Icreasg rag pool sze helps reduce he varace Occam s Razor prcple Reve Fal-6 8

9 Boosg For each compoe classfer, use he subse of daa ha s mos formave gve he curre se of compoe classfers rag daa D = { x, x, x} Radomly dra a subse of samples D Use he mos formave subse D from remag se Weak classfer C Weak classfer C classfer C k Classfer Fuso Reve Fal-7 HW#7 P. As AdaBoos Ref. Reve Fal-8 9

10 Fal Classfer h f Whe ll he fal classfer be correc? Suppose c()=0, he h f () s correc f I geeral amely (log β ) h( ) log( β ) = = h () / β β = = h β β h ( ) c( ) f( ) s correc f = = D β h ( ) c( ) () β D () = = Reve Fal-9 / D() / h ( ) / β β = = D ( ) β =? / hf( ) s correc f D( ) β N N D ( ), h () c (), h () c () = f heorem Ref. N N ( ( β)( E)) = = N N ( E) = = f β = / / N ( E) = = = E β =?? / E ( E ) / β = ( E ( E )) = = = / Ref. E β = E Fll deals o complee HW7 P. Reve Fal-0 0

11 AdaBoos Learg he frs o feaures afer feaure seleco Reve Fal- Cascade classfer for effcecy Break a large classfer o cascade of smaller classfers E.g., 00 feaures o {, 0, 5, 50, 50} Adus hreshold early sage so ha reecs ulkely regos quckly Desg radeoffs Number of feaures each classfer hreshold uses each classfer Number of classfers Add sages ul obecve P-R s me P R Reve Fal-

12 Mxure of Expers Each compoe classfer s reaed as a exper he predcos from each exper are pooled ad fused by a gag subsysem k P( y x, Θ ) = P( r x, θ0 ) P( y x, θr ) r= here x s he pu paer, y s he oupu Pr ( x, θ ) Deerme 0,.e., mxure prors? Maxmze daa lkelhood grade dece or EM k ld (, Θ ) = l Pr ( x, θ ) P( y x, θ ) r= 0 r Reve Fal-3 Chap. 0 : feaure dmeso reduco ad cluserg Reve Fal-4

13 PCA for feaure dmeso reduco Approxmae daa h reduced dmesos -D approxmao xˆ = mae, m: mea J ˆ () e = x k x k = ( m a e k ) x k k= k= ak e ake ( xk m) xk m = ( ) e xk m xk m k= k= k= k= k= e ( k )( k ) k x m x m e x m = ese xk m k= k= k= Approxmao Error = = S: scaer marx Opmal e mmzg error J = ( ) sample covarace -- egevecor of S h he larges egevalue Mul-Dm. approxmao d x m a e ha are he opmal e? = = Reve Fal-5 Idepede Compoe Aalyss Seek mos depede drecos, sead of mmze represeao errors (sum-squared-error) as PCA Bld source separao speech mxure f : sgmod f( x)=/( e x ) Reve Fal-6 3

14 Fd he bes eghs o make he oupu compoes depede Ho o measure depedece? Lear combao of radom varables leads o Normal dsrbuo Use he hgh-order sascs o measure No-Gaussay Grade Dece o eghs for dscoverg each compoe (from Ells) FasICA Malab package : hp://.cs.hu.f/proecs/ca/fasca/ PCA Reve Fal-7 ICA LDA: Lear Dscrma Aalyss Gve a se of daa x, x,, x, ad her class labels Fd he bes proeco dmeso, y = x so ha are mos separable y m = x= m x D y Y m : sample meas s = ( y m ) s s : sample meas of proeced pos m : h-class scaer PCA LDA maxmzes crero fuco: ( ) = m J m s s s s Reve Fal-8 m m y 4

15 LDA Scaer Marces before proeco: S = ( x m )( x m ) x D s S s s afer proeco: = = ( S S ) = S S = S S : h-class scaer marx Smlarly, beee-class scaer marx S = ( )( ) B m m m m SB J ( ) = S op = arg max J ( ) Recall he Gaussa Cases =Σ ( μ μ ) = S ( m m ) Mea dfferece vecor he PCA space P.5-8 of Chap 0 Reve Fal-9 Mul-Dmesoal Scalg (MDS) Vsualze he daa pos a loer-dm space Ho o preserve he orgal srucure (e.g., dsace)? Opmzao Crero J ee = < ( d δ ) < δ J ff d δ = ( ) δ < Grade Dece o fd e locaos y k y y J ( ) k ee = dk δk δ d < k Somemes rak order s more mpora k Reve Fal-30 5

16 Classfcao vs. Cluserg x Decso Boudary x x x Daa h labels Supervsed Fd decso boudares Daa hou labels Usupervsed Fd daa srucures ad clusers Reve Fal-3 Reve: Mxure Of Gaussas Model daa dsrbuos as GMM px ( ) = pzpx ( ) ( z) Gve daa x,, x N, log-lkelhood: l = N = log z z ( μ, ) = π N x Σ z z z ( π N( x μ, Σ ) π N( μ, Σ ) x ) (, θ ) poserers = τ = p z = x Reve Fal-3 p(x) π 0 π D / Poseror probably of x beg geeraed by a cluser = Z z= π z ( π ) 0 0 z Σ z x e z Σz z ( x μ ) ( x μ ) parameer : θ = { μ, Σ, μ, Σ } Opmzao fd { μ, Σ, μ, Σ} ad mxure prors π o max. lkelhood 0 0 6

17 GMM for Cluserg Gve he esmaed GMM model, compue he probably ha x s geeraed by cluser ( ) poserers = τ = p z = x, θ, θ = { μ, Σ, μ, Σ, π } Expecao : τ () = π ( ) N ( ) π ( ) ( ) ( x μ, Σ ) () () N ( x μ, Σ ) Each sample s assged o every cluser h a sof decso. Reve Fal-33 Comparso: K-Mea Cluserg K-mea cluserg Fx K values Choose al represeave of each cluser Map each sample o s closes cluser for =,,...,N, Re-compue he ceers Ca be used o alze he EM for GMM x() C C o o o oo oo C K x Ck, f Ds(x, Ck) < Ds(x, Ck' ), k k ' Hard decso ed C 3 x() Reve Fal-34 7

18 Herarchcal Cluserg Add herarchcal srucures o clusers may real-orld problems have such herarchcal srucures e.g., bologcal, semac axoomy Agglomerave vs. Dvsve Dedrogram Use large gap of smlary o fd a suable umber of clusers cluserg valdy Reve Fal-35 dsaces or smlary for mergg d m ( D, D ) = m x x dmax ( D, D) = max x x x D, x D x D, x D Neares eghbor algorhm, mmal algorhm Mergg resuls he m. dsace spag ree Bu sesve o ose/ouler Farhes eghbor algorhm, maxmum algorhm Use dsace hreshold o avod large-dameer clusers Dscourage formg elogaed clusers HW#8 P. Reve Fal-36 8

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Part II Image recognition

Part II Image recognition Image ad speech recogo Lecure oes Włodzmerz Kasprza Proec s co-faced by Europea Uo wh Europea Socal Fud. Paer recogo. Paer rasformao 3. Paer classfcao 4. Image pre-processg CONTENT Par I Paer recogo Par

More information

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS

IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS Vol.7 No.4 (200) p73-78 Joural of Maageme Scece & Sascal Decso IMPROVED PORTFOLIO OPTIMIZATION MODEL WITH TRANSACTION COST AND MINIMAL TRANSACTION LOTS TIANXIANG YAO AND ZAIWU GONG College of Ecoomcs &

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks

Content. A Strange World. Clustering. Introduction. Unsupervised Learning Networks. What is Unsupervised Learning? Unsupervised Learning Networks Usupervsed Learg Newors Cluserg Coe Iroduco Ipora Usupervsed Learg NNs Hag Newors Kohoe s Self-Orgazg Feaure Maps Grossberg s AR Newors Couerpropagao Newors Adapve BAN Neocogro Cocluso Usupervsed Learg

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Interval Regression Analysis with Reduced Support Vector Machine

Interval Regression Analysis with Reduced Support Vector Machine Ieraoal DSI / Asa ad Pacfc DSI 007 Full Paper (July, 007) Ierval Regresso Aalyss wh Reduced Suppor Vecor Mache Cha-Hu Huag,), Ha-Yg ao ) ) Isue of Iforao Maagee, Naoal Chao Tug Uversy (leohkko@yahoo.co.w)

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

EXACT DISCRIMINANT FUNCTION DESIGN USING SOME OPTIMIZATION TECHNIQUES. Yury Laptin, Alexander Vinogradov

EXACT DISCRIMINANT FUNCTION DESIGN USING SOME OPTIMIZATION TECHNIQUES. Yury Laptin, Alexander Vinogradov 14 8 Classfcao, Forecasg, Daa Mg EXACT DISCRIMINANT FUNCTION DESIGN USING SOME OPTIMIZATION TECHNIQUES Yury Lap, Alexader Vogradov Absrac: Some aspecs of desg of he dscrma fucos ha he bes way separae pos

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

Dimension Reduction. Curse of dimensionality

Dimension Reduction. Curse of dimensionality Deso Reuco Deso Reuco Curse of esoaly h 5 feaures esos, each quaze o levels, creae 5 possble feaure cobaos, age ho ay saples you ee o esae p? ho o you vsualze he srucure a 5 esoal space? Oher probles ze

More information

To Estimate or to Predict

To Estimate or to Predict Raer Schwabe o Esmae or o Predc Implcaos o he esg or Lear Mxed Models o Esmae or o Predc - Implcaos o he esg or Lear Mxed Models Raer Schwabe, Marya Prus raer.schwabe@ovgu.de suppored by SKAVOE Germa ederal

More information

Real-time Classification of Large Data Sets using Binary Knapsack

Real-time Classification of Large Data Sets using Binary Knapsack Real-me Classfcao of Large Daa Ses usg Bary Kapsack Reao Bru bru@ds.uroma. Uversy of Roma La Sapeza AIRO 004-35h ANNUAL CONFERENCE OF THE ITALIAN OPERATIONS RESEARCH Sepember 7-0, 004, Lecce, Ialy Oule

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Clustering (Bishop ch 9)

Clustering (Bishop ch 9) Cluserng (Bshop ch 9) Reference: Daa Mnng by Margare Dunham (a slde source) 1 Cluserng Cluserng s unsupervsed learnng, here are no class labels Wan o fnd groups of smlar nsances Ofen use a dsance measure

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Optimal Eye Movement Strategies in Visual Search (Supplement)

Optimal Eye Movement Strategies in Visual Search (Supplement) Opmal Eye Moveme Sraeges Vsual Search (Suppleme) Jr Naemk ad Wlso S. Gesler Ceer for Percepual Sysems ad Deparme of Psychology, Uversy of exas a Aus, Aus X 787 Here we derve he deal searcher for he case

More information

1. Introduction. 2. Feature selection

1. Introduction. 2. Feature selection Face Deeco Usg Adaboosed RVM-based Compoe Classfer Al Reza Bayeseh ashk, Abolghassem Sayadya, SeyyedMajd Valollahzadeh Elecrcal Egeerg Deparme, Amrkabr Uversy of echology, 594 ehra, Ira Bayeseh_ar@yahoo.com,eea35@au.ac.r,valollahzadeh@yahoo.com

More information

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision

New Schedule. Dec. 8 same same same Oct. 21. ^2 weeks ^1 week ^1 week. Pattern Recognition for Vision ew Schedule Dec. 8 same same same Oct. ^ weeks ^ week ^ week Fall 004 Patter Recogto for Vso 9.93 Patter Recogto for Vso Classfcato Berd Hesele Fall 004 Overvew Itroducto Lear Dscrmat Aalyss Support Vector

More information

Spike-and-Slab Dirichlet Process Mixture Models

Spike-and-Slab Dirichlet Process Mixture Models Ope oural of Sascs 5-58 hp://dxdoorg/436/os566 Publshed Ole December (hp://wwwscrporg/oural/os) Spke-ad-Slab Drchle Process Mxure Models Ka Cu Wesha Cu Deparme of Sascal Scece Duke Uversy Durham USA School

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

EMD Based on Independent Component Analysis and Its Application in Machinery Fault Diagnosis

EMD Based on Independent Component Analysis and Its Application in Machinery Fault Diagnosis 30 JOURNAL OF COMPUTERS, VOL. 6, NO. 7, JULY 0 EMD Based o Idepede Compoe Aalyss ad Is Applcao Machery Faul Dagoss Fegl Wag * College of Mare Egeerg, Dala Marme Uversy, Dala, Cha Emal: wagflsky997@sa.com

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION

COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION COMPARISON OF ESTIMATORS OF PARAMETERS FOR THE RAYLEIGH DISTRIBUTION Eldesoky E. Affy. Faculy of Eg. Shbee El kom Meoufa Uv. Key word : Raylegh dsrbuo, leas squares mehod, relave leas squares, leas absolue

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model

Fundamentals of Speech Recognition Suggested Project The Hidden Markov Model . Projec Iroduco Fudameals of Speech Recogo Suggesed Projec The Hdde Markov Model For hs projec, s proposed ha you desg ad mpleme a hdde Markov model (HMM) ha opmally maches he behavor of a se of rag sequeces

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Radial Basis Function Networks

Radial Basis Function Networks Radal Bass Fucto Netorks Radal Bass Fucto Netorks A specal types of ANN that have three layers Iput layer Hdde layer Output layer Mappg from put to hdde layer s olear Mappg from hdde to output layer s

More information

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China,

VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS. Hunan , China, Mahemacal ad Compuaoal Applcaos Vol. 5 No. 5 pp. 834-839. Assocao for Scefc Research VARIATIONAL ITERATION METHOD FOR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS Hoglag Lu Aguo Xao Yogxag Zhao School of Mahemacs

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB

Machine Learning. Introduction to Regression. Lecture 3, September 19, Reading: Chap. 3, CB ache Learg 0-70/5 70/5-78 78 all 006 Iroduco o Regresso Erc g Lecure 3 Sepember 9 006 Readg: Chap. 3 C Iferece wh he Jo Compue Codoals 0.4 0. P lu eadhead P lu eadhead P eadhead 0.7 0. 0.05 0.05 0.05 0.05

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models

Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models Ieraoal Bomerc Coferece 22/8/3, Kobe JAPAN Survval Predco Based o Compoud Covarae uder Co Proporoal Hazard Models PLoS ONE 7. do:.37/oural.poe.47627. hp://d.plos.org/.37/oural.poe.47627 Takesh Emura Graduae

More information

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based)

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based) Feaure Sace 4. Feaure Sace ad Feaure Exraco Alex M. Marez alex@ece.osu.edu Hadous Hadousfor forece ECE874 874S S2007 May roblems scece ad egeerg ca be formulaed as a PR oe. For hs, we eed o defe a feaure

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

CS344: Introduction to Artificial Intelligence

CS344: Introduction to Artificial Intelligence C344: Iroduco o Arfcal Iellgece Puhpa Bhaacharyya CE Dep. IIT Bombay Lecure 3 3 32 33: Forward ad bacward; Baum elch 9 h ad 2 March ad 2 d Aprl 203 Lecure 27 28 29 were o EM; dae 2 h March o 8 h March

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) BBM406 - Itroduc0o to ML Sprg 204 Prcpal Compoet Aalyss PCA Aykut Erdem Dept. of Computer Egeerg HaceDepe Uversty Today Mo0va0o PCA algorthms Applca0os PCA shortcomgs Kerel PCA Sldes adopted from Barabás

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Abstract. Keywords: Mutation probability, evolutionary computation, optimization, sensitivity, variability. 1. Introduction. 2. Proposed Algorithm

Abstract. Keywords: Mutation probability, evolutionary computation, optimization, sensitivity, variability. 1. Introduction. 2. Proposed Algorithm EgOp 2008 Ieraoal Coferece o Egeerg Opmzao Ro de Jaero, Brazl, 01-05 Jue 2008. Absrac Redefg Muao Probables for Evoluoary Opmzao Problems Raja Aggarwal Faculy of Egeerg ad Compuer Scece Cocorda Uversy,

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

Few heuristic optimization algorithms to solve the multi-period fixed charge production-distribution problem

Few heuristic optimization algorithms to solve the multi-period fixed charge production-distribution problem Few heursc opmzao algorhms o solve he mul-perod fxed charge produco-dsrbuo problem N. Bala a,* ad N. Jawahar b a Deparme of Mechacal Egeerg,Sr Krsha College of Egeerg ad Techology, Combaore 641 008, Ida.

More information

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model

Regression Approach to Parameter Estimation of an Exponential Software Reliability Model Amerca Joural of Theorecal ad Appled Sascs 06; 5(3): 80-86 hp://www.scecepublshggroup.com/j/ajas do: 0.648/j.ajas.060503. ISSN: 36-8999 (Pr); ISSN: 36-9006 (Ole) Regresso Approach o Parameer Esmao of a

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF

The conditional density p(x s ) Bayes rule explained. Bayes rule for a classification problem INF INF 4300 04 Mulvarae clafcao Ae Solberg ae@fuoo Baed o Chaper -6 Duda ad Har: Paer Clafcao Baye rule for a clafcao proble Suppoe we have J, =,J clae he cla label for a pel, ad he oberved feaure vecor We

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

AN INCREMENTAL QUASI-NEWTON METHOD WITH A LOCAL SUPERLINEAR CONVERGENCE RATE. Aryan Mokhtari Mark Eisen Alejandro Ribeiro

AN INCREMENTAL QUASI-NEWTON METHOD WITH A LOCAL SUPERLINEAR CONVERGENCE RATE. Aryan Mokhtari Mark Eisen Alejandro Ribeiro AN INCREMENTAL QUASI-NEWTON METHOD WITH A LOCAL SUPERLINEAR CONVERGENCE RATE Arya Mokhar Mark Ese Alejadro Rbero Deparme of Elecrcal ad Sysems Egeerg, Uversy of Pesylvaa ABSTRACT We prese a cremeal Broyde-Flecher-Goldfarb-Shao

More information

Lecture 7: Linear and quadratic classifiers

Lecture 7: Linear and quadratic classifiers Lecture 7: Lear ad quadratc classfers Bayes classfers for ormally dstrbuted classes Case : Σ σ I Case : Σ Σ (Σ daoal Case : Σ Σ (Σ o-daoal Case 4: Σ σ I Case 5: Σ Σ j eeral case Lear ad quadratc classfers:

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

6. Nonparametric techniques

6. Nonparametric techniques 6. Noparametrc techques Motvato Problem: how to decde o a sutable model (e.g. whch type of Gaussa) Idea: just use the orgal data (lazy learg) 2 Idea 1: each data pot represets a pece of probablty P(x)

More information

Modified Integrated Multi-Point Approximation And GA Used In Truss Topology Optimization

Modified Integrated Multi-Point Approximation And GA Used In Truss Topology Optimization Joural of Muldscplary Egeerg Scece ad echology (JMES) Vol. 4 Issue 6, Jue - 2017 Modfed Iegraed Mul-Po Appromao Ad GA sed I russ opology Opmzao Adurahma M. Hasse 1, Mohammed A. Ha 2 Mechacal ad Idusral

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier Aoucemets Recogto II H3 exteded to toght H4 to be aouced today. Due Frday 2/8. Note wll take a whle to ru some thgs. Fal Exam: hursday 2/4 at 7pm-0pm CSE252A Lecture 7 Example: Face Detecto Evaluatg a

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management

The t copula with Multiple Parameters of Degrees of Freedom: Bivariate Characteristics and Application to Risk Management The copula wh Mulple Parameers of Degrees of Freedom: Bvarae Characerscs ad Applcao o Rsk Maageme Ths s a prepr of a arcle publshed Quaave Face November 9 DOI: 8/4697689385544 wwwadfcouk/jourals/rquf Xaol

More information

DIFFUSION MAPS FOR PLDA-BASED SPEAKER VERIFICATION

DIFFUSION MAPS FOR PLDA-BASED SPEAKER VERIFICATION DIFFUSION MAPS FOR PLDA-BASED SPEAKER VERIFICATION Ore Barka,, Haga Aroowz IBM Research Hafa, Israel School of Compuer Scece, Tel Avv Uversy, Israel oreba@l.bm.com, hagaa@l.bm.com ABSTRACT Durg he las

More information

SYRIAN SEISMIC CODE :

SYRIAN SEISMIC CODE : SYRIAN SEISMIC CODE 2004 : Two sac mehods have bee ssued Syra buldg code 2004 o calculae he laeral sesmc forces he buldg. The Frs Sac Mehod: I s he same mehod he prevous code (995) wh few modfcaos. I s

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

The Optimal Combination Forecasting Based on ARIMA,VAR and SSM

The Optimal Combination Forecasting Based on ARIMA,VAR and SSM Advaces Compuer, Sgals ad Sysems (206) : 3-7 Clausus Scefc Press, Caada The Opmal Combao Forecasg Based o ARIMA,VAR ad SSM Bebe Che,a, Mgya Jag,b* School of Iformao Scece ad Egeerg, Shadog Uversy, Ja,

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

( ) [ ] MAP Decision Rule

( ) [ ] MAP Decision Rule Announcemens Bayes Decson Theory wh Normal Dsrbuons HW0 due oday HW o be assgned soon Proec descrpon posed Bomercs CSE 90 Lecure 4 CSE90, Sprng 04 CSE90, Sprng 04 Key Probables 4 ω class label X feaure

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

New Guaranteed H Performance State Estimation for Delayed Neural Networks

New Guaranteed H Performance State Estimation for Delayed Neural Networks Ieraoal Joural of Iformao ad Elecrocs Egeerg Vol. o. 6 ovember ew Guaraeed H Performace ae Esmao for Delayed eural eworks Wo Il Lee ad PooGyeo Park Absrac I hs paper a ew guaraeed performace sae esmao

More information