Markov Modeling of Time-Series Data. via Spectral Analysis

Size: px
Start display at page:

Download "Markov Modeling of Time-Series Data. via Spectral Analysis"

Transcription

1 1st International Conference on InfoSymbiotics / DDDAS Session-2: Process Monitoring Nurali Virani Markov Modeling of Time-Series Data Department of Mechanical Engineering The Pennsylvania State University via Spectral Analysis Authors: Devesh K. Jha, Nurali Virani and Asok Ray Combustion instability detection This work has been supported by U.S. Air Force Office of Scientific Research (AFOSR) under Grant No. FA (Dynamic Data-driven Application Systems; PM: Dr. Frederica Darema)

2 Learning Information Representations for Time-Series Data Combustion Instability System health monitoring Flow regime in nuclear plant heat exchangers Challenges? Mathematical characterization and useful representation of data (Data to knowledge) Inference of accurate model structure and efficient estimation of model parameters (Modeling and analysis of hyper-parameters) Motivating Problems: Rotorcraft stability monitoring, structural health monitoring, combustion instability detection, target classification with seismic sensors, two-phase flow regime classification using ultrasonic, and battery state estimation How can we create compact representation of time-series data (using Markov models)?

3 Markov models for information representation from time-series data How to discretize data? 1. Alphabet size? 2. Location of partitions? 1. Uniform 2. Max-Entropy.s 1 s 2 s 1 s 1 s 2 s 1 s 2 s 2 s 1 s 1 s 1.. Markov Modeling? 1. Order Estimation? 2. Parameter Estimation? Symbolic Time-series Analysis Applications Anomaly/Change/Fault Detection Prognostics and Health Monitoring Activity Recognition Sensor Fusion for Event Detection

4 Definition of Probabilistic Finite State Automaton (PFSA) as a generative model Each state is a collection of symbols Collection of memory words once memory (depth) is estimated, e.g., Q={11,12,21,22} with A={1,2} and D=2 Deterministic algebraic structure Sufficient Statistic for the Markov model Advantages 1. Simple to infer model structure 2. Simple to estimate model parameters like symbol emission probabilities (as compared to using Dynamic programming in Hidden Markov Models)

5 Order Estimation for Markov Modeling Definition: Let be the observed symbol sequences where each. Then, the order (or depth) of the process generating is defined as the length such that : Most techniques follow a wrapper like search approach Build Model Find Performance Select the best one. Log-Likelihood based Order Estimation Signal reconstruction-based : Make models in symbolic domain Make predictions in symbolic space Generate predictions in the continuous domain Pick the best one Prediction by a model Euclidean metric

6 Order Estimation for Markov Modeling Definition: Let be the observed symbol sequences where each. Then, the order (or depth) of the process generating is defined as the length such that : Most techniques follow a wrapper like search approach Build Model Find Performance Select the best one. Log-Likelihood based Order Estimation Signal reconstruction-based : Make models in symbolic domain Make predictions in symbolic space Generate predictions in the continuous domain Pick the best one Prediction by a model Entropy rate-based Euclidean metric

7 Order Estimation for Markov Modeling* Approximate estimate *D.K. Jha, A. Srivastav, K. Mukherjee and A. Ray: Depth Estimation in Markov models of Time-Series Data via Spectral Analysis, in American Control Conference, 2015 ** D.K. Jha, A. Srivastav and A. Ray: Depth Estimation in Markov models of Time-Series Data, in preparation

8 Reduced Order Markov Modeling: State Merging with deterministic structure? The deterministic algebraic structure of the finite-state probabilistic graph constraints the state merging process Bigger state space requires more data for convergence, slower performance (?) 1 (?) 1 (?) 22 02; 20 2 (?) 2, 0 (?) 01; , 0 02; 20; 00; Nondeterminism (?) Is that a problem? The targets must be merged together Targets may not be statistically similar; Leads to statistical modeling error?

9 Reduced Order Markov Modeling: State Merging with Nondeterministic Structure Remove the algebraic constraints and allow non-determinism Merge states based on statistical distance Set of symbols s 1 s 2 s N Dynamic Bayesian Network 1. Non-deterministic probabilistic graph 2. Stopping rule (e.g., allowed model distortion or number of states in the final model) 3. Parameter estimation using dynamic factored graphical model 1 1 (for example) 1 Nondeterministic Structure

10 A Primer to Combustion Instability Dynamics Thermo-acoustic Feedback Cycle Low NO x emission regulation Low equivalence ratio combustion Prone to instabilities VERY FAST REACTIVE DYNAMICS (~10 3 s) COMPLEX VELOCITY, THERMAL & ACOUSTIC COUPLING Velocity Fluctuation (Flow Dynamics), u Heat Release Rate Fluctuation (Combustion), q Pressure Fluctuation (Combustor acoustics), p Du Dt + 1 ρ 0 p = 0 NONLINEAR COUPLED DYNAMICS OVERALL MECHANISM OF THERMO-ACOUSTIC INSTABILITY IN COMBUSTOR

11 Schematic of the Combustor Apparatus at Penn State PENN STATE CENTER FOR COMBUSTION, POWER AND PROPULSION Prof. Dominic Santavicca and coworkers Test Apparatus for Methane Gas Combustion STABLE Approximate Empirical Density UNSTABLE

12 Combustion Instability Dynamics STABLE COMBUSTION UNSTABLE COMBUSTION

13 Pressure Data during Lean-Premixed Combustion: Modeling Coarse graining of data results in lots of self-loop Down-sampling is required Find the statistics for the model with D= Different Model structures and parameters in different operating regimes Reflects changes in the temporal model of data

14 Reduced Order Markov Modeling: Comparison and Further Insights Statistically similar states suggest Symbolic Noise States are significantly different Informative Markov chain K-L distance between symbol emissions from different states Stable Combustion Pressure Data Unstable Combustion Pressure Data K-L distance between Information Theoretic Metrics for Comparing Complexity conditional of Markov symbol Chains Maximum Cluster Divergence : emission vs. marginal symbol emission Discrepancy between i.i.d. and Markov Statistics (Information gain by Markov Models)

15 Anomaly Detection during Combustion: Results

16 Behavior in Information Space Combustion Instability Detection: Departure from Stability Detection of departure from stable behavior Stable Case Each point is a row of symbol emission matrix (with A =3) Reduced Model with 3 states Cluster of the stable behavior Receiver Operating Curves (ROC) for different Metrics and Model Parameters Unstable Case Each point is a row of symbol emission matrix (with A =3) Reduced Model with 3 states Unstable behavior sticks to the edges of the simplex

17 Combustion Instability Detection: Detection of Unstable Phase Reduced Model with Two States on Simplex Plane Unstable Behavior Detection of Unstable Behavior Different from detection of departure from stable Train Gaussian Process (GP) to learn the manifold Each point is a row of symbol emission matrix (with A =3) Reduced Model with 2 states Stable Behavior Estimate Likelihoods for Stable and Unstable Instability Detection by the GP model Reduced Order Models perform equally good Reduced Order Model have lesser number of parameters to estimate Faster during test

18 Concluding Remarks Conclusions Compact representation for Markov models of time-series data by state aggregation Spectral analysis provides a computationally efficient technique for memory estimation State-aggregation using agglomerative clustering with symmetric K-L distance Final model is a non-deterministic finite state automata Experimental validation of the approach using pressure time-series from an unstable combustion process in a swirl-stabilized combustor Comparable performance of reduced-order models observed Future Research Use of ideas from Information theory like minimum description length (MDL) for model selection to terminate state aggregation Simultaneous search of the associated hyper-parameters for symbolic dynamics-based Markov modeling (partitions and order)

19 Thank You

Dynamic Data-driven Symbolic Causal Modeling for Battery Performance & Health Monitoring

Dynamic Data-driven Symbolic Causal Modeling for Battery Performance & Health Monitoring 8th International Conference on Information Fusion Washington, DC - July 6-9, 205 Dynamic Data-driven Symbolic Causal Modeling for Battery Performance & Health Monitoring Soumalya Sarkar Devesh K. Jha

More information

On Compression of Machine-derived Context Sets for Fusion of Multi-modal Sensor Data

On Compression of Machine-derived Context Sets for Fusion of Multi-modal Sensor Data On Compression of Machine-derived Context Sets for Fusion of Multi-modal Sensor Data Nurali Virani, Shashi Phoha, and Asok Ray Abstract Dynamic data-driven application systems (DDDAS) operate on a sensing

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Virtual Sensors and Large-Scale Gaussian Processes

Virtual Sensors and Large-Scale Gaussian Processes Virtual Sensors and Large-Scale Gaussian Processes Ashok N. Srivastava, Ph.D. Principal Investigator, IVHM Project Group Lead, Intelligent Data Understanding ashok.n.srivastava@nasa.gov Coauthors: Kamalika

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

Dynamic Data-Driven Design of Lean Premixed Combustors for Thermoacoustically Stable Operations

Dynamic Data-Driven Design of Lean Premixed Combustors for Thermoacoustically Stable Operations Pritthi Chattopadhyay Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 e-mail: pritthichatterjee@gmail.com Sudeepta Mondal Department of Mechanical

More information

Bayesian Identity Clustering

Bayesian Identity Clustering Bayesian Identity Clustering Simon JD Prince Department of Computer Science University College London James Elder Centre for Vision Research York University http://pvlcsuclacuk sprince@csuclacuk The problem

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

Early Detection of Combustion Instability by Neural-Symbolic Analysis on Hi-Speed Video

Early Detection of Combustion Instability by Neural-Symbolic Analysis on Hi-Speed Video Early Detection of Combustion Instability by Neural-Symbolic Analysis on Hi-Speed Video Soumalya Sarkar United Technology Research Center East Hartford, CT 068 sms388@gmail.com Kin Gwn Lore Mechanical

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Statistical Learning. Philipp Koehn. 10 November 2015

Statistical Learning. Philipp Koehn. 10 November 2015 Statistical Learning Philipp Koehn 10 November 2015 Outline 1 Learning agents Inductive learning Decision tree learning Measuring learning performance Bayesian learning Maximum a posteriori and maximum

More information

The Pennsylvania State University The Graduate School HIERARCHICAL SYMBOLIC PERCEPTION IN DYNAMIC DATA DRIVEN APPLICATION SYSTEMS

The Pennsylvania State University The Graduate School HIERARCHICAL SYMBOLIC PERCEPTION IN DYNAMIC DATA DRIVEN APPLICATION SYSTEMS The Pennsylvania State University The Graduate School HIERARCHICAL SYMBOLIC PERCEPTION IN DYNAMIC DATA DRIVEN APPLICATION SYSTEMS A Dissertation in Mechanical Engineering by Soumalya Sarkar c 2015 Soumalya

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

An inner product space on irreducible and synchronizable probabilistic finite state automata

An inner product space on irreducible and synchronizable probabilistic finite state automata Math. Control Signals Syst. (2012) 23:281 310 DOI 10.1007/s00498-012-0075-1 ORIGINAL ARTICLE An inner product space on irreducible and synchronizable probabilistic finite state automata Patrick Adenis

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Non-linear Measure Based Process Monitoring and Fault Diagnosis

Non-linear Measure Based Process Monitoring and Fault Diagnosis Non-linear Measure Based Process Monitoring and Fault Diagnosis 12 th Annual AIChE Meeting, Reno, NV [275] Data Driven Approaches to Process Control 4:40 PM, Nov. 6, 2001 Sandeep Rajput Duane D. Bruns

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

CS 540: Machine Learning Lecture 1: Introduction

CS 540: Machine Learning Lecture 1: Introduction CS 540: Machine Learning Lecture 1: Introduction AD January 2008 AD () January 2008 1 / 41 Acknowledgments Thanks to Nando de Freitas Kevin Murphy AD () January 2008 2 / 41 Administrivia & Announcement

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Forecasting Wind Ramps

Forecasting Wind Ramps Forecasting Wind Ramps Erin Summers and Anand Subramanian Jan 5, 20 Introduction The recent increase in the number of wind power producers has necessitated changes in the methods power system operators

More information

The Effects of Coarse-Graining on One- Dimensional Cellular Automata Alec Boyd UC Davis Physics Deparment

The Effects of Coarse-Graining on One- Dimensional Cellular Automata Alec Boyd UC Davis Physics Deparment The Effects of Coarse-Graining on One- Dimensional Cellular Automata Alec Boyd UC Davis Physics Deparment alecboy@gmail.com Abstract: Measurement devices that we use to examine systems often do not communicate

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Anomaly Detection for Health Management of Aircraft Gas Turbine Engines

Anomaly Detection for Health Management of Aircraft Gas Turbine Engines 25 American Control Conference June 8-, 25. Portland, OR, USA WeA5. Anomaly Detection for Health Management of Aircraft Gas Turbine Engines Devendra Tolani, Murat Yasar, Shin Chin, Asok Ray Mechanical

More information

Control of Thermoacoustic Instabilities: Actuator Placement

Control of Thermoacoustic Instabilities: Actuator Placement Control of Thermoacoustic Instabilities: Actuator Placement Pushkarini Agharkar, Priya Subramanian, Prof. R. I. Sujith Department of Aerospace Engineering Prof. Niket Kaisare Department of Chemical Engineering

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Information Dynamics Foundations and Applications

Information Dynamics Foundations and Applications Gustavo Deco Bernd Schürmann Information Dynamics Foundations and Applications With 89 Illustrations Springer PREFACE vii CHAPTER 1 Introduction 1 CHAPTER 2 Dynamical Systems: An Overview 7 2.1 Deterministic

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Bayesian Network Structure Learning and Inference Methods for Handwriting

Bayesian Network Structure Learning and Inference Methods for Handwriting Bayesian Network Structure Learning and Inference Methods for Handwriting Mukta Puri, Sargur N. Srihari and Yi Tang CEDAR, University at Buffalo, The State University of New York, Buffalo, New York, USA

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 12 Dynamical Models CS/CNS/EE 155 Andreas Krause Homework 3 out tonight Start early!! Announcements Project milestones due today Please email to TAs 2 Parameter learning

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling

27 : Distributed Monte Carlo Markov Chain. 1 Recap of MCMC and Naive Parallel Gibbs Sampling 10-708: Probabilistic Graphical Models 10-708, Spring 2014 27 : Distributed Monte Carlo Markov Chain Lecturer: Eric P. Xing Scribes: Pengtao Xie, Khoa Luu In this scribe, we are going to review the Parallel

More information

Information Theory in Computer Vision and Pattern Recognition

Information Theory in Computer Vision and Pattern Recognition Francisco Escolano Pablo Suau Boyan Bonev Information Theory in Computer Vision and Pattern Recognition Foreword by Alan Yuille ~ Springer Contents 1 Introduction...............................................

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Bayesian Nonparametrics for Speech and Signal Processing

Bayesian Nonparametrics for Speech and Signal Processing Bayesian Nonparametrics for Speech and Signal Processing Michael I. Jordan University of California, Berkeley June 28, 2011 Acknowledgments: Emily Fox, Erik Sudderth, Yee Whye Teh, and Romain Thibaux Computer

More information

Outline of Today s Lecture

Outline of Today s Lecture University of Washington Department of Electrical Engineering Computer Speech Processing EE516 Winter 2005 Jeff A. Bilmes Lecture 12 Slides Feb 23 rd, 2005 Outline of Today s

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Bayesian Nonparametrics

Bayesian Nonparametrics Bayesian Nonparametrics Peter Orbanz Columbia University PARAMETERS AND PATTERNS Parameters P(X θ) = Probability[data pattern] 3 2 1 0 1 2 3 5 0 5 Inference idea data = underlying pattern + independent

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

G α (ω) X α (ω) where ω 0 (α) (6) Remark 2.1: For α = 1, it follows from Eq. (5) that the real-valued signal x(t) is convoluted with 1 πt.

G α (ω) X α (ω) where ω 0 (α) (6) Remark 2.1: For α = 1, it follows from Eq. (5) that the real-valued signal x(t) is convoluted with 1 πt. 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrC8.3 Symbolic Analysis of Time Series Signals Using Generalized Hilbert Transform Soumik Sarkar Kushal Mukherjee Asok

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models CI/CI(CS) UE, SS 2015 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 23, 2015 CI/CI(CS) SS 2015 June 23, 2015 Slide 1/26 Content

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

XXXVIII Meeting of the Italian Section of the Combustion Institute

XXXVIII Meeting of the Italian Section of the Combustion Institute Coupling a Helmholtz solver with a Distributed Flame Transfer Function (DFTF) to study combustion instability of a longitudinal combustor equipped with a full-scale burner D. Laera*, S.M. Camporeale* davide.laera@poliba.it

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Semantic Sensor Fusion for Fault Diagnosis in Aircraft Gas Turbine Engines

Semantic Sensor Fusion for Fault Diagnosis in Aircraft Gas Turbine Engines Semantic Sensor Fusion for Fault Diagnosis in Aircraft Gas Turbine Engines Soumik Sarkar Dheeraj Sharan Singh Abhishek Srivastav Asok Ray szs200@psu.edu dss240@psu.edu axs964@psu.edu axr2@psu.edu Department

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor

Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor International journal of spray and combustion dynamics Volume. 7 Number. 3. 25 pages 29 242 29 Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor Soumalya Sarkar, Asok Ray,

More information

How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos

How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff Center for Complex Systems Research and Department of Physics University of Illinois

More information

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data A Bayesian Perspective on Residential Demand Response Using Smart Meter Data Datong-Paul Zhou, Maximilian Balandat, and Claire Tomlin University of California, Berkeley [datong.zhou, balandat, tomlin]@eecs.berkeley.edu

More information

One-Parameter Processes, Usually Functions of Time

One-Parameter Processes, Usually Functions of Time Chapter 4 One-Parameter Processes, Usually Functions of Time Section 4.1 defines one-parameter processes, and their variations (discrete or continuous parameter, one- or two- sided parameter), including

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Kyle Reing University of Southern California April 18, 2018

Kyle Reing University of Southern California April 18, 2018 Renormalization Group and Information Theory Kyle Reing University of Southern California April 18, 2018 Overview Renormalization Group Overview Information Theoretic Preliminaries Real Space Mutual Information

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta

ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies. Calin Belta ONR MURI AIRFOILS: Animal Inspired Robust Flight with Outer and Inner Loop Strategies Provable safety for animal inspired agile flight Calin Belta Hybrid and Networked Systems (HyNeSs) Lab Department of

More information

VCMC: Variational Consensus Monte Carlo

VCMC: Variational Consensus Monte Carlo VCMC: Variational Consensus Monte Carlo Maxim Rabinovich, Elaine Angelino, Michael I. Jordan Berkeley Vision and Learning Center September 22, 2015 probabilistic models! sky fog bridge water grass object

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Multiscale Systems Engineering Research Group

Multiscale Systems Engineering Research Group Hidden Markov Model Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of echnology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Learning Objectives o familiarize the hidden

More information

Optimization of Time-series Data Partitioning for Anomaly Detection

Optimization of Time-series Data Partitioning for Anomaly Detection For review for presentation in CDC 9, Shanghai, China Optimization of Time-series Data Partitioning for Anomaly Detection Xin Jin Soumik Sarkar Kushal Mukherjee Asok Ray xuj3@psu.edu szs2@psu.edu kum62@psu.edu

More information

Probabilistic Graphical Models

Probabilistic Graphical Models 10-708 Probabilistic Graphical Models Homework 3 (v1.1.0) Due Apr 14, 7:00 PM Rules: 1. Homework is due on the due date at 7:00 PM. The homework should be submitted via Gradescope. Solution to each problem

More information

CSC321 Lecture 7 Neural language models

CSC321 Lecture 7 Neural language models CSC321 Lecture 7 Neural language models Roger Grosse and Nitish Srivastava February 1, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19 Overview We

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Hidden Markov Models. Terminology and Basic Algorithms

Hidden Markov Models. Terminology and Basic Algorithms Hidden Markov Models Terminology and Basic Algorithms What is machine learning? From http://en.wikipedia.org/wiki/machine_learning Machine learning, a branch of artificial intelligence, is about the construction

More information

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models $ Technical Report, University of Toronto, CSRG-501, October 2004 Density Propagation for Continuous Temporal Chains Generative and Discriminative Models Cristian Sminchisescu and Allan Jepson Department

More information

A variational radial basis function approximation for diffusion processes

A variational radial basis function approximation for diffusion processes A variational radial basis function approximation for diffusion processes Michail D. Vrettas, Dan Cornford and Yuan Shen Aston University - Neural Computing Research Group Aston Triangle, Birmingham B4

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

L23: hidden Markov models

L23: hidden Markov models L23: hidden Markov models Discrete Markov processes Hidden Markov models Forward and Backward procedures The Viterbi algorithm This lecture is based on [Rabiner and Juang, 1993] Introduction to Speech

More information