Tune-out wavelength spectroscopy: A new technique to characterize atomic structure. Cass Sackett UVa

Size: px
Start display at page:

Download "Tune-out wavelength spectroscopy: A new technique to characterize atomic structure. Cass Sackett UVa"

Transcription

1 Tune-out wavelength spectroscopy: A new technique to characterize atomic structure Cass Sackett UVa

2 Outline Atomic parity violation experiments why they are important but stalled Tune-out spectroscopy what it is, how we do it Results and comparison to theory Next steps progress so far

3 Atomic parity violation S states in atoms have even parity ψ r = ψ(r) Transition ns n S ~ ns d n S = 0 forbidden! d = er Rubidium: 6S 497 nm 5S

4 Atomic parity violation Electron interacts with nucleus weak interaction violates parity mixes P character into S states allows transition! + Measure transition rate get strength of weak interaction 6S 5S

5 Fundamental symmetries Weak interaction violates CP symmetry So does the universe overall too much to explain via Standard Model Study symmetry violations look for surprises

6 Weak interaction Measure energy-dependence of weak interaction Steady improvements Except for atomic result, from 1995

7 Interpreting APV Measure transition rate, relate to weak interaction A PNC = n =5 6S 1/2 d n P 1/2 n P 1/2 H PNC 5S 1/2 E 5S E n P 1/2 + 6S 1/2 H PNC n P 1/2 n P 1/2 d 5S 1/2 E 6S E n P 1/2 n P 1/2 H PNC ns 1/2 : gives interaction strength ns 1/2 d n P 1/2 : dipole matrix elements

8 Interpreting APV Need precise dipole matrix elements Principle: 5S d 5P measure accurately Intermediate: 5S d np and 6S d np for n 12 calculate accurately Tail: 5S d np and 6S d np for n > 12 estimate 7P 6P 6S 5P 5S Also some additional corrections, calculated

9 Error contributions Contributions to PNC error: Terms Rel. contribution Uncertainty Principle Intermediate Tail Other Total experiment uncertainty: Limited by theory, mostly tail contribution

10 How to improve? Measure dipole matrix elements especially high-n tail Hard to do directly infinitude of states difficult to calibrate measurements

11 Measuring matrix elements Shine laser on atom detuned from any transition Get energy shift U = 1 α E2 αi 2 α = electric polarizability E = electric field I = laser intensity α depends on laser frequency ω Large for laser close to resonance

12 Measuring matrix elements 7P 6P 780 nm 5P 5S Polarizability of 5S ground state α ω n 5 J=1/2,3/2 np J d 5S 1/2 2 E nj E 5S E nj E 5S 2 ω 2 + α core Similar to PNC expression

13 Measuring matrix elements Measure α directly? One way: atom interferometer Splitting laser Bose condensate Splitting laser Split wave function: 0.1 mm 2ħk p = 0 +2ħk 2ħk m = 1.2 cm/s

14 Atom interferometer Could measure α directly One way: atom interferometer Wave packets Let packets propagate

15 Atom interferometer Could measure α directly One way: atom interferometer Wave packets Shine laser on one packet Phase shift φ stark = Ut ħ Stark beam

16 Atom interferometer Could measure α directly One way: atom interferometer Reverse momentum of packets 2ħk p = 0 +2ħk

17 Atom interferometer Could measure α directly One way: atom interferometer Packets return to starting point

18 Atom interferometer Could measure α directly One way: atom interferometer Recombine with laser: Interference: Fraction of atoms returned to p = 0 is cos 2 φ stark 2ħk p = 0 +2ħk

19 Atom interferometer Could measure α directly One way: atom interferometer Let wave packets separate Interference: Fraction of atoms returned to p = 0 is cos 2 φ stark

20 Atom interferometer Fit α = atomic units at nm 3% error, from intensity calibration Know 5P d 5S 2 to 0.1% from lifetime Need ~10 5 precision to extract all contributions to α

21 Measuring matrix elements Polarizability of 5S ground state α ω α core + n 5 J=1/2,3/2 np J d 5S 2 E nj E 5S E nj E 5S 2 ω 2 7P 6P 5P Find another method? 5S

22 Tune-out measurement In between resonances, α passes through 0 Location of zero doesn t depend on laser intensity Call λ 0 = tune-out wavelength

23 Tune-out measurement Use same atom interferometer technique Measure slope α > 0 α < 0 I/I max I/I max

24 Tune-out measurement Find λ 0 = nm our result 60 better than previous exp. 8 better than subsequent

25 Compare to theory Measurement doesn t directly give matrix elements Use theory to extract information α = α core + n 5 J=1/2,3/2 d 2 nj ω nj ω nj = E npj E 5S1/2 ω nj 2 ω 2 d nj = np J d 5S 1/2 Contributions: α = α prin + α int + α tail + α core 5P states n = 6 to 12 n > 12 core electrons

26 α (au) Compare to theory Calculate contributions for λ = λ 0 (M. Safronova): ± α prin 1.89 ±.02 α int 0.1 ± 0.1 α tail α core ± 2 Value Error Experiment says sum = 0 ± 0.1 au

27 Compare to theory Measurement specifies α prin = 5P contributions Mainly ratio d 2 2 3/2 /d 1/2 Theory for ratio much more accurate than individual d s d 1/2 d 3/2 Confirmed by tune-out measurement 2 d 3/2 2 d 1/2 Theory Exp Tuneout

28 α (au) Compare to theory Original theory: ± α prin 1.89 ±.02 α int 0.1 ± 0.1 α tail α core ± 2 Value Error

29 α (au) Compare to theory With tune-out constraint: ± α prin 1.89 ±.02 α int 0.1 ± 0.1 α tail α core ± 0.2 Value Error Can we get more information? Especially for tail?

30 More measurements More tune-out wavelengths near other P states 7P 6P 5P 420 nm 5S Two more data points Also two new parameters d 6,1/2 and d 6,3/2 Not a solution

31 More measurements Another degree of freedom: light polarization Atoms prepared in m = 1/2 Coupling depends on polarization σ + polarization P 3/2 m = 3/2 1/2 1/2 3/2 P 1/ α lin polarization σ polarization S 1/2 m = 1/2 λ

32 Polarization effects Two components to polarizability: α = α 0 + vα 1 scalar vector v = degree of circular polarization α 0 0 = α core + n 5 2 ω n1/2 2 d n3/2 ω n3/2 ω 2 n3/2 ω 2 + d n 1/2 ω 2 n1/2 ω 2 α 1 1 = α core + n 5 2 ω 2 d n3/2 ω ω 2 n3/2 ω 2 2d n 1/2 ω 2 n1/2 ω 2

33 Polarization effects Measuring α 0 and α 1 gives two data points per λ 0 different dependence on matrix elements Measure near 5P and 6P states: three tune-out wavelengths six polarizabilities seven unknowns (all normalized to d 5,1/2 ): d 5,3/2 d 6,3/2 d 0 6,1/2 α core 1 α core 0 α tail 1 α tail 0 Measure α core using Rydberg atoms

34 Rydberg measurement Electron in high-n, high-l state does not penetrate core 0 Energy shifted by polarizability of core α core Rydberg electron Rb + Collaborating with TFG to measure for Rb Microwave spectroscopy on 18f to 18g transition:

35 Polarization effects Measuring α 0 and α 1 gives two data points different dependence on matrix elements Measure near 5P and 6P states: three tune-out wavelengths six polarizability constraints six seven unknowns (all normalized to d 5,1/2 ): d 5,3/2 d 6,3/2 d 0 6,1/2 α core 1 α core 0 α tail 1 α tail

36 Polarization measurements Need precise control of light polarization ~10 5 Distorted by vacuum window ~10 3 Stark laser Atoms

37 Polarization measurements Minimize errors using circularly polarized light: v parameter = ±1 = max or min deviations 2 nd order in distortion effect ~10 6 Establish circular polarization using atoms 3/2 1/2 1/2 3/2 P 3/2 P 1/2 σ + S 1/2 m = 1/2

38 Polarization control Apply circular polarized light to atoms α = α 0 + vα 1 Vary v using magnetic field v ~ amount of circ polz B v = 1 v = 0 Stark laser v = 1

39 Polarization control Need to ensure that B is behaving as expected Use same trick with microwave spectroscopy B resonance B Microwaves

40 Polarization control Need to ensure that B is behaving as expected Use same trick with microwave spectroscopy B Initial resonance B After tuning Microwaves

41 Expected results Completing polarization and B-field characterization Measure 5P states soon, then 6P states Monte Carlo model: For expected meas. accuracy, get α tail to 0.01 au ~10 better than current theory Resolve parity violation bottleneck?

42 Impact Issues: Measure with Rb, parity exp with Cs Tail contribution not exactly same for α, PV exps Provide benchmark for theory Test methods, learn what works Motivate PV experiment in rubidium? A PV Z 3, 3 bigger in Cs But new experiment more than 3 better?

43 Conclusions Details of atomic structure needed for better PV exp. Obtain with tune-out spectroscopy Other applications: Atomic clocks EDM experiments Precision atom trapping/quantum computing

44 Conclusions Illustrate how AMO experiment involve many pieces New result will be based on advances in: atom trapping, BEC, lasers, spectroscopy, atomic theory,...? Many contributions from many people

45 Credits Grad students: Adam Fallon Seth Berl Eddie Moan Zhe Luo Undergrad: Yeshwanth Somu Theory: Marianna Safronova Funding: NSF, NASA

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

High precision measurement of the D-line tune-out wavelength in 87 Rb using a Bose-Einstein condensate interferometer

High precision measurement of the D-line tune-out wavelength in 87 Rb using a Bose-Einstein condensate interferometer High precision measurement of the D-line tune-out wavelength in 87 Rb using a Bose-Einstein condensate interferometer Bob Leonard B.S., West Virginia University, 2008 A Dissertation presented to the Graduate

More information

Atomic Parity Violation

Atomic Parity Violation Atomic Parity Violation Junghyun Lee APV proposes new physics beyond the standard model of elementary particles. APV is usually measured through the weak nuclear charge Q w, quantifying the strength of

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion Towards a Precise Measurement of Atomic Parity Violation in a Single + Ion TRIµP Program Trapped dioactive Isotopes: µ-laboratories for fundamental Physics Kernfysisch Versneller Instituut (KVI) University

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS DAMOP 2010 May 29, 2010 DEVELOPMENT OF A CONFIGURATION-INTERACTION INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS MARIANNA SAFRONOVA MIKHAIL KOZLOV PNPI, RUSSIA DANSHA JIANG UNIVERSITY OF DELAWARE

More information

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH IEEE-IFCS IFCS 2010, Newport Beach, CA June 2, 2010 BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH Marianna Safronova 1, M.G. Kozlov 1,2 Dansha Jiang 1, and U.I. Safronova 3

More information

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB Precision tests of the Standard Model with trapped atoms 1 st lecture Luis A. Orozco SUNYSB The Standard Model (brief review) Symmetries Conserved quantities Gauge Symmetries (local and continuous) Particles

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements Bindiya Arora and M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark, Delaware

More information

Experimental Atomic Physics Research in the Budker Group

Experimental Atomic Physics Research in the Budker Group Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation Postulate/Spin-Statistics Connection Temporal

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Tests of fundamental symmetries with atoms and molecules

Tests of fundamental symmetries with atoms and molecules Tests of fundamental symmetries with atoms and molecules 1 Listening to an atom q Coulomb forces + Quantum Electro-Dynamics => a relatively simple interpretation q Unprecedented control over internal and

More information

New Searches for Subgravitational Forces

New Searches for Subgravitational Forces New Searches for Subgravitational Forces Jay Wacker SLAC University of California, Davis November 26, 2007 with Peter Graham Mark Kasevich 1 New Era in Fundamental Physics Energy Frontier LHC Nature of

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

current status And future prospects

current status And future prospects September 20, 2007 Rare Isotopes & Fundamental symmetries workshop Atomic pnc theory: current status And future prospects marianna safronova outline Motivation & Summary of experiment Nuclear spin-independent

More information

CURRENT STATUS AND FUTURE PROSPECTS

CURRENT STATUS AND FUTURE PROSPECTS AMO seminar - Berkeley March 18, 2008 ATOMIC PNC THEORY: CURRENT STATUS AND FUTURE PROSPECTS MARIANNA SAFRONOVA OUTLINE Motivation & Summary of experiment Nuclear spin-independent PNC & weak charge How

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Andy Schwarzkopf Raithel Lab 1/20/2010

Andy Schwarzkopf Raithel Lab 1/20/2010 The Tip Experiment: Imaging of Blockade Effects in a Rydberg Gas Andy Schwarzkopf Raithel Lab 1/20/2010 Rydberg Atoms Highly-excited atoms with large n n scaling dependencies: Orbital radius ~ n2 Dipole

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Homework 1: BEC in a trap

Homework 1: BEC in a trap Homework : BEC in a trap Homework is due Tuesday September 9th. As a reminder, collaboration between students is encouraged, but everyone must turn in their own solutions. This problem is based on NJP

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

A Precise Measurement of the Indium 6P 1/2 Stark Shift Using Two-Step Laser Spectroscopy

A Precise Measurement of the Indium 6P 1/2 Stark Shift Using Two-Step Laser Spectroscopy A Precise Measurement of the Indium 6P 1/2 Stark Shift Using Two-Step Laser Spectroscopy by Allison L. Carter Professor Protik K. Majumder, Advisor A thesis submitted in partial fulfillment of the requirements

More information

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN

ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN 1 ATOM INTERFEROMETERS WITH BEC A theoretical analysis based on mean-field approximation CHIEN-NAN LIU FU-JEN CATHOLIC UNIVERSITY TAIPEI, TAIWAN Collaborators 2 Prof. Shinichi Watanabe G. Gopi Krishna

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Interferometry and precision measurements with Bose-condensed atoms

Interferometry and precision measurements with Bose-condensed atoms Interferometry and precision measurements with Bose-condensed atoms Daniel Döring A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. April 2011 Declaration

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

OPTI 511L Fall Objectives:

OPTI 511L Fall Objectives: RJ Jones OPTI 511L Fall 2017 Optical Sciences Experiment: Saturated Absorption Spectroscopy (2 weeks) In this experiment we explore the use of a single mode tunable external cavity diode laser (ECDL) to

More information

The Search for the Electron Electric Dipole Moment at JILA

The Search for the Electron Electric Dipole Moment at JILA The Search for the Electron Electric Dipole Moment at JILA Laura Sinclair Aaron Leanhardt, Huanqian Loh, Russell Stutz, Eric Cornell Theory Support: Edmund Meyer and John Bohn June 11, 2008 Funding: NSF

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Atom Interferometry Measurements of Atomic Polarizabilities and Tune-out Wavelengths

Atom Interferometry Measurements of Atomic Polarizabilities and Tune-out Wavelengths Atom Interferometry Measurements of Atomic Polarizabilities and Tune-out Wavelengths Alex Cronin, University of Arizona atom beam atom detector nanograting UVA Physics Colloquium March 18, 2016 Our Atom

More information

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Walter Johnson University of Notre Dame 1) Weak charge Q W of 133 Cs provides a test of the Standard Electroweak Model. 2)

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field

Interference effects on the probe absorption in a driven three-level atomic system. by a coherent pumping field Interference effects on the probe absorption in a driven three-level atomic system by a coherent pumping field V. Stancalie, O. Budriga, A. Mihailescu, V. Pais National Institute for Laser, Plasma and

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF The FrPNC Experiment, weak interaction studies in Francium at TRIUMF E Gomez 1, S Aubin 2, R Collister 3, J A Behr 4, G Gwinner 3, L A Orozco 5, M R Pearson 4, M Tandecki 3, D Sheng 5, J Zhang 5 1 Institute

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Arron Potter Laser stabilization via saturated absorption spectroscopy

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Abstract: The most accurate time and frequency

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Status report on parity violation in the (1232) resonance

Status report on parity violation in the (1232) resonance Status report on parity violation in the (1232) resonance Luigi Capozza A4 Collaboration Institut für Kernphysik Johannes Gutenberg Universität Mainz Institutsseminar - 6.2.2006 Luigi Capozza, Institutsseminar

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin

High-precision studies in fundamental physics with slow neutrons. Oliver Zimmer Institut Laue Langevin High-precision studies in fundamental physics with slow neutrons Oliver Zimmer Institut Laue Langevin ILL, 20 September 2016 Topics The impossible particle and its properties Search for an electric dipole

More information

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco What we know about Francium University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco www.jqi.umd.edu The slides are available at: http://www.physics.umd.edu/rgroups/amo/orozco/results/2018/results18.htm

More information

M.Sc. Physics

M.Sc. Physics --------------------------------------- M.Sc. Physics Curriculum & Brief Syllabi (2012) --------------------------------------- DEPARTMENT OF PHYSICS NATIONAL INSTITUTE OF TECHNOLOGY CALICUT CURRICULUM

More information

Improvements to the Mercury Electric Dipole Moment Experiment

Improvements to the Mercury Electric Dipole Moment Experiment Improvements to the Mercury Electric Dipole Moment Experiment Kyle Matsuda Advisor: Blayne Heckel INT REU, University of Washington August 2015 Table of Contents 1 Introduction 2 Experimental Setup 3 Current

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

DIODE LASER SPECTROSCOPY

DIODE LASER SPECTROSCOPY DIODE LASER SPECTROSCOPY Spectroscopy, and Much More, Using Modern Optics Observe Doppler-Free Spectroscopy of Rubidium Gas Michelson Interferometer Used to Calibrate Laser Sweep Observe Resonant Faraday

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

Fast Light, Slow Light

Fast Light, Slow Light Light pulses can be made to propagate with group velocities exceeding the speed of light in a vacuum or, at the opposite extreme, to come to a complete stop. Fast Light, Slow Light Raymond Y. Chiao and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101

PHY 114 A General Physics II 11 AM-12:15 PM TR Olin 101 PHY 114 A General Physics II 11 AM-1:15 PM TR Olin 101 Plan for Lecture 3 (Chapter 40-4): Some topics in Quantum Theory 1. Particle behaviors of electromagnetic waves. Wave behaviors of particles 3. Quantized

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

4. Spontaneous Emission october 2016

4. Spontaneous Emission october 2016 4. Spontaneous Emission october 016 References: Grynberg, Aspect, Fabre, "Introduction aux lasers et l'optique quantique". Lectures by S. Haroche dans "Fundamental systems in quantum optics", cours des

More information

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Work done in collaboration with Prof. Gene Sprouse from SUNYSB And Prof. David DeMille from Yale University.

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry. Axion BEC: a model beyond CDM Based on: Bose-Einstein Condensation of Dark Matter

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Second-order magic radio-frequency dressing for magnetically trapped 87. Rb atoms

Second-order magic radio-frequency dressing for magnetically trapped 87. Rb atoms DPG-Frühjahrstagung Heidelberg 2015 Second-order magic radio-frequency dressing for magnetically trapped 87 Rb atoms Georgy A. Kazakov, Thorsten Schumm Atominstitut TU Wien PRA 91, 023404 (2015) 21.03.2013

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS

MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS 1 MEASUREMENT OF SHORT RANGE FORCES USING COLD ATOMS F. PEREIRA DOS SANTOS, P. WOLF, A. LANDRAGIN, M.-C. ANGONIN, P. LEMONDE, S. BIZE, and A. CLAIRON LNE-SYRTE, CNRS UMR 8630, UPMC, Observatoire de Paris,

More information

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University Atomic magnetometers: new twists to the old story Michael Romalis Princeton University Outline K magnetometer Elimination of spin-exchange relaxation Experimental setup Magnetometer performance Theoretical

More information

3 Dimensional String Theory

3 Dimensional String Theory 3 Dimensional String Theory New ideas for interactions and particles Abstract...1 Asymmetry in the interference occurrences of oscillators...1 Spontaneously broken symmetry in the Planck distribution law...3

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry)

Experimental AMO eets meets M odel Model Building: Part I (Precision Atom Interferometry) Experimental AMO meets Model Building: Part I (Precision Atom Interferometry) Interference of Rb atoms Chiow, et. al, PRL, 2011 Young s double slit with atoms Young s 2 slit with Helium atoms Interference

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Instructor Prof. Seth Aubin Office: room 245, Millington Hall, tel: 1-3545

More information

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London A new measurement of the electron edm E.A. Hinds Centre for Cold Matter Imperial College London Birmingham, 26 October 2011 How a point electron gets structure + + + - + point electron polarisable vacuum

More information

(8) Atomic Physics (1½l, 1½p)

(8) Atomic Physics (1½l, 1½p) 10390-716(8) Atomic Physics (1½l, 1½p) 2018 Course summary: Multi-electron atoms, exclusion principle, electrostatic interaction and exchange degeneracy, Hartree model, angular momentum coupling: L-S and

More information

Atomic Physics: an exploration through problems and solutions (2nd edition)

Atomic Physics: an exploration through problems and solutions (2nd edition) Atomic Physics: an exploration through problems and solutions (2nd edition) We would be greatly indebted to our readers for informing us of errors and misprints in the book by sending an e-mail to: budker@berkeley.edu.

More information

Electron EDM Searches

Electron EDM Searches Electron EDM Searches Paul Hamilton Yale University INT Workshop Seattle, October 2008 Outline Theoretical Motivation General detection method Past and current eedm searches Molecular eedm searches and

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.]

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.] Homework 3 Contact: jangi@ethz.ch Due date: December 5, 2014 Nano Optics, Fall Semester 2014 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch 1 Coherent Control [22 pts.] In the first part of this

More information

-X 2 Σ g + Xianming Liu and Donald Shemansky. Space Environment Technologies. C.P. Malone, P. V. Johnson, J. M. Ajello, and I.

-X 2 Σ g + Xianming Liu and Donald Shemansky. Space Environment Technologies. C.P. Malone, P. V. Johnson, J. M. Ajello, and I. Experimental and Theoretical Investigations of the Radiative Properties of N 2 Singlet-ungerade States for Modeling Cassini UVIS Observations of Titan the c 1 Σ u + -X 2 Σ g + Band System Xianming Liu

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips Atom trifft Photon Rydberg blockade Michael Rips 1. Introduction Atom in Rydberg state Highly excited principal quantum number n up to 500 Diameter of atom can reach ~1μm Long life time (~µs ~ns for low

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy Martin Diermaier LEAP 2016 Kanazawa Japan Martin Diermaier Stefan-Meyer-Institute March th 2016 MOTIVATION Charge

More information