Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires

Size: px
Start display at page:

Download "Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires"

Transcription

1 Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires NANO LETTERS 2008 Vol. 8, No Jun Zhou,, Peng Fei,, Yudong Gu,, Wenjie Mai, Yifan Gao, Rusen Yang, Gang Bao, and Zhong Lin Wang*, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, Department of Biomedical Engineering, Georgia Institute of Technology and Emory UniVersity, Atlanta, Georgia 30332, and Department of AdVanced Materials and Nanotechnology, College of Engineering, Peking UniVersity, Beijing, China Received August 14, 2008 ABSTRACT Using a two-end bonded ZnO piezoelectric-fine-wire (PFW) (nanowire, microwire) on a flexible polymer substrate, the strain-induced change in I-V transport characteristic from symmetric to diode-type has been observed. This phenomenon is attributed to the asymmetric change in Schottky-barrier heights at both source and drain electrodes as caused by the strain-induced piezoelectric potential-drop along the PFW, which have been quantified using the thermionic emission-diffusion theory. A new piezotronic switch device with an on and off ratio of 120 has been demonstrated. This work demonstrates a novel approach for fabricating diodes and switches that rely on a strain governed piezoelectric-semiconductor coupling process. Binary switching is the principle of many electronic devices for applications such as data storage and logic circuits. Up to now most of the nanoscale switches are operated by an electrostatic force between a suspended carbon nanotube (CNTs)/nanowire and its counter electrode to switch between on and off depending on mechanical contact. 1-3 As the size of the devices reaching nanoscale, a small gap of 10 nm is required to be maintained between the CNTs/nanowire and the electrode for electro-mechanical switching. In such a case, the van der Waals interaction between the CNT and the electrode may be strong enough to bind the two together so that the device cannot perform the off function as required. Furthermore, the random thermal vibration at the tip of CNT may also become sufficiently large at conventional operating temperatures, which can strongly increase the device instability. 4 As a result, the reliability, lifetime and manufacturability of these devices are challenged. The Schottky barrier diode, a metal-semiconductor (MS) rectifying junction that generally exhibits switching effect, may overcome the drawbacks. ZnO, a material that exhibits semiconductor and piezoelectric properties, is likely a candidate for fabricating diode-based switching devices. * To whom correspondence should be addressed. zlwang@ gatech.edu. Georgia Institute of Technology. Georgia Institute of Technology and Emory University. Peking University. Recently, various novel devices have been fabricated using ZnO nanowires/nanobelts by utilizing its coupled piezoelectric and semiconducting properties (piezotronic effect), such as nanogenerators, 5,6 piezoelectric field effect transistors and chemical sensors, 7,8 piezoelectric diodes, 9 triggers, 10 transducer and actuator, 11 and flexible piezotronic strain sensors. 12 In this letter, we report a new type flexible piezotronic switch device that is built using a single ZnO piezoelectric fine wire (PFW) (nanowire, microwire). Its operation mechanism relies on the piezoelectric potential induced asymmetric change in Schottky-barrier height (SBH) at the source and drain electrodes. The change of SBH is caused by the combined effects from strain-induced band structure change and piezoelectric potential. The device demonstrated here presents a new electromechanical switch built based on piezotronic effect. 13 For this study, the device was fabricated by bonding an ultralong ZnO PFW laterally on a polystyrene (PS) substrate, which has a thickness much larger than the diameter of the PFW, as schematically shown in the upper-inset of Figure 1a. The detail device fabrication process was introduced elsewhere. 12 Briefly, single ZnO PFW (typical diameter of several micrometers and length of several hundred micrometers to several millimeters), which was synthesized by a high temperature physical vapor deposition process, 14 was placed on PS substrate (typical length of 3 cm, width of 5 mm /nl802497e CCC: $40.75 Published on Web 09/30/ American Chemical Society

2 Figure 1. Typical I-V characteristics of the device under different compressive strains (Device no. 1). Black line is the I-V curve without strain. The direction of the blue arrowhead indicates the increase of applied compressive strain. Upper inset shows the schematic of a single ZnO PFW-based device. Lower inset shows the schematic of the electromechanical measurement system. and thickness of 1 mm) by using a probe station under optical microscopy. Then silver paste was applied at both ends of the ZnO PFW to fix its two ends tightly on the substrate; silver paste was also used as the source and drain electrodes. After the silver paste was dried, a thin layer of polydimethylsiloxane (PDMS) was used to package the device. Finally, a flexible, optically transparent, waterproof and well-packaged device was prepared (see Supporting Information, Figure S1). The study of electromechanical properties of the device was carried out in atmosphere at room temperature. The lower inset in Figure 1 shows the measurement setup. One end of the device was affixed on a sample holder with another end free to be bent. A three-dimensional mechanical manipulation stage with displacement resolution of 1 µm was used to bend the free end of the device to produce a compressive strain. Meanwhile the I-V characteristics of the device during deformation were measured by a computercontrolled measurement system. As discussed in ref 12 with consideration of the extremely small diameter of the PFW in comparison to the thickness of the PS substrate, and the length of the substrate is much larger than the length of the PFW; a bending of the PS substrate produces solely a tensile or compressive strain in the PFW depending on its bending direction. Before the electromechanical measurements, we first tested the original I-V characteristic of the device. We found various I-V characteristics for over two hundreds of devices that were prepared under similar conditions, and most of them have nonlinear behavior. Previously, we focused on the devices which originally exhibit rectifying I-V behavior, and flexible piezotronic strain sensors based on those devices have been demonstrated. 12 In this study, we focus only on the devices that have symmetric or nearly symmetric I-V behavior. Typical I-V characteristics under various compressive strains (Device no. 1) are shown in Figure 1. When the compressive strain was increased, the currents both under positive bias and negative bias were suppressed. Finally a downward diodelike I-V behavior is received. Some devices exhibited upward diodelike I-V behavior under compression Figure 2. (a) Current response under repeated compressingreleasing-stretching-releasing straining process (Device no. 2). The blue line and black line are current response and applied sweeping bias voltage over time, respectively, from which the I-V characteristic as a function of time was captured. (b) I-V characteristics under different strain: released (black), compressive strain (green), and tensile strain (red). The inset schematically shows the device under various straining conditions. strain. Statistic study showed that the ratio of the devices, which exhibited downward and upward diodelike I-V behavior under compressive strain, is nearly 1:1 (see Supporting Information, Figure S2). Figure 2a shows a current response under a repeated stretching-releasing-compressing-releasing straining cycle over a period of time for Device no The blue line and black line are current response and sweeping bias over time, respectively. The corresponding I-V behaviors under each straining condition are shown in Figure 2b. When the device was under tensile straining, upward diodelike I-V behaviors was observed (red line); downward diodelike I-V behavior (green line) was observed when the device was under compressive straining. The I-V curve (black line in Figure 2b) fully recovered when the strain was relieved. Our extensive study indicates that the I-V behavior is introduced by strain rather than poor or unstable contact. Transformation of symmetric or nearly symmetric I-V behavior to rectifying I-V behavior under strain is a novel phenomenon which was first reported by He et al. 9 When they used an Au/Ti-coated tungsten probe to bend a oneend fixed ZnO nanowire, the linear I-V characteristic of the ZnO nanowire was changed to a rectifying behavior with a rectifying ratio of 8.7:1. They proposed that electrical transport of the ZnO nanowire was governed by a potential energy barrier induced by the strain-induced piezoelectric potential. When the ZnO nanowire was bent, the outer 3974 Nano Lett., Vol. 8, No. 11, 2008

3 Figure 3. (a) I-V characteristics of the device under different compressive strains (Device no. 3). The decreased current indicates an increase in SBH. Inset is the proposed sandwich model of the device, that is, two back-to-back Schottky diodes connected to a ZnO wire. (b) Plot of ln I as a function V 1/4, by using the data provided by the black line in panel a. The red lines are theoretically fitting according to eq 1. (c) The derived change in SBH as a function of stain using the thermionic emission-diffusion model. Black curve and red curve are the SBH change for source contact and drain contact at a drain-source bias of V ) 1 and -1 V, respectively. (d) The derived changes in SBH as contributed by band structure effect (black curve) and piezoelectric effect (red curve), respectively. surface is stretched and has positive piezoelectric potential and the inner surface is compressed and has negative piezoelectric potential; thus a piezoelectric potential drop was produced across the diameter of the ZnO nanowire. 9 The probe was in contact with the tensile surface of the nanowire. In our case, the ZnO PFW is fixed tightly at its two ends on the PS substrate, and both the outer and inner surfaces of the ZnO PFW are solely under tensile or compressive strain depending on the bending direction of the PS substrate, thus, the piezoelectric potential is along the axial direction of the PFW rather than across its diameter. It has been reported that the SBH formed at the III-V semiconductor (GaAs, 16 GaN, 17 GaAlN 18 )/metal interface can be modulated by strain due to the combination of straininduced band structure change and piezoelectric polarization effect. The band structure effect may be attributed to straininduced change in band gap. The effect of piezoelectric polarization on the SBH arises because the polarization produces charges at the metal-semiconductor interface, 16 which will shift the local Fermi level and modify the local conduction band profile. Thus, both of the band structure and piezoelectric polarization effects will affect the SBH and consequently the transport property of the devices, as elaborated in follows. Figure 3a shows I-V characteristics under various compressive strains for Device no. 3. The currents both under positive bias and negative bias are suppressed, and finally an upward diodelike I-V behavior was observed under strain of -2.14%. The original I-V curve (black line) shown in Figure 3a clearly demonstrates that there was Schottky barrier (SB) present at the contacts but with different barrier heights due to different interface properties. 19 Therefore, the structure of Device no. 3 can be considered as a single ZnO PFW sandwiched between two back-to-back SBs at the source and drain contacts with SBH of φ s (in ev) and φ d (φ d < φ s ), 19,20 which is shown in inset of Figure 3a. At a fixed bias voltage V, the voltage drop occurs mainly at the reversely biased Schottky barrier according to the measurement by in situ scanning surface potential microscopy. 21 In our case, when a positive bias voltage V is applied across the drain and source with the drain side positive, the voltage drop occurs mainly at the reversely biased Schottky barrier φ s at the source side, and it is denoted by V s ; when a reversely biased voltage V is applied across the drain and source with the source side positive, the voltage drop occurs mainly at the reversely biased Schottky barrier φ d at the drain side, and it is denoted by V d. To simplify, we define that a positive voltage is applied at the drain side and assume that most of the potential drop occur at the reversely biased SB, V s V. With consideration that our measurements were made at room temperature and the ZnO PFW had a low doping/ impurity level, the dominant transport property at the barrier is thermionic emission and diffusion, and the contribution made by tunneling is negligible. Thus, for a reversely biased SB under voltage V and at temperature T, the current through the reversely biased Schottky barrier φ s is as follows based Nano Lett., Vol. 8, No. 11,

4 Figure 4. Schematic energy band diagrams illustrating the Schottky barriers at the source and drain contacts of a unstrained (a), compressive strained (b), and tensile strained (c) PFW, which illustrates the effect of switching the piezoelectric potential either by strain or by wire orientation on the local band structure and SBH. on classic thermionic emission-diffusion theory (for V. 3kT/q 77 mv) 22 I ) S s A // T 2 exp(- φ s kt)exp( q qξ 4πk s kt ) (1) ξ ) 2qN D k s ( V + V bi - kt q ) (2) where S s is the area of the source Schottky barrier, A ** is the effective Richardson constant, q is the electron charge, k is Boltzmann constant, N D is the donor impurity density, V bi is the build-in potential at the barrier, and k s is the permittivity of ZnO. To verify that eqs 1 and 2 can precisely describe the observed phenomenon, we plot ln I as a function of V and V 1/4 by using the data provided by the black line in Figure 3a. Figure 3b shows that the ln I-V 1/4 curve is very linear, which is consistent with eq 1. This not only indicates that the thermionic emission-diffusion model is the dominant process in our device, but this also shows that the theory can be applied to derive the SBH from experimental data, as described in follows. By assuming S, A **, T, and N D are to be known, φ s can, in principle, be derived from the ln I-V plot. 12 Subsequently, the strain-induced change in SBH can be determine by 12,17,18 ln[i(ε zz ) I(0)] A // A // - φ s kt (3) where I(ε zz ) and I(0) are the current measured through the PFW at a fixed bias V a with and without being strained, respectively. Since the stress dependence of A ** arises only from the stress dependence of the effective mass, the first term is much smaller than the second term and is thus neglected in the following discussion. 17,18,23 The change of SBH φ s with strain for bias of 1.0 V is plotted in Figure 3c (black curve). Similarly, under a bias of -1.0 V, the change of SBH φ d with strain is calculated and the data are plotted in Figure 3c (red curve). 24 The result shows that both the SBH at the source and drain contacts were increased with increased compressive strain. The SBH change for the Ag/ZnO/Ag device structure under strain is a combined effect from both strain induced band structure change and piezoelectric polarization. 12 The contributions from band structure effect to SBH change in source and drain contacts are denoted as φ s-bs and φ d-bs, respectively. As discussed above, the axial strain in the ZnO PFW is uniform along its entire length, thus we can assume φ s-bs ) φ d-bs if the two contacts are identical. The contribution of piezoelectric effect to SBH can be described as follows. As discussed above, the axial strain in the ZnO PFW is uniform along its entire length in our device. Under straining, the cations and anions in ZnO polarize along the straining direction, forming a piezoelectric charge induced polarization. It is important to point out that these piezoelectric ionic charges cannot freely move. They can be screened by the external electrons but cannot be completely depleted. 16 This means that the effect of piezoelectric charges still preserved, although at a reduced level, even ZnO has a moderate conductivity. The effect of piezoelectric polarization to the SBH can be qualitatively described as follows. For a constant strain of ε z along the length of the PFW, an axial polarization P z is then created inside the wire and along the wire direction, P z ) ε z e 33, where e 33 is the piezoelectric tensor. 16,25,26 A potential drop of approximately V p+ - V p- ) ε z Le 33 is created along the length of the wire, where L is the length of the wire. Therefore, the modulations to the SBH at the source and drain sides are of the same magnitude but opposite sign (V p+ )-V p -), which are denoted by φ s-pz and φ d-pz () - φ s-pz ). Thus the total strain-induced change in SBH at the source and drain contacts are Source: φ s ) φ s-bs + φ s-pz (4) Drain: φ d ) φ s-bs - φ s-pz (5) which yield φ s-bs ) ( φ s + φ d )/2 and φ s-pz ) ( φ s - φ d )/2. The φ s-bs and φ s-pz as a function of strain are plotted in Figure 3d, in which both show linear relationship under smaller strain and nonlinear behavior under larger strain. It has been reported that under small strain, both the band gap change 27,28 and piezoelectric polarization 26 have an approximately linear relationship with strain. The nonlinear effect under high strain needs to be analyzed using more sophisticated theory. Here we use a schematic energy band diagrams to illustrate how piezoelectric polarization affects the Schottky barriers at the source and drain contacts. Figure 4a shows an unstrained device with the c-axis of ZnO pointing toward the source. When the device is under compressed strain, the drain has a higher piezoelectric potential (see Figures 4b), resulting in higher SBH at source side. Alternatively, by changing the compressive straining to tensile straining simply by changing the bending direction of the PS substrate, the piezoelectric potential-drop in the PFW reverses, as shown 3976 Nano Lett., Vol. 8, No. 11, 2008

5 tors 5 and piezotronics, 13 but also can be used to fabricate a new type of piezoelectric diodes and switches, which are highly sensitive, cost-effective, versatile and fully packaged for a wide range of applications. Acknowledgment. This research was supported by DAR- PA, BES DOE, NSF, and Emory-Georgia Tech CCNE funded by NIH. P.F. and Y.D.G. thank the partial fellowship support by the China Scholarship Council (CSC) (No ). Figure 5. Current response of Device no. 4 to periodic releasingbending process under a fixed bias of -2 V, showing an on - off ratio of 120. Inset is I-V characterization of Device no. 4 without (black curve) and with stain (red curve). in Figure 4c, leading to a higher SBH at the drain side. If the modulation to SBH by bond structure change is significantly smaller than that due to piezoelectric potential, the reversal in strain results in the reversal in rectifying polarity of the device, which is just what we observed experimentally in Figure 2b. Furthermore, the profile of the piezoelectric potential depends not only on the sign of the strain (compressive (ε z < 0); tensile (ε z > 0)), but also the c-axis orientation of the PFW. A simple change in wire orientation can result in a reverse in the piezoelectric potential profile and thus the observed diode polarity. In our fabrication, the c-axis of the PFW is random. This is why the ratio of the devices that exhibit downward and upward diodelike I-V behavior under compressive strain is nearly 1:1 (see Supporting Information, Figure S2). Our device can act as an effective electromechanical switch. Inset in Figure 5 shows the I-V characterization of Device no. 4 without (black curve) and with (red curve) stain. When the device is free of strain, it shows a symmetric I-V behavior; when the device is under strain, it shows a rectifying I-V behavior. The change is highly reversible. At a fixed bias of -2 V, the current across the device is 6 µa (defined as on state) and 0.05 µa (defined as off state) when the device is free of strain and under strain, respectively. By periodically bending and releasing the device under a fixed bias of -2 V, an electromechanical switch with on-off ratio as high as 120 has been demonstrated (Figure 5). In summary, using the strain-induced change in transport property of ZnO wire, we have demonstrated a piezoelectric diode based switches with an on-to-off ratio of 120. The wire was laterally bonded and fully packaged, and the design can be easily extended for nanowires, which are expected to have superhigh sensitivity. Our studies provide solid evidence about the existence of piezoelectric potential in the ZnO wire although it has a moderate conductivity. This means that the free carriers can partially screen the piezoelectric potential/charges, but they cannot completely neutralize the charge. The existence of the piezoelectric potential not only supports the mechanism proposed for nanogenera- Supporting Information Available: This material is available free of charge via the Internet at References (1) Kinaret, J. M.; Nord, T.; Viefers, S. Appl. Phys. Lett. 2003, 82, (2) Cha, S. N.; Jang, J. E.; Choi, Y.; Amaratunga, G. A. J.; Kang, D. J.; Hasko, D. G.; Jung, J. E.; Kim, J. M. Appl. Phys. Lett. 2005, 86, (3) Jang, W. W.; Lee, J. O.; Yoon, J. B.; Kim, M. S.; Lee, J. M.; Kim, S. M.; Cho, K. H.; Kim, D. W.; Park, D.; Lee, W. S. Appl. Phys. Lett. 2008, 92, (4) Badzey, R. L.; Zolfagharkhani, G.; Gaidarzhy, A.; Mohanty, P. Appl. Phys. Lett. 2005, 86, (5) Wang, Z. L.; Song, J. H. Science 2006, 312, 242. (6) Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Science 2007, 316, 102. (7) Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Nano Lett. 2006, 6, (8) Lao, C. S.; Kuang, Q.; Wang, Z. L.; Park, C. M.; Deng, Y. Appl. Phys. Lett. 2007, 90, (9) He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L. AdV. Mater. 2007, 19, 781. (10) Zhou, J.; Fei, P.; Gao, Y. F.; Gu, Y. D.; Liu, J.; Bao, G.; Wang, Z. L. Nano Lett , 8, (11) Buchine, B. A.; Hughes, W. L.; Degertekin, F. L.; Wang, Z. L. Nano Lett. 2006, 6, (12) Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Nano Lett , 8, (13) Wang, Z. L. AdV. Mater. 2007, 19, 889. (14) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, (15) To apply a consecutive release-stretch-release-compress strain condition to the device, the device was bent manually instead of by the 3D mechanical stage. (16) Chung, K. W.; Wang, Z.; Costa, J. C.; Williamson, F.; Ruden, P. P.; Nathan, M. I. Appl. Phys. Lett. 1991, 59, (17) Liu, Y.; Kauser, M. Z.; Nathan, M. I.; Ruden, P. P.; Dogam, S.; Morkoc, H.; Park, S. S.; Lee, Y. K. Appl. Phys. Lett. 2004, 84, (18) Liu, Y.; Kauser, M. Z.; Ruden, P. P.; Hassan, Z.; Lee, Y. C.; Ng, S. S.; Yam, F. K. Appl. Phys. Lett. 2006, 88, (19) Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. AdV. Funct. Mater. 2007, 17, (20) Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A. Phys, ReV, Lett. 2008, 101, (21) Fan, Z. Y.; Lu, J. G. Appl. Phys. Lett. 2005, 86, (22) Sze, S. M. Physics of semiconductor devices; John Wiley & Sons: New York, (23) Shan, W.; Ager, J. W., III; Yu, K. M.; Walukiewicz, W.; Haller, E. E.; Martin, M. C.; Mckinney, W. R.; Yang, W. J. Appl. Phys. 1999, 85, (24) In the calculation presented above, we assumed that the applied voltage was totally consumed at the reversely biased Schottky barrier formed at the source electrode. In reality, V s (V d) < V, thus the calculated φ value may be slightly affected by the choice of V. (25) Zhao, M. H.; Wang, Z. L.; Mao, S. X. Nano Lett. 2004, 4, 587. (26) Nye, J. F. Physical Properties of Crystal; Oxford: London, (27) Minot, E. D.; Ysish, Y.; Sazonova, V.; Park, J. Y.; Brink, M.; McEuen, P. L. Phys. ReV. Lett. 2003, 90, (28) Cao, J.; Wang, Q.; Dai, H. J. Phys. ReV. Lett. 2003, 90, NL802497E Nano Lett., Vol. 8, No. 11,

For wurtzite structured materials, such as ZnO, GaN, and. Temperature Dependence of the Piezotronic Effect in ZnO Nanowires

For wurtzite structured materials, such as ZnO, GaN, and. Temperature Dependence of the Piezotronic Effect in ZnO Nanowires pubs.acs.org/nanolett Temperature Dependence of the Piezotronic Effect in ZnO Nanowires Youfan Hu, Benjamin D. B. Klein, Yuanjie Su, Simiao Niu, Ying Liu, and Zhong Lin Wang*,, School of Material Science

More information

Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics

Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics www.materialsviews.com Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics www.advmat.de Ruomeng Yu, Lin Dong, Caofeng Pan, Simiao Niu, Hongfei Liu, Wei Liu,

More information

Enhanced Performance of Flexible ZnO Nanowire Based Room-Temperature Oxygen Sensors by Piezotronic Effect

Enhanced Performance of Flexible ZnO Nanowire Based Room-Temperature Oxygen Sensors by Piezotronic Effect www.materialsviews.com www.advmat.de Enhanced Performance of Flexible ZnO Nanowire Based Room-Temperature Oxygen Sensors by Piezotronic Effect Simiao Niu, Youfan Hu, Xiaonan Wen, Yusheng Zhou, Fang Zhang,

More information

Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire

Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire DOI 10.1007/s12274-009-9063-2 Research Article 00624 Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire Giulia Mantini 1,2, Yifan Gao 1, A. DʼAmico 2, C. Falconi 2, and Zhong Lin

More information

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model

A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1162 1166 A Bottom-gate Depletion-mode Nanowire Field Effect Transistor (NWFET) Model Including a Schottky Diode Model Y. S.

More information

Energy & Environmental Science COMMUNICATION. Piezo-phototronics effect on nano/microwire solar cells. Dynamic Article Links C <

Energy & Environmental Science COMMUNICATION. Piezo-phototronics effect on nano/microwire solar cells. Dynamic Article Links C < Energy & Environmental Science Dynamic Article Links C < Cite this: Energy Environ. Sci., 2012, 5, 6850 www.rsc.org/ees Piezo-phototronics effect on nano/microwire solar cells Yan Zhang, Ya Yang and Zhong

More information

Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics

Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics Electrostatic Potential in a Bent Piezoelectric Nanowire. The Fundamental Theory of Nanogenerator and Nanopiezotronics NANO LETTERS 2007 Vol. 7, No. 8 2499-2505 Yifan Gao and Zhong Lin Wang* School of

More information

Supporting Information

Supporting Information Supporting Information Novel Electrically-Conductive Porous PDMS/Carbon Nanofibre Composites for Deformable Strain-Sensors and Conductors Shuying Wu,, Jin Zhang, Raj B. Ladani, Anil R. Ravindran, Adrian

More information

Strain-gated piezotronic logic nanodevices

Strain-gated piezotronic logic nanodevices Supporting Information Strain-gated piezotronic logic nanodevices By Wenzhuo Wu #, Yaguang Wei # and Zhong Lin Wang* ( # Authors with equal contribution) [*] Prof. Z. L. Wang Corresponding-Author, W.Z.

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Flexible Piezoelectric-Induced Pressure Sensors for Static. Measurements Based on Nanowires/Graphene Heterostructures

Flexible Piezoelectric-Induced Pressure Sensors for Static. Measurements Based on Nanowires/Graphene Heterostructures Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures Zefeng Chen,, Zhao Wang,, Xinming Li,*, Yuxuan Lin, Ningqi Luo, Mingzhu Long, Ni Zhao,

More information

Novel Zinc Oxide Nanostructures Discovery by Electron Microscopy

Novel Zinc Oxide Nanostructures Discovery by Electron Microscopy Institute of Physics Publishing Journal of Physics: Conference Series 26 (2006) 1 6 doi:10.1088/1742-6596/26/1/001 EMAG NANO 05: Imaging, Analysis and Fabrication on the Nanoscale Novel Zinc Oxide Nanostructures

More information

Schottky Rectifiers Zheng Yang (ERF 3017,

Schottky Rectifiers Zheng Yang (ERF 3017, ECE442 Power Semiconductor Devices and Integrated Circuits Schottky Rectifiers Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Schottky Rectifier Structure 2 Metal-Semiconductor Contact The work function

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

2 Title: "Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel

2 Title: Ultrathin flexible electronic device based on tunneling effect: a flexible ferroelectric tunnel Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 208 Supplementary information 2 Title: "Ultrathin flexible electronic device

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information: Photocurrent generation in semiconducting and metallic carbon nanotubes Maria Barkelid 1*, Val Zwiller 1 1 Kavli Institute of Nanoscience, Delft University of Technology, Delft,

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures

Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures 034 Chin. Phys. B Vol. 19, No. 5 2010) 057303 Characteristics and parameter extraction for NiGe/n-type Ge Schottky diode with variable annealing temperatures Liu Hong-Xia ), Wu Xiao-Feng ), Hu Shi-Gang

More information

Graphene photodetectors with ultra-broadband and high responsivity at room temperature

Graphene photodetectors with ultra-broadband and high responsivity at room temperature SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.31 Graphene photodetectors with ultra-broadband and high responsivity at room temperature Chang-Hua Liu 1, You-Chia Chang 2, Ted Norris 1.2* and Zhaohui

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper SUPPORTING INFORMATION Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper Leicong Zhang,,,# Pengli Zhu,,,#, * Fengrui Zhou, Wenjin Zeng, Haibo Su, Gang Li, Jihua Gao, Rong

More information

MI 48824, USA ABSTRACT

MI 48824, USA ABSTRACT Mater. Res. Soc. Symp. Proc. Vol. 1785 2015 Materials Research Society DOI: 10.1557/opl.2015. 605 Thermionic Field Emission Transport at Nanowire Schottky Barrier Contacts Kan Xie 1, Steven Allen Hartz

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering,

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information to Forming-free and self-rectifying resistive switching of the simple

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Transparent and Flexible Self-Charging Power Film and Its Application in Sliding-Unlock System in Touchpad Technology Jianjun Luo 1,#, Wei Tang 1,#, Feng Ru Fan 1, Chaofeng Liu 1,

More information

8. Schottky contacts / JFETs

8. Schottky contacts / JFETs Technische Universität Graz Institute of Solid State Physics 8. Schottky contacts / JFETs Nov. 21, 2018 Technische Universität Graz Institute of Solid State Physics metal - semiconductor contacts Photoelectric

More information

Supporting Information

Supporting Information Supporting Information Flexible, Cuttable and Self-Waterproof Bending Strain Sensors Using Microcracked Gold Nanofilms@Paper Substrate Xinqin Liao, 1, Zheng Zhang, 1, Qijie Liang, 1 Qingliang Liao, 1,

More information

Supporting Information

Supporting Information Supporting Information Transparent Triboelectric Nanogenerators and Self-powered Pressure Sensors Based on Micro-patterned Plastic Films Feng-Ru Fan,,, Long Lin,, Guang Zhu,, Wenzhuo Wu, Rui Zhang, Zhong

More information

Theory of Piezo-Phototronics for Light-Emitting Diodes

Theory of Piezo-Phototronics for Light-Emitting Diodes Yan Zhang and Zhong Lin Wang * www.materialsiews.com Theory of PiezoPhototronics for LightEmitting Diodes Semiconductors, such as ZnO, GaN, InN, and CdS, are piezoelectric materials because the crystals

More information

Metal Semiconductor Contacts

Metal Semiconductor Contacts Metal Semiconductor Contacts The investigation of rectification in metal-semiconductor contacts was first described by Braun [33-35], who discovered in 1874 the asymmetric nature of electrical conduction

More information

Schottky diodes. JFETs - MESFETs - MODFETs

Schottky diodes. JFETs - MESFETs - MODFETs Technische Universität Graz Institute of Solid State Physics Schottky diodes JFETs - MESFETs - MODFETs Quasi Fermi level When the charge carriers are not in equilibrium the Fermi energy can be different

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Temperature Dependence of the Piezotronic and Piezophototronic Effects in a -axis GaN Nanobelts

Temperature Dependence of the Piezotronic and Piezophototronic Effects in a -axis GaN Nanobelts Temperature Dependence of the Piezotronic and Piezophototronic Effects in a -axis GaN Nanobelts Xingfu Wang, Ruomeng Yu, Wenbo Peng, Wenzhuo Wu, Shuti Li, and Zhong Lin Wang* Wurtzite-structured materials

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors Supporting Information for Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors Zheng Li, Tieqi Huang, Weiwei Gao*, Zhen Xu, Dan Chang, Chunxiao Zhang, and Chao Gao*

More information

An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B

An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B Thin Solid Films 488 (2005) 167 172 www.elsevier.com/locate/tsf An interfacial investigation of high-dielectric constant material hafnium oxide on Si substrate B S.C. Chen a, T, J.C. Lou a, C.H. Chien

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Comment on slope of nonlinear FN plot and field enhancement factor

Comment on slope of nonlinear FN plot and field enhancement factor Comment on slope of nonlinear FN plot and field enhancement factor Weiliang Wang and Zhibing Li * State Key Laboratory of Optoelectronic Materials and Technologies School of Physics and Engineering, Sun

More information

Electrostatics of Nanowire Transistors

Electrostatics of Nanowire Transistors Electrostatics of Nanowire Transistors Jing Guo, Jing Wang, Eric Polizzi, Supriyo Datta and Mark Lundstrom School of Electrical and Computer Engineering Purdue University, West Lafayette, IN, 47907 ABSTRACTS

More information

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

Figure 3.1 (p. 141) Figure 3.2 (p. 142) Figure 3.1 (p. 141) Allowed electronic-energy-state systems for two isolated materials. States marked with an X are filled; those unmarked are empty. System 1 is a qualitative representation of a metal;

More information

Al/Ti/4H SiC Schottky barrier diodes with inhomogeneous barrier heights

Al/Ti/4H SiC Schottky barrier diodes with inhomogeneous barrier heights Al/Ti/4H SiC Schottky barrier diodes with inhomogeneous barrier heights Wang Yue-Hu( ), Zhang Yi-Men( ), Zhang Yu-Ming( ), Song Qing-Wen( ), and Jia Ren-Xu( ) School of Microelectronics and Key Laboratory

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2012. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201203021 Piezoelectric-Polarization-Enhanced Photovoltaic Performance

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2015. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201503131 Tuning the Excitonic States in MoS 2 /Graphene van

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Semiconductor Junctions

Semiconductor Junctions 8 Semiconductor Junctions Almost all solar cells contain junctions between different materials of different doping. Since these junctions are crucial to the operation of the solar cell, we will discuss

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Professor Ali Javey Fall 2006 Midterm 2 Name: SID: Closed book. Two sheets of notes are

More information

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits NANO LETTERS 2007 Vol. 7, No. 12 3603-3607 Zhiyong Zhang, Xuelei Liang,*, Sheng Wang, Kun Yao, Youfan Hu, Yuzhen Zhu,

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter

Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter 1 Electrical Contacts to Carbon Nanotubes Down to 1nm in Diameter Woong Kim, Ali Javey, Ryan Tu, Jien Cao, Qian Wang, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

Transparent Stretchable Self-Powered Patchable. Sensor Platform with Ultrasensitive Recognition

Transparent Stretchable Self-Powered Patchable. Sensor Platform with Ultrasensitive Recognition Supporting Information Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities Byeong-Ung Hwang,, Ju-Hyuck Lee,, Tran Quang Trung,, Eun Roh, Do-Il

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Enhancing the Efficiency of Silicon-Based Solar Cells by the

Enhancing the Efficiency of Silicon-Based Solar Cells by the Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect Laian Zhu,, Longfei Wang,, Caofeng Pan, Libo Chen, Fei Xue, Baodong Chen, Leijing Yang, Li Su, and Zhong Lin Wang*,,

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3

A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3 Title Author(s) Citation A comparison study on hydrogen sensing performance of Pt/MoO3 nanoplatelets coated with a thin layer of Ta2O5 or La2O3 Yu, J; Liu, Y; Cai, FX; Shafiei, M; Chen, G; Motta, N; Wlodarski,

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics**

Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics** DOI: 10.1002/adfm.200800541 Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics** By Zhong Lin Wang* Developing wireless nanodevices and nanosystems are of critical importance for

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Wire Based Flexible Piezoelectric Sensor for Structural Health Monitoring Applications

Wire Based Flexible Piezoelectric Sensor for Structural Health Monitoring Applications Wire Based Flexible Piezoelectric Sensor for Structural Health Monitoring Applications Amine El Kacimi 1, Emmanuelle Pauliac-Vaujour 1, Joël Eymery 2 1 University Grenoble Alpes, CEA, LETI, MINATEC Campus,

More information

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai E. Pop, 1,2 D. Mann, 1 J. Rowlette, 2 K. Goodson 2 and H. Dai 1 Dept. of 1 Chemistry

More information

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping Avalanche breakdown Impact ionization causes an avalanche of current Occurs at low doping Zener tunneling Electrons tunnel from valence band to conduction band Occurs at high doping Tunneling wave decays

More information

POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS (PLECs):

POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS (PLECs): POLYMER LIGHT-EMITTING ELECTROCHEMICAL CELLS (PLECs): Scanning Optical Beam Induced Current (OBIC) and Photoluminescence (PL) Imaging Faleh Altal Prof. Jun Gao The Laboratory of Organic Photonics and Iontronics

More information

Flexible nonvolatile polymer memory array on

Flexible nonvolatile polymer memory array on Supporting Information for Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition Byung Chul Jang, #a Hyejeong Seong, #b Sung Kyu Kim, c Jong Yun Kim, a

More information

Department of Physics, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah, Saudi Arabia 2

Department of Physics, Faculty of Science, King Abdul Aziz University, P.O. Box 80203, Jeddah, Saudi Arabia 2 RESEARCH ARTICLE Copyright 2011 American Scientific Publishers All rights reserved Printed in the United States of America Advanced Science Letters Vol. 4, 1 5, 2011 Electrical Properties of p-si/n-zno

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Stacking Up Layers of Polyaniline/Carbon Nanotube

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms. to Photodetector Applications

Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms. to Photodetector Applications Supplementary Information: Nanochannel-Assisted Perovskite Nanowires: Growth Mechanisms to Photodetector Applications Qitao Zhou, Jun Gyu Park, Riming Nie, Ashish Kumar Thokchom, Dogyeong Ha, Jing Pan,

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary Information for Novel High-Efficiency Crystalline-Si-Based Compound

More information

Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration

Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration Chao-Hung Wang, Wei-Shun Liao, Zong-Hong Lin, Nai-Jen Ku, Yi-Chang Li, Yen-Chih

More information

First principle simulations of piezotronic transistors

First principle simulations of piezotronic transistors Nano Energy (]]]]) ], ]]] ]]] Available online at www.sciencedirect.com Q journal homepage: www.elsevier.com/locate/nanoenergy First principle simulations of piezotronic transistors Wei Liu a, Aihua Zhang

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

Module-6: Schottky barrier capacitance-impurity concentration

Module-6: Schottky barrier capacitance-impurity concentration 6.1 Introduction: Module-6: Schottky barrier capacitance-impurity concentration The electric current flowing across a metal semiconductor interface is generally non-linear with respect to the applied bias

More information

TRANSPARENT oxide thin-film transistors (TFTs) are of

TRANSPARENT oxide thin-film transistors (TFTs) are of 112 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 11, NO. 1, MARCH 2011 Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors Edward Namkyu Cho, Student Member, IEEE,

More information

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure Xiang Wang and Chao Song ABSTRACT The a-sin

More information

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron Supplementary Figure 1 Supplementary Figure 1 Characterization of another locally gated PN junction based on boron nitride and few-layer black phosphorus (device S1). (a) Optical micrograph of device S1.

More information

A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM

A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM A NEW APPROACH TOWARDS PROPERTY NANOMEASUREMENTS USING IN-SITU TEM Z.L. WANG*, P. PONCHARAL**, W.A. DE HEER** and R.P. GAO* * School of Materials Science and Engineering, ** School of Physics, Georgia

More information

Performance Optimization of Vertical Nanowire-based Piezoelectric Nanogenerators

Performance Optimization of Vertical Nanowire-based Piezoelectric Nanogenerators Performance Optimization of Vertical Nanowire-based Piezoelectric Nanogenerators Ronan Hinchet, Sangmin Lee, Gustavo Ardila,* Laurent Montès, Mireille Mouis, and Zhong Lin Wang * The integrated nanogenerator

More information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries Supporting Information Hierarchical Mesoporous/Macroporous Perovskite La 0.5 Sr 0.5 CoO 3-x Nanotubes: a Bi-functional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen

More information

Supporting Information

Supporting Information Supporting Information The Design of Hierarchical Ternary Hybrid for Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density Xunliang Cheng, Jing Zhang, Jing Ren, Ning Liu, Peining Chen,

More information

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Supporting Information Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White Zhijie Bi, a,b Xiaomin Li,* a Yongbo Chen, a,b

More information

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Supporting Information Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection Zhen Yang, Yu Pang, Xiao-lin Han, Yifan Yang, Jiang Ling, Muqiang Jian, Yingying Zhang,

More information

Analytic Model for Photo-Response of p-channel MODFET S

Analytic Model for Photo-Response of p-channel MODFET S Journal of the Korean Physical Society, Vol. 42, February 2003, pp. S642 S646 Analytic Model for Photo-Response of p-channel MODFET S Hwe-Jong Kim, Ilki Han, Won-Jun Choi, Young-Ju Park, Woon-Jo Cho and

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Chapter 1 Introduction of Piezotronics and Piezo-Phototronics

Chapter 1 Introduction of Piezotronics and Piezo-Phototronics Chapter 1 Introduction of Piezotronics and Piezo-Phototronics Abstract Starting from the road map for microelectronics, the focus of future electronics will be on functionalities toward personal, portable,

More information

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS Tennessee Technological University Monday, November 11, 013 1 Introduction Chapter 4: we considered the semiconductor

More information

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition

The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for water splitting fabricated by pulsed laser deposition Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 The interfacial study on the Cu 2 O/Ga 2 O 3 /AZO/TiO 2 photocathode for

More information

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer

Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon. Nanotubes. Yung-Fu Chen and M. S. Fuhrer Electric Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes Yung-Fu Chen and M. S. Fuhrer Department of Physics and Center for Superconductivity Research, University of Maryland,

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Science and Technology, Dalian University of Technology, Dalian , P. R. China b Electronic Supplementary Information for Fabrication of Superior-Performance SnO 2 @C Composites for Lithium-Ion Anodes Using Tubular Mesoporous Carbons with Thin Carbon Wall and High Pore Volume Fei Han,

More information

Bipolar resistive switching in amorphous titanium oxide thin films

Bipolar resistive switching in amorphous titanium oxide thin films Bipolar resistive switching in amorphous titanium oxide thin films Hu Young Jeong and Jeong Yong Lee Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea Min-Ki Ryu and Sung-Yool

More information

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates Yuting Ma 1,2, Minkyu Choi 2 and Kenji Uchino 2 1 CAS Key Lab of Bio-Medical Diagnostics, Suzhou

More information

A Nanoscale PN Junction in Series with Tunable. Schottky Barriers

A Nanoscale PN Junction in Series with Tunable. Schottky Barriers 1 A Nanoscale PN Junction in Series with Tunable Schottky Barriers Lee Aspitarte, Daniel R. McCulley, Ethan D. Minot* Department of Physics, Oregon State University, Corvallis, OR, 97331, USA * Corresponding

More information