Velocity Composition for Dummies. Copyright 2009 Joseph A. Rybczyk

Size: px
Start display at page:

Download "Velocity Composition for Dummies. Copyright 2009 Joseph A. Rybczyk"

Transcription

1 Velocity Composition for Dummies Copyright 29 Joseph A. Rybczyk Abstract Relativistic velocity addition is given in terms so simple that anyone should be able to understand the process. In so doing it becomes abundantly clear that since Einstein s treatment is different from that given here, he obviously got this part of his theory wrong. 1. Introduction The author has done extensive research analysis of the relativistic velocity addition process 1&2 and determined that the Special Relativity treatment is self contradicting and cannot be correct. Unfortunately, Einstein s treatment is so obscure that even those versed in Special Relativity are unable to understand it. They defend it purely on the basis that it must be correct if it is accepted by the general scientific community. Here we will show that absolute adherence to relativistic principles leads directly to the Millennium Relativity velocity addition formula and not to Einstein s formula. 2. What Relativistic Velocity Addition is all About Referring to Figure 1 we have a simple illustration that shows three objects located at points A, B and C, the outer two of which are moving away at uniform rates of speed in opposite directions from the one in the middle at location B. To avoid redundancy, it is understood that the term object is intended in the general sense and can be anything from a subatomic particle to a large body in outer space. In the case illustrated, the object at point B serves as the point of origin in the stationary frame of reference, relative to which the uniform motions of the objects at points A and C are referenced. A v 1 B v 2 C FIGURE 1 In classical Newtonian physics, if we wanted to know the speed of one of the moving objects relative to the other, we would simply add their speeds together as in v = v 1 + v 2 where v is the total speed of the one moving object relative to the other moving object. We can do this in Newtonian physics because time is the same in the three different frames of references; that is, in the frames of the moving objects at points A and C and also in the frame of the stationary object at point B relative to which the motions of the other two objects are referenced. In relativistic physics, this is not the case because the evidence shows that time itself, in the frame of a moving object, is affected by the speed of the object and is therefore different from the time in the 1

2 stationary frame or the frame of any other object that is moving at a different speed, or in a different direction. And since speed is a function of time, it too is affected by the difference in time rates between reference frames. This is not normally a problem in Newtonian physics because the speeds have to be a significant fraction of the speed of light in order for the time differences to be detectable and thereby cause a problem. Since light travels at meters per second, the effect the speed of an object has on time in its own frame and therefore on the speeds of other objects referenced to it only becomes an issue when dealing with the very high speeds that relativistic principles are based upon. Nonetheless, there are many fields of physics, such as particle physics for example, where such speeds are normal and therefore the differences in time rates must be taken into consideration or the computed results will be incorrect. The basic formula used to convert or transform the different time rates or intervals from one frame to another is given as 1 where t is the dilated (slower) time in the frame of the moving object, T is the corresponding (normal) time in the stationary frame to which speed v of the moving object is referenced, and c is the speed of light in the vacuum of space. Although the formula given is the straightforward Millennium Relativity formula for time transformation, it is simply another form of the Lorentz transformation formula used in Einstein s theory of relativity and gives identical results. 3. The Problem Referring now to Figure 2 we can discuss the problem in more specific detail. A v 1 B v 2 C A v 1 B v 2 C x 1 FIGURE 2 V 2 In reference to Figure 2-1, we state the problem in terms where speeds v 1 and v 2 are known relative to the point of origin at the location of object B in the stationary frame of reference. Then, using the time transformation formula (1) given previously, we can determine the corresponding times in the frames of objects A and C, for any time interval T that transpires in the stationary frame of object B. What we don t know, however, is the speed of object C relative to object A as indicated by speed x in view 1 of the illustration. Since this total speed is referenced to object A and not object B in the stationary frame, its value depends upon the time 2

3 in the frame of object A and not the time in the stationary frame of object B that speed v 2 is referenced to. In other words, since speed v 2 is referenced to the stationary frame of object B and depends on the time in frame B, it is not a valid speed relative to the time in the frame of object A and therefore cannot be added directly to speed v 1 to determine the total speed x. Conversely, if we know the total speed V of object C relative to object A as show in Figure 2-2, we find that not only is it not the sum of speeds v 1 and v 2, but that it has two different values depending on how the problem is viewed. Since the issue of multiple values comes up again in reference to speed v 2 of object C, let us defer discussion of it until we reach that part of the analysis. 4. The Solution Actually, the given problem has an easy solution by simply following the principles of relativity as will be done now. According to the principles of relativity the speed of one object relative to a second object is the same as the speed of the second object relative to the first object. That is, if the speed is a uniform speed as given here, either of the two objects can be considered the stationary frame point of reference relative to which the speed of the other object is referenced. In that case we can make the object at point A the point of origin in a stationary frame of reference relative to which the speed of the object at point B is referenced as shown in Figure 3. A v 1 B V 2 C x FIGURE 3 But now the speed of object C must be increased to compensate for the fact that the time in the frame of object B is no longer stationary frame time. Since the actual distance an object travels cannot change just because the speed of the object is referenced to a different time standard we can easily determine what the new speed V 2 of object C must be. The solution lies in converting the speed-to-time relationships into the distances that they represent as shown in Figure 4. A v 1 T B V 2 t 1 C xt FIGURE 4 3

4 Referring to Figure 4, if T is the stationary frame time interval that transpires in the frame of object A during which distance v 1 T is traveled, then using time transformation formula (1) we obtain 2 where t 1 is the corresponding time interval that takes place in the frame of object B. Obviously, since time interval t 1 is a smaller value than stationary frame time interval T, this time interval will be less than that (i.e. interval T) that would have been used in conjunction with speed v 2 as originally given in Figures 1 and 2 where object B was the origin of the stationary frame to which speed v 2 was referenced. Subsequently, speed V 2 in Figures 3 and 4 must be a greater speed than the original speed v 2 in order that the distance traveled by object C is unchanged from what it was previously. The actual conversion formula involving the changes in reference frames is derived from 3 giving 4 where V 2 is the speed used in conjunction with moving frame time interval t 1 and time interval t 1 is related to stationary frame time interval T as defined by the time transformation formula (2) above. For ease of reference, the convention used is simply that the upper case characters represent the larger of two corresponding values and the lower case characters represent the smaller of the two values. To summarize, in reference to Figure 4, we can now equate distances v 1 T and V 2 t 1 to distance xt as in 5 where xt is the total distance traveled, v 1 T is the distance traveled by object B and V 2 t 1 is the distance traveled by object C. Then by substituting the right side of time transformation formula (2) in place of t 1 in equation (5) we obtain 6 4

5 that simplifies to 7 where the unknown value x has been replaced by the known value for speed v. This is the Millennium Relativity velocity composition formula for speed v as illustrated in Figure 5 below. A v 1 B V 2 C v FIGURE 5 5. The Alternate Solution Now that we understand the time, distance, and speed relationships we can directly solve the problem as originally given in Figures 1 and 2. By converting the original speeds into distances as given in Figure 6 below, we can solve for speed v as will be shown next. A v 1 T B v 2 T C Vt 1 FIGURE 6 First we state the distance relationships given in Figure 6 as 8 where time t 1 is defined by time transformation formula (2). Then we define the relationship between speed V and its alternative value v as given by 9 where we can immediately substitute the right side of this equation in place of Vt 1 in equation (8) to derive 1 5

6 into which we substitute the left side of equation (3) in place of v 2 T to derive 11 into which we substitute the right side of equation (2) in place of t 1 to obtain 12 that simplifies into 13 that is the same as the velocity composition formula (7) derived earlier. 6. Conclusion With this final paper on the subject of relativistic velocity composition the author has made his last effort to demonstrate the validity of the Millennium Relativity velocity composition formula. Eventually the scientific community will be forced to deal with this issue and give it the attention it deserves. In the meantime the author will go forth with his research into new areas of relativistic physics on and beyond the fringes of what is known today. REFERENCES 1 Joseph A. Rybczyk, Millennium Relativity Velocity Composition, (22); Millennium Relativity Acceleration Composition, (23); Integrated Relativistic Velocity and Acceleration Composition, (24); Complete Relativistic Velocity and Acceleration Composition, (28); (These are the four main papers on the subject of velocity composition and acceleration composition by this author. They are all available from the home page of the Millennium Relativity web site at 2 Joseph A. Rybczyk, Velocity Composition Completely Deciphered, (23); Einstein s Velocity Composition Proven Wrong, (23); More Proof that Einstein s Velocity Composition Law is Wrong, (24); Velocity Composition the Scientific Establishment s Way, (24); Millennium Relativity Velocity Composition in Eight Easy Steps, (28); The Failure of Einstein s Velocity Composition in the Reverse Direction, (28); Einstein s Biggest Mistake, Acceleration Composition, Finally Proven, (28); Alternative Versions of the Relativistic Acceleration Composition Formula, (28); Einstein s Erroneous Derivation of Velocity Composition, (28); The Enigma of Einstein s Velocity Composition, (28); The Special Relativity Velocity Composition Paradox, (28); (These are the 11 short papers on the subject of velocity composition and acceleration composition by this author. They are all available from the Millennium Briefs Section of the Millennium Relativity web site at 6

7 Velocity Composition for Dummies Copyright 29 Joseph A. Rybczyk All rights reserved including the right of reproduction in whole or in part in any form without permission. Note: If this document was accessed directly during a search, you can visit the Millennium Relativity web site by clicking on the Home link below: Home 7

Redefining Einstein s Velocity Addition Formula. Copyright 2010 Joseph A. Rybczyk

Redefining Einstein s Velocity Addition Formula. Copyright 2010 Joseph A. Rybczyk Redefining Einstein s Velocity Addition Formula Copyright 2010 Joseph A. Rybczyk Abstract It will be shown in the clearest and briefest terms practical that Einstein s velocity addition formula actually

More information

Most Direct Derivation of Relativistic Kinetic Energy Formula. Copyright 2010 Joseph A. Rybczyk

Most Direct Derivation of Relativistic Kinetic Energy Formula. Copyright 2010 Joseph A. Rybczyk Most Direct Derivation of Relativistic Kinetic Energy Formula Copyright 2010 Joseph A. Rybczyk Abstract The millennium relativity form of the kinetic energy formula is derived through direct modification

More information

Relativistic Constant Acceleration Distance Factor. Copyright 2010 Joseph A. Rybczyk

Relativistic Constant Acceleration Distance Factor. Copyright 2010 Joseph A. Rybczyk Relativistic Constant Acceleration Distance Factor Copyright 2010 Joseph A. Rybczyk Abstract A formalized treatment of a previously discovered principle involving relativistic constant acceleration distances

More information

Fundamental Orbital to Escape Velocity Relationship. Copyright 2009 Joseph A. Rybczyk

Fundamental Orbital to Escape Velocity Relationship. Copyright 2009 Joseph A. Rybczyk Fundamental Orbital to Escape Velocity Relationship Copyright 2009 Joseph A. Rybczyk Abstract Presented herein is the entire orbital velocity to escape velocity relationship recently elevated to the relativistic

More information

Scientific Examination of Relativistic Velocity and Acceleration Addition. Copyright 2010 Joseph A. Rybczyk

Scientific Examination of Relativistic Velocity and Acceleration Addition. Copyright 2010 Joseph A. Rybczyk Scientific Examination of Relativistic Velocity and Acceleration Addition Copyright 2010 Joseph A. Rybczyk Abstract Direct comparison of the millennium relativity relativistic velocity and acceleration

More information

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk The True Nature of the Special Relativity Light Clock Copyright 2012 Joseph A. Rybczyk Abstract It is generally believed that the light clock typically associated with special relativity correlates the

More information

Relativistic Orbital Velocity. Copyright 2009 Joseph A. Rybczyk

Relativistic Orbital Velocity. Copyright 2009 Joseph A. Rybczyk Relativistic Orbital Velocity Copyright 2009 Joseph A. Rybczyk Abstract The relativistic orbital velocity formula for circular orbits is derived through direct application of the Newtonian orbital velocity

More information

Gravitational Effects on Light Propagation. Copyright 2009 Joseph A. Rybczyk

Gravitational Effects on Light Propagation. Copyright 2009 Joseph A. Rybczyk Gravitational Effects on Light Propagation Copyright 2009 Joseph A. Rybczyk Abstract An examination of the theoretical relationship between gravity and light propagation is presented that focuses on the

More information

Rethinking the Principles of Relativity. Copyright 2010 Joseph A. Rybczyk

Rethinking the Principles of Relativity. Copyright 2010 Joseph A. Rybczyk Rethinking the Principles of Relativity Copyright 2010 Joseph A. Rybczyk Abstract An analysis of all of the principles involved in light propagation lead to the discovery that the relativistic principle

More information

Reinterpreting Newton s Law of Gravitation. Copyright 2012 Joseph A. Rybczyk

Reinterpreting Newton s Law of Gravitation. Copyright 2012 Joseph A. Rybczyk Reinterpreting Newton s Law of Gravitation Copyright 2012 Joseph A. Rybczyk Abstract A new approach in interpreting Newton s law of gravitation leads to an improved understanding of the manner in which

More information

Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy. Copyright (2009) Joseph A. Rybczyk

Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy. Copyright (2009) Joseph A. Rybczyk Relativistic Escape Velocity using Relativistic Forms of Potential and Kinetic Energy Copyright (2009) Joseph A. Rybczyk Abstract Presented herein is the ultimate theoretical proof of the correctness of

More information

Stellar Aberration, Relative Motion, and the Lorentz Factor. Copyright 2010 Joseph A. Rybczyk

Stellar Aberration, Relative Motion, and the Lorentz Factor. Copyright 2010 Joseph A. Rybczyk Stellar Aberration, Relative Motion, and the Lorentz Factor Copyright 2010 Joseph A. Rybczyk Abstract Presented are the results of an in-depth investigative analysis conducted to determine the relationship

More information

Relativistic Kinetic Energy Simplified. Copyright Joseph A. Rybczyk

Relativistic Kinetic Energy Simplified. Copyright Joseph A. Rybczyk Relativistic Kinetic Energy Simplified Copyright 207 Joseph A. Rybczyk Abstract The relativistic form of the kinetic energy formula is derived directly from the relativized principles of the classical

More information

The Complete Nature of Stellar Aberration. Copyright 2010 Joseph A. Rybczyk

The Complete Nature of Stellar Aberration. Copyright 2010 Joseph A. Rybczyk The Complete Nature of Stellar Aberration Copyright 2010 Joseph A. Rybczyk Abstract Presented is a detailed explanation of the complete nature of stellar aberration that goes beyond the basic principles

More information

The Greatest Failure of the Scientific Method - Special Relativity. Copyright Joseph A. Rybczyk

The Greatest Failure of the Scientific Method - Special Relativity. Copyright Joseph A. Rybczyk The Greatest Failure of the Scientific Method - Special Relativity Copyright 207 Joseph A. Rybczyk Abstract It is only a matter of time when the scientific authorities will have to face the inevitable

More information

2.4 The Lorentz Transformation

2.4 The Lorentz Transformation Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 4 Jan. 27, 2015 Lecture Notes, HW Assignments, Physics Colloquium, etc.. 2.4 The Lorentz Transformation

More information

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT Announcements HW1: Ch.2-20, 26, 36, 41, 46, 50, 51, 55, 58, 63, 65 Lab start-up meeting with TA tomorrow (1/26) at 2:00pm at room 301 Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Conclusions About the Simultaneity of Two Events. Vesselin C. Noninski

Conclusions About the Simultaneity of Two Events. Vesselin C. Noninski Conclusions About the Simultaneity of Two Events Vesselin C. Noninski vesselin.noninski@verizon.net Abstract A gedanken experiment is presented whereby two simultaneous events (from the point of view of

More information

2.3 The Lorentz Transformation Eq.

2.3 The Lorentz Transformation Eq. Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 3 HW1 (due 9/13) Chapter 2 20, 26, 36, 41, 45, 50, 51, 55, 58 Sep. 6, 2016 2.3 The Lorentz Transformation

More information

The relativistic length contraction rebutted

The relativistic length contraction rebutted The relativistic length contraction rebutted Radwan M. Kassir 016 radwan.elkassir@dar.com Abstract In this paper, it is established that Einstein s interpretation of the Lorentz transformation in predicting

More information

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements Chapter 37. Relativity Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements The Relativity of Simultaneity Time Dilation Length g Contraction

More information

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics

Einstein s Special Theory of Relativity. Dr. Zdzislaw Musielak UTA Department of Physics Einstein s Special Theory of Relativity Dr. Zdzislaw Musielak UTA Department of Physics OUTLINE Einstein s Miraculous Year 1905 Time and Space before 1905 Einstein s Paper # 3 Time and Space after 1905

More information

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F.

Therefore F = ma = ma = F So both observers will not only agree on Newton s Laws, but will agree on the value of F. Classical Physics Inertial Reference Frame (Section 5.2): a reference frame in which an object obeys Newton s Laws, i.e. F = ma and if F = 0 (object does not interact with other objects), its velocity

More information

Constant Light Speed The Greatest Misconception of Modern Science. Copyright Joseph A. Rybczyk

Constant Light Speed The Greatest Misconception of Modern Science. Copyright Joseph A. Rybczyk Constant Light Speed The Greatest Misconception of Modern Science Copyright 2015 Joseph A. Rybczyk Abstract With no valid evidence to support it, the speed of light is claimed to be constant in empty space

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS REVOLUTIONS IN MODERN PHYSICS:... L (P.580-587) Thought Experiments Einstein s two postulates seem straightforward and do not seem to lead to anything new for mechanics. However,

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Correct Resolution of the Twin Paradox

Correct Resolution of the Twin Paradox Correct Resolution of the Twin Paradox Michael Huemer In the following, I explain the Twin Paradox, which is supposed to be a paradoxical consequence of the Special Theory of Relativity (STR). I give the

More information

copyright december 2008 by Steve Waterman all rights reserved A well known problem re-worded...where is the missing ten bucks?

copyright december 2008 by Steve Waterman all rights reserved A well known problem re-worded...where is the missing ten bucks? Challenge to the Mathematical Validity of the Voigt Transformation Equations and Hence the Theory of Relativity. swaterman@watermanpolyhedron.com [ introduction ] copyright december 2008 by Steve Waterman

More information

Limitations of Newtonian Physics

Limitations of Newtonian Physics Limitations of Newtonian Physics 18 th and 19 th Centuries Newtonian Physics was accepted as an ultimate truth Science is never absolute Hundreds of experiments can t prove my theory right but only one

More information

The BASICS of SPECIAL RELATIVITY THEORY Critical Review

The BASICS of SPECIAL RELATIVITY THEORY Critical Review The BASICS of SPECIA REATIVITY THEORY Critical Review Nikolai Bouianov Toronto, Canada Keywords: Einstein, relativity Abstract: Critical review of the relativity basics. My intent with this article was

More information

RELATIVITY. Special Relativity

RELATIVITY. Special Relativity RELATIVITY Special Relativity FROM WARMUP How does special relativity differ from general? Special relativity deals with inertial reference frames. General relativity deals with gravity and acceleration

More information

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics

4/13/2015. Outlines CHAPTER 12 ELECTRODYNAMICS & RELATIVITY. 1. The special theory of relativity. 2. Relativistic Mechanics CHAPTER 12 ELECTRODYNAMICS & RELATIVITY Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. The special theory of relativity 2. Relativistic Mechanics 3. Relativistic

More information

Chapter 10: Special Relativity

Chapter 10: Special Relativity Chapter 10: Special Relativity Time dilation Length contraction Energy, (relativistic) mass vs. rest mass E = m c 2 Any questions or concerns so far? Examples (such as cosmic ray muons) clear enough? Quiz

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Introduction to Relativity & Time Dilation

Introduction to Relativity & Time Dilation Introduction to Relativity & Time Dilation The Principle of Newtonian Relativity Galilean Transformations The Michelson-Morley Experiment Einstein s Postulates of Relativity Relativity of Simultaneity

More information

AP Calculus. Particle Motion. Student Handout

AP Calculus. Particle Motion. Student Handout AP Calculus Particle Motion Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright 016

More information

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Problem: A rocket is traveling in the positive x-direction away from earth at speed 0.3c; it leaves earth

More information

Special Theory of Relativity. A Brief introduction

Special Theory of Relativity. A Brief introduction Special Theory of Relativity A Brief introduction Classical Physics At the end of the 19th century it looked as if Physics was pretty well wrapped up. Newtonian mechanics and the law of Gravitation had

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Consequences of Einstein s Postulates Lorentz Transformations Albert Einstein 1879-1955 Einstein s Postulates: 1. The laws of physics are invariant to observers

More information

A Critique of time dilation Roger J Anderton

A Critique of time dilation Roger J Anderton A Critique of time dilation Roger J Anderton R.J.Anderton@btinternet.com Supposedly time dilation can be derived from the postulate of lightspeed constancy alone without the principle of relativity. However

More information

Einstein s Time Dilation Experiment By Harry H. Ricker III

Einstein s Time Dilation Experiment By Harry H. Ricker III Einstein s Time Dilation Experiment By Harry H. Ricker III The purpose of this paper is to expand upon a conclusion I discussed in my paper on the Irksomeness of Einstein s Special Theory Of Relativity

More information

How to solve the velocity paradox in special relativity? Qing-Ping Ma

How to solve the velocity paradox in special relativity? Qing-Ping Ma How to solve the velocity paradox in special relativity? Qing-Ping Ma The Department of Quantitative and Applied Economics, the University of Nottingham Ningbo China Abstract The present study examined

More information

PHYS 270-SPRING 2011 Dennis Papadopoulos LECTURE # 20 RELATIVITY I NEWTONIAN RELATIVITY GALILEAN TRANSFORMATIONS SIMULTANEITY APRIL 21, 2011

PHYS 270-SPRING 2011 Dennis Papadopoulos LECTURE # 20 RELATIVITY I NEWTONIAN RELATIVITY GALILEAN TRANSFORMATIONS SIMULTANEITY APRIL 21, 2011 PHYS 270-SPRING 2011 Dennis Papadopoulos LECTURE # 20 RELATIVITY I NEWTONIAN RELATIVITY GALILEAN TRANSFORMATIONS SIMULTANEITY APRIL 21, 2011 1 I: LAWS OF MOTION Newton s first law Newton s first law (N1)

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

RELATIVITY. Special Relativity

RELATIVITY. Special Relativity RELATIVITY Special Relativity FROM WARMUP It was all interesting! How important is it for us to know the Galilean transformation equations and the math of the Michelson-Morley experiment? Know the Galilean

More information

Special Relativity Lecture

Special Relativity Lecture Special Relativity Lecture Prateek Puri August 24, 200 The Lorentz Transformation So far, we have proved length contraction and time dilation only for very specific situations involving light clocks; however,

More information

Lorentz Transformation & the Meaning of Einstein s 1905 Special Theory of Relativity

Lorentz Transformation & the Meaning of Einstein s 1905 Special Theory of Relativity Lorentz Transformation & the Meaning of Einstein s 1905 Special Theory of Relativity 334 Article Alexandru C. V. Ceapa * ABSTRACT When the Lorentz transformation as a complementary time-dependent coordinate

More information

Advantages of Three-Dimensional Space-Time Frames

Advantages of Three-Dimensional Space-Time Frames Frontiers in Science 01, (3): 18-3 DOI: 10.593/j.fs.01003.01 Advantages of Three-Dimensional Space-Time Frames Tower Chen 1,*, Zeon Chen 1 Unit of Mathematical Sciences, College of Natural and Applied

More information

The Non existence of Einstein's Light speed barrier Roger J Anderton

The Non existence of Einstein's Light speed barrier Roger J Anderton The Non existence of Einstein's Light speed barrier Roger J Anderton R.J.Anderton@btinternet.com The speed of light (in vacuum) is often being treated as a barrier in the context of Einstein's relativity.

More information

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative.

Special Theory of Relativity. The Newtonian Electron. Newton vs. Einstein. So if Newtonian Physics is wrong. It is all Relative. Special Theory of Relativity Chapter 26 The Newtonian Electron Newtonian Theory (everything we have done so far in class) can be tested at high speeds by accelerating electrons or other charged particles

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010 Physics 2D Lecture Slides Lecture 2 Jan. 5, 2010 Lecture 1: Relativity Describing a Physical Phenomenon Event (s) Observer (s) Frame(s) of reference (the point of View! ) Inertial Frame of Reference Accelerated

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. College - PHY2054C 11/10/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline 1 2 3 1 The speed of light is the maximum possible speed, and it is always measured to have the same value

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Time Travel. Time Travel to the Future via Special Relativity

Time Travel. Time Travel to the Future via Special Relativity Time Travel Time Travel is it possible? In these notes, I go over a few methods of time travel that people have thought of over the years. Time Travel to the Future via Special Relativity Of course time

More information

Elements of Physics II

Elements of Physics II Physics 132: Lecture 23 Elements of Physics II Agenda for Today Special Theory of relativity Inertial vs. non-inertial reference frames Postulates of SR Consequences of SR Time dilation Length contraction

More information

Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009

Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009 Special Relativity in a Model Universe Michael S. A. Graziano Draft Aug 2009 Introduction The present paper describes a model universe called Hubs and Spokes (HS). HS operates on the basis of two rules.

More information

Lesson 12 Relativity

Lesson 12 Relativity Lesson 12 Relativity Introduction: Connecting Your Learning Relative motion was studied at the beginning of the course when the simple notion of adding or subtracting velocities made perfect sense. If

More information

Newtonian or Galilean Relativity

Newtonian or Galilean Relativity Relativity Eamples 1. What is the velocity of an electron in a 400 kv transmission electron microscope? What is the velocity in the 6 GeV CESR particle accelerator?. If one million muons enter the atmosphere

More information

On the Mass Quantization of Black Holes

On the Mass Quantization of Black Holes On the Mass Quantization of Black Holes Black holes are relatively simple cosmic objects that are characterized by their mass, their angular momentum and their electric charge. However, the laws that govern

More information

The Gravitational origin of Velocity Time Dilation

The Gravitational origin of Velocity Time Dilation The Gravitational origin of Velocity Time Dilation A generalization of the Lorentz Factor for comparable masses Arindam Sinha February, 204 Abstract Does velocity time dilation (clock drift) depend on

More information

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory Relativity Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 1 - Universe Notes Name 1 Newton and Gravity Newton s Thought Experiment Satellite s orbit as an Application of Projectiles Isaac Newton, as well as giving

More information

Special Relativity 1

Special Relativity 1 Special Relativity 1 Special Relativity: A Summary Caitlyn Edwards Dr. Gan Modern Physics November 2017 Special Relativity 2 Abstract The physics of Einstein s theory of special relativity differs dramatically

More information

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory.

The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. The Pound-Rebka Experiment as Disproof of Einstein s General Relativity Gravity Theory. By James Carter When Einstein first used his equations to predict the transverse gravitational red shift of photons

More information

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame.

Special Theory of Relativity (I) Newtonian (Classical) Relativity. Newtonian Principle of Relativity. Inertial Reference Frame. Special Theory of Relativity (I) Newtonian (Classical) Relativity Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Assumption It is assumed that

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

Physics 2D Lecture Slides Lecture 2. March 31, 2009

Physics 2D Lecture Slides Lecture 2. March 31, 2009 Physics 2D Lecture Slides Lecture 2 March 31, 2009 Newton s Laws and Galilean Transformation! But Newton s Laws of Mechanics remain the same in All frames of references!! 2 2 d x' d x' dv = " dt 2 dt 2

More information

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Velocities in Special Relativity - As was done in Galilean relativity,

More information

Einstein s Space and Time

Einstein s Space and Time Einstein s Space and Time Re-examining the Obvious Familiar things happen, and mankind does not bother about them. It requires a very unusual mind to make an analysis of the obvious." Alfred North Whitehead

More information

Quantum Gravitational Relativity Part II

Quantum Gravitational Relativity Part II Quantum Gravitational Relativity Part II The theory presented in this paper is the second part of the quantum gravitational formulation of Einstein's special theory of relativity. This paper presents another

More information

Q W u e. c t o u m m e P h B. B e. s c i k c s 2. John Harris 1

Q W u e. c t o u m m e P h B. B e. s c i k c s 2. John Harris 1 Q W u e a l n c t o u m m e P h B y a s c i k c s 2 & B e y o n d! Yale Physics 120 3/26/2018 Quantum Physics and Beyond John Harris 1 Physics 120 Reminder: the Rest of the Term Today - Mar 26 Mon Apr

More information

The Gravitational origin of Velocity Time Dilation

The Gravitational origin of Velocity Time Dilation The Gravitational origin of Velocity Time Dilation A generalization of the Lorentz Factor for comparable masses Arindam Sinha November 25, 203 Abstract Does asymmetric velocity time dilation (clock drift)

More information

Paradoxes of special relativity

Paradoxes of special relativity Paradoxes of special relativity Today we are turning from metaphysics to physics. As we ll see, certain paradoxes about the nature of space and time result not from philosophical speculation, but from

More information

Lorentz Transformations and the Twin Paradox By James Carter

Lorentz Transformations and the Twin Paradox By James Carter Lorentz Transformations and the Twin Paradox By James Carter The Lorentz transformation m = M/ 1-v 2 /c 2 is a principle of measurement that can be classed as one of the laws of physics. (A moving body

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sept 29 Vivek Sharma UCSD Physics Galilean Relativity Describing a Physical Phenomenon Event ( and a series of them) Observer (and many of them) Frame of reference (& an Observer

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

The Michelson-Gale Experiment: Doug Marett (2010)

The Michelson-Gale Experiment: Doug Marett (2010) The Michelson-Gale Experiment: Doug Marett (2010) In 1904, Albert Michelson conceived of an experiment to detect the relative motion of the earth and the ether [1]. His primary goal was to design an experiment

More information

Postulates of Special Relativity

Postulates of Special Relativity Relativity Relativity - Seen as an intricate theory that is necessary when dealing with really high speeds - Two charged initially stationary particles: Electrostatic force - In another, moving reference

More information

2.1 Einstein s postulates of Special Relativity. (i) There is no ether (there is no absolute system of reference).

2.1 Einstein s postulates of Special Relativity. (i) There is no ether (there is no absolute system of reference). Chapter 2 Special Relativity The contradiction brought about by the development of Electromagnetism gave rise to a crisis in the 19th century that Special Relativity resolved. 2.1 Einstein s postulates

More information

Experimental Values of Lorentz Transformations of Mass and Time

Experimental Values of Lorentz Transformations of Mass and Time Experimental Values of Lorentz Transformations of Mass and Time Lorentz Transformation Thought Experiment GPS Clock Calculations Pound-Rebka Experiment Triplet Paradox Experiment The Lorentz transformation

More information

Degree of Freedom in the Lorentz Transformation

Degree of Freedom in the Lorentz Transformation Degree of Freedom in the Lorentz Transformation Robert J. Buenker Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstr. 20, D-42119 Wuppertal, Germany Phone: +49-202-439-2511/2774

More information

JF Theoretical Physics PY1T10 Special Relativity

JF Theoretical Physics PY1T10 Special Relativity JF Theoretical Physics PY1T10 Special Relativity 12 Lectures (plus problem classes) Prof. James Lunney Room: SMIAM 1.23, jlunney@tcd.ie Books Special Relativity French University Physics Young and Freedman

More information

Einstein s False Derivation Of Lorentz-Fitzgerald Contraction By Harry H. Ricker III

Einstein s False Derivation Of Lorentz-Fitzgerald Contraction By Harry H. Ricker III Einstein s False Derivation Of Lorentz-Fitzgerald Contraction By Harry H. Ricker III email: kc3mx@yahoo.com 1.0 Introduction This paper demonstrates that the traditional derivation of the Lorentz-FitzGerald

More information

Modern Physics. Light and Relativity

Modern Physics. Light and Relativity Modern Physics Light and Relativity Electromagnetism In the late 1800 s, Electricity and Magnetism were united as one force: Electromagnetism Electromagnetism In the late 1800 s, Electricity and Magnetism

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Einstein for Everyone Lecture 3: Special Relativity

Einstein for Everyone Lecture 3: Special Relativity Einstein for Everyone Lecture 3: Special Relativity Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Summary of Historical Background 2 Emission Theories Introduction

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

Modern Physics Part 2: Special Relativity

Modern Physics Part 2: Special Relativity Modern Physics Part 2: Special Relativity Last modified: 23/08/2018 Links Relative Velocity Fluffy and the Tennis Ball Fluffy and the Car Headlights Special Relativity Relative Velocity Example 1 Example

More information

Baxter s Railroad Company.

Baxter s Railroad Company. Baxter s Railroad Company. J.C.Valks June 3, 2012 Abstract In this document we analyze the thought experiment proposed by Baxter. Baxter s conclusion is that his thought experiment shows a contradiction

More information

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1

Multiple Choice Solutions 1. E (2003 AB25) () xt t t t 2. A (2008 AB21/BC21) 3. B (2008 AB7) Using Fundamental Theorem of Calculus: 1 Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

Correct Solution Of The Right Angle Lever Paradox Of Special Relativity By Harry H. Ricker III 1.0 Introduction

Correct Solution Of The Right Angle Lever Paradox Of Special Relativity By Harry H. Ricker III 1.0 Introduction Correct Solution Of The Right Angle Lever Paradox Of Special Relativity By Harry H. Ricker III 1.0 Introduction This paper presents the first mathematically rigorous correct solution to the famous paradox

More information

Special Relativity: What Time is it?

Special Relativity: What Time is it? Special Relativity: What Time is it? Michael Fowler, Physics Department, UVa. Special Relativity in a Nutshell Einstein s Theory of Special Relativity, discussed in the last lecture, may be summarized

More information

Special relativity, 3. How big is gamma? The Lorentz transformations depend on the factor γ =

Special relativity, 3. How big is gamma? The Lorentz transformations depend on the factor γ = Special relativity, 3 A few kinematic consequences of the Lorentz transformations How big is gamma? The Lorentz transformations depend on the factor γ = 1 1 β 2, where β = V c. For macroscopic objects,

More information

Your (primed) frame frame

Your (primed) frame frame 6 Special Relativity 6.1 Galiean Relativity 6.1.1 Spacetime Diagrams We keep seeing the word relativity appear in our discussion. To the person on the street, relativity (normally associated with Einstein)

More information