Optics and magneto-optics electrons in conical bands

Size: px
Start display at page:

Download "Optics and magneto-optics electrons in conical bands"

Transcription

1 Optics and magneto-optics electrons in conical bands Milan Orlita Laboratoire National des Champs Magnétiques Intenses CNRS Grenoble, France

2 Outline Outline: Massless electrons in graphene and other solids (zoology) Optics and magneto-optics of electrons in conical bands Conclusions

3 Graphene 2D 2D crystal made of carbon atoms organized in hexagonal lattice Theoretically known over sixty years P. R. Wallace, Phys. Rev. 71, 622 (1947) Isolated/fabricated in 2004/2005 K. S. Novoselov et al., Science 306, 666 (2004) K. S. Novoselov et al., Nature 438, 197 (2005) Carbon Diamond Graphite nanotube 3D 3D 1D 0D Fulleren

4 Electronic band structure of graphene Crystal lattice: Electronic bands: Electronic dispersion (K points): Electrons in graphene = charged massless (relativistic) particles

5 Electronic band structure of graphene Effective Dirac Hamiltonian (for K or K point): Electronic bands: Electronic dispersion (K points): Electrons in graphene = charged massless (relativistic) particles

6 Highlights of graphene physics Half-integer and fractional QHE: Highlights of graphene physics K. Novoselov et al., Nature 438, 197 (2005) Y. Zhang et al., Nature 438, 201 (2005) K. I. Bolotin et al.,, Nature 462, 196 (2009) Room temperature QHE: K. Novoselov et al., Science 315, 1379 (2007) Universal dynamic conductivity: R. R. Nair et al., Science 320, 1308 (2008) A. B. Kuzmenko et al., Phys. Rev. Lett. 100, (2008)

7 Solids with relativistic-like electrons (timeline) 2005: Graphene & hexagonal systems systems K. S. Novoselov et al., Nature 438, 197 (2005) 2007: 2D topological insulators M. König et al., Science 318, 766 (2007) 2008: 3D topological insulators D. Hsieh et al., Nature 452, 970 (2008) 2011: Rashba-type semiconductors K. Ishizaka et al., Nature Mater. 10, 521 (2011) 2012: 3D topological crystalline insulators P. Dziawa et al., Nature Mater. 11, 1023 (2012) 2014: 3D Dirac semimetals Z. K. Liu et al., Science 343, 864 (2014) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) 2015: 3D Weyl semimetals B. Q. Lv et al., Nature Phys. 11, 724 (2015) 2016: Nodal-loop Dirac semimetals L. M. Schoop et al., Nature Comm. 7, (2016)

8 Solids with relativistic-like electrons (classification) Topological band theory: Band structures classified in terms of Z 2 invariant, Chern number, Berry phase, time-reversal/point/space symmetries see, e.g., A. Bansil et al., Rev. Mod. Phys. 88, (2016) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

9 Solids with relativistic-like electrons (classification) Topological band theory: Band structures classified in terms of Z 2 invariant, Chern number, Berry phase, time-reversal/point/space symmetries see, e.g., A. Bansil et al., Rev. Mod. Phys. 88, (2016) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) Electrons in conical bands, which differ by dimensionality, valley and spin degeneracy, (an)isotropy, time-reversal/lattice symmetry, corresponding Hamiltonian

10 Solids with relativistic-like electrons (timeline) 2005: Graphene & hexagonal systems systems K. S. Novoselov et al., Nature 438, 197 (2005) 2007: 2D topological insulators M. König et al., Science 318, 766 (2007) 2008: 3D topological insulators D. Hsieh et al., Nature 452, 970 (2008) 2011: Rashba-type semiconductors K. Ishizaka et al., Nature Mater. 10, 521 (2011) 2012: 3D topological crystalline insulators P. Dziawa et al., Nature Mater. 11, 1023 (2012) 2014: 3D Dirac semimetals Z. K. Liu et al., Science 343, 864 (2014) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) 2015: 3D Weyl semimetals B. Q. Lv et al., Nature Phys. 11, 724 (2015) 2016: Nodal-loop Dirac semimetals L. M. Schoop et al., Nature Comm. 7, (2016)

11 STM constant potential image Artificial graphene = C.-H. Park et al., Phys. Rev. Lett. 101, (2008) M. Gibertini et al., Phys. Rev. B 79, (2009) L. Nádvorník et al., New J. Phys. 14, (2012) Molecular graphene: Direct analogues of graphene hexagonally patterned 2D electron gas in a semiconductor QW STS spectrum Cu (111) surface with CO atoms assembled into hexagonal using STM/STS tip K. K. Gomes et. al, Nature 483, 306 (2012) Silicene, germanene, phosphorene S. Cahangirov et al., Phys. Rev. Lett. 102, (2009) H. Liu et al., ACS Nano 8, 4033 (2014)

12 Symmetry breaking in graphene-like systems Breaking hexagonal symmetry opens the energy band gap Cross-over from massless to massive Dirac electrons K. Novoselov, Nature Mater. 6, 720 (2007) Materials for valleytronics (e.g.): monolayers of h-bn or transitions metal dichalcogenides (MoS 2, WSe 2, MoSe 2 ) W. Yao et al., Phys. Rev. B 77, (2008)

13 Solids with relativistic-like electrons (timeline) 2005: Graphene & hexagonal systems systems K. S. Novoselov et al., Nature 438, 197 (2005) 2007: 2D topological insulators M. König et al., Science 318, 766 (2007) 2008: 3D topological insulators D. Hsieh et al., Nature 452, 970 (2008) 2011: Rashba-type semiconductors K. Ishizaka et al., Nature Mater. 10, 521 (2011) 2012: 3D topological crystalline insulators P. Dziawa et al., Nature Mater. 11, 1023 (2012) 2014: 3D Dirac semimetals Z. K. Liu et al., Science 343, 864 (2014) M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010) 2015: 3D Weyl semimetals B. Q. Lv et al., Nature Phys. 11, 724 (2015) 2016: Nodal-loop Dirac semimetals L. M. Schoop et al., Nature Comm. 7, (2016)

14 Insulating in bulk, but conducting via conical band(s) on the surface Topological insulators Effective Hamiltonian for surface states (Rashba-like): The conical band protected by time-reversal symmetry 2D and 3D topological insulators: (3D/2D bulk + 1D/2D surface) HgTe/HgCdTe and InAs/GaSb QWs Bi 1-x Sb x, Bi 2 Se 3, Bi 2 Te 3, Sb 2 Te 3 M. König et al., Science 318, 766 (2007) I. Knez et al., Phys. Rev. Lett. 107, (2011) D. Hsieh et al., Nature 452, 970 (2008) H. Zhang et al., Nature. Phys. 9, 438 (2009) C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, (2005) B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, (2006) M. Z. Hasan et al., Rev. Mod. Phys. 82, 3045 (2010)

15 Topological insulators Insulating in bulk, but conducting via conical band(s) on the surface Surface states of Bi 2 Se 3 in ARPES: Effective Hamiltonian for surface states (Rashba-like): The conical band protected by time-reversal symmetry 2D and 3D topological insulators: (3D/2D bulk + 1D/2D surface) credit to Y. L. Chen, Oxford HgTe/HgCdTe and InAs/GaSb QWs Bi 1-x Sb x, Bi 2 Se 3, Bi 2 Te 3, Sb 2 Te 3 M. König et al., Science 318, 766 (2007) I. Knez et al., Phys. Rev. Lett. 107, (2011) D. Hsieh et al., Nature 452, 970 (2008) H. Zhang et al., Nature. Phys. 9, 438 (2009) C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, (2005) B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, (2006) M. Z. Hasan et al., Rev. Mod. Phys. 82, 3045 (2010)

16 Insulating in bulk, but conducting via conical band(s) on the surface Topological crystalline insulators Effective Hamiltonian for surface states (Rashba-like): The conical band protected by crystalline symmetry e.g., Pb 1-x Sn x Se, Pb 1-x Sn x Te, SnTe L. Fu et al., Phys Rev. Lett. 106, (2011) P. Dziawa et al., Nature Mater. 11, 1023 (2012)

17 3D Dirac semimetals Bulk systems with one or more spin-degenerate 3D conical bands Na 3 Bi, Cd 3 As 2, gapless HgCdTe, ZrTe 5 Z. K Liu et al., Science 343, 864 (2014) Z. K. Liu et al., Nature Mater. 13, 677 (2014) S. Jeon et al., Nature Mater. 13, 851 (2014) M. Orlita et al., Nature Phys. 10, 233 (2014) S. Borisenko et al., Phys. Rev. Lett. 113, (2014) M. Neupane et al., Nature Comm. 5, 3786 (2014) R. Y. Chen et al., Phys. Rev. Lett. 115, (2015) Effective Hamiltonian (3D Weyl + spin degeneracy): Conical bands may be protected by the lattice symmetry B.-J. Yang & N. Nagaosa, Nature Comm.5, 4898 (2014)

18 3D Weyl semimetals 3D conical bands with no spin degeneracy = with either time- or inversion-symmetry lifted TaAs, NbAs, TaP B. Q. Lv et al., Nature Phys. 11, 724 (2015) L. X. Yang et al., Nature Phys. 11, 728 (2015) S.-Y. Xu et al., Nature Phys. 11, 748 (2015) Effective (Weyl) Hamiltonian: Weyl cones always in pairs! Fermi arc = specific, in k-space disjoint surface state

19 Valley degenerated Spin degenerated Conical bands in solids: Overview & examples Dimensionality 1D 2D 3D HgTe QW (critical thickness) Büttner et al., Nature Phys D Dirac semimetals (w/o symmetry protection) (gapless HgCdTe, ZrTe 5 ) Orlita Nature Phys Chen et al., PRL 2015 Metallic carbon nanotubes see, e.g. Ando, SST D topological insulators inverted HgTe QWs König et al., Science 2007 InAs/GaSb QWs Knez et al., PRL 2011 Graphene Novoselov et al., Nature D topological insulators (Bi 1-x Sb x, Bi 2 Se 3, Bi 2 Te 3 ) Hsieh et al., Nature 2008 Rashba-type semiconductors (BiTeI, BiTeCl, BiTeBr) Ishizaka et al., Nature. Mater D Dirac semimetals (Cd 3 As 2, Na 3 Bi) Liu et al., Science 2014 Liu et al, Nature Mater D Weyl semimetals (e.g., TaAs, NdAs, TaP) Lv et al., Nature Phys Xu et al., Nature Phys. 2015

20 Density of states: conventional systems

21 Density of states: conical bands

22 Optical response of electrons in conical bands v v 1 st order, electric-dipole excitations considered only

23 Conical bands: Absorption of light on free carriers Classical Drude model of (optical) conductivity v v

24 Conical bands: Absorption of light on free carriers Classical Drude model of (optical) conductivity Free-carrier absorption graphene v v M. Orlita et al., New. J. Phys. 14, (2012)

25 Conical bands: Absorption of light on free carriers Classical Drude model of (optical) conductivity Free-carrier absorption graphene v v M. Orlita et al., New. J. Phys. 14, (2012) dc conductivity

26 Conical bands: Absorption of light on free carriers Classical Drude model of (optical) conductivity Free-carrier absorption graphene v v dc conductivity Drude (optical) weight

27 Interband excitations in conical bands v Optical band gap (zero T, finite doping) Absorption of light in solids (Fermi s golden rule & electric dipole excitations): Joint density of states: v

28 Interband excitations in conical bands R. R. Nair et al., Science 320, 1308 (2008) Absorption coefficient: For conical bands in 2D: Dispersionless interband absorption of light

29 Interband excitations in conical bands R. R. Nair et al., Science 320, 1308 (2008) Absorption coefficient: For conical bands in 2D: Dispersionless and universal interband absorption of light

30 Interband excitations in conical bands Flat absorption of light (2.3%) defined only by the fine structure constant: R. R. Nair et al., Science 320, 1308 (2008) A. B. Kuzmenko et al., Phys. Rev. Lett. 100, (2008)

31 Interband excitations in conical bands v Optical band gap (zero T, finite doping) Absorption of light in solids (Fermi s golden rule & electric dipole excitations): Joint density of states: v

32 3D conical band: optical conductivity Gapless HgCdTe: Absorption of light in solids (e.g., Fermi s golden rule): For conical bands in 3D: Absorption coefficient linear in photon frequency! M. Orlita et al., Nature Phys. 10, 233 (2014)

33 3D conical band: optical conductivity Cadmium arsenide (Cd 3 As 2 ): Absorption of light in solids (e.g., Fermi s golden rule): For conical bands in 3D: Absorption coefficient linear in photon frequency! A. Akrap et al., Phys. Rev. Lett. 117, (2016)

34 3D conical band: optical conductivity Cadmium arsenide (Cd 3 As 2 ): Absorption of light in solids (e.g., Fermi s golden rule): For conical bands in 3D: Absorption coefficient linear in photon frequency! Cut off due to Pauli blocking (=> E F )

35 Optical conductivity of a conical band: summary v (Joint) density of states: Optical conductivity: v

36 Optical response of electrons in conical bands v v 1 st order, electric-dipole excitations considered only

37 Optical response of electrons in conical bands v Magnetic field? v 1 st order, electric-dipole excitations considered only

38 Cyclotron resonance massive electrons Charged particle in magnetic field: Cyclotron motion at the frequency: Cyclotron resonance = resonant absorption of light at the cyclotron frequency

39 Cyclotron resonance in solid-state physics Germanium = the first solid-state system in which cyclotron resonance was observed G. Dresselhaus, A. F. Kip, and C. Kittel Phys. Rev. 92, 827 (1953) More than the estimate of the effective mass, important observation for the concept of quasi-particles in condensed matter physics see, e.g., M. L. Cohen, AIP Conference Proceedings 772, 3 (2005)

40 Cyclotron resonance Charged particle in magnetic field: Cyclotron motion at the frequency: Cyclotron resonance = resonant absorption of light at the cyclotron frequency

41 Cyclotron motion of massless electrons (classical description) Charged particle in magnetic field: Cyclotron motion at the frequency: Linear in B Cyclotron mass (energy dependent) "Effective" effective mass of massless particles, i.e., Einstein energy-mass relation General definition of cyclotron mass: see, e.g., Ashcroft & Mermin

42 Conical bands: Absorption of light on free carriers Classical Drude model for optical conductivity Free-carrier absorption graphene v v dc conductivity Drude (optical) weight

43 Cyclotron motion of massless electrons (classical description) Charged particle in magnetic field: Cyclotron motion at the frequency: Linear in B Cyclotron mass (energy dependent) "Effective" effective mass of massless particles, i.e., Einstein energy-mass relation General definition of cyclotron mass: see, e.g., Ashcroft & Mermin

44 Cyclotron resonance in graphene Quasi-free-standing graphene on SiC in classical regime Magneto-absorbance M. Orlita et al., New J. Phys. 14, (2012) A. M. Witowski et al., Phys. Rev. B 82, (2010)

45 Cyclotron resonance in graphene Landau levels: Quantum regime Selection rules: Cyclotron resonance Interband excitations

46 Landau level spectrum & optical excitations

47 Interband inter-landau level excitations Cyclotron resonance in graphene Cyclotron resonance Magneto-absorbance Multilayer epitaxial graphene on SiC in quantum regime M. Orlita et al., Phys. Rev. Lett. 101, (2008)

48 Interband inter-landau level excitations Cyclotron resonance in graphene Cyclotron resonance Magneto-absorbance Energy spectrum: Velocity parameter: M. Orlita et al., Phys. Rev. Lett. 101, (2008)

49 Interband inter-landau level excitations Cyclotron resonance in graphene Cyclotron resonance Magneto-absorbance Carrier mobility: M. Orlita et al., Phys. Rev. Lett. 101, (2008)

50 Cyclotron resonance in 3D Dirac semimetal Cd 3 As 2 High-field magneto-reflectivity of Cd 3 As 2 : Velocity, anisotropy of conical bands A. Akrap et al., Phys. Rev. Lett. 117, (2016) M. Hakl et al., Phys. Rev. B 97, (2018)

51 Landau levels spectroscopy of 3D Dirac electrons in gapless ZrTe 5 Magneto-transmission: G Fan chart: Gap, velocity, Zeeman splitting (g factors) I. Crassee, A. Akrap et al., unpublished (2018) see also, Z. G. Chen et al., PNAS 114, 816 (2017) & R. Y. Chen et al., Phys. Rev. Lett. 115, (2015)

52 credit to QPEC, University of Tokyo Landau level spectroscopy of BiTeI Rashba-type spin splitting of conduction-band electrons: Bulk electrons (2D massless + 1D massive) Magneto-transmission: Fan chart: Velocity, departure from (= from band linearity) S. Bordacs et al., Phys. Rev. Lett. 111, (2013) S. Bordacs et al., unpublished (2017)

53 Universal magneto-optical effects in topological insulators Magneto-optics on a thin layer of a topological insulator: M. Z. Hasan, Physics 3, 62 (2010) Universal Faraday/Kerr rotations (determined by fine structure constant a only) predicted for topological insulators with broken TR-symmetry W.-K. Tse and A. H. MacDonald, Phys. Rev. Lett. 105, (2010) J. Maciejko et al., Phys. Rev. Lett. 105, (2010)

54 Universal magneto-optical effects in topological insulators Tested in very first experimental studies. L. Wu et al., Science 354, 1124 (2016) V. Dziom et al., Nature Comm. 8, (2017) Kerr rotation on surface states of Bi 2 Se 3 : Plateaus in the Kerr/Faraday angle defined by the fine structure only

55 Relativistic quantum electrodynamics in 3D Weyl semimetals? Chiral anomaly = generation/annihilation of chiral fermions from/to vacuum ( ) S. L. Adler, Phys. Rev. 177, 2426 (1969) Solid-state analog = transfer of electrons between Weyl nodes H. B. Nielsen, Phys. Lett. 130B, 389 (1983) Negative magneto-resistance not a unique proof magneto-optical studies? R. D. dos Reis et al., New Journal of Phys. 18, (2016) P. E. C. Ashby and J. P. Carbotte, Rev. B 89, (2014)

56 Relativistic quantum electrodynamics in 3D Weyl semimetals? Chiral anomaly = generation/annihilation of chiral fermions from/to vacuum ( ) S. L. Adler, Phys. Rev. 177, 2426 (1969) Solid-state analog = transfer of electrons between Weyl nodes H. B. Nielsen, Phys. Lett. 130B, 389 (1983) Chiral anomaly via splitting of interband absorption edge:

57 External collaborators - acknowledgement Optical spectroscopy: M. Hakl, C. Faugeras, G. Martinez, M. Potemski LNCMI, CNRS, Grenoble, France A. Akrap, I. Crassee, D. van der Marel Université de Genève, Switzerland C. C. Homes Brookhaven National Laboratory, USA J. Kuba CEITEC & BUT, Brno, Czech Republic L. Wu, N. P. Armitage Johns Hopkins University, Baltimore, USA S. Bordacs Budapest University, Hungary Theory: S. Tchoumakov, M. O. Goerbig LPS, CNRS, Paris Orsay, France C. Michel, E. M. Hankiewicz Wűrzburg University, Germany X-ray: O. Caha, J. Novák S. Koohpayeh CEITEC & Masaryk University, Brno, Czech Republic Johns Hopkins University, Baltimore, USA Sample growth: A. Arushanov, A. Nateprov Institute of Applied Physics, ASM, Moldova Q. D. Gibson, R. J. Cava Princeton University, USA W.-L. Lee, R. Sankar Academia Sinica, Tai-pei, Taiwan C. Gould, C. Brune, L. Molenkamp Wűrzburg University, Germany C. Berger, W. A. de Heer GeorgiqTech, Atlanta, USA T. Seyller TU Chemnitz, Germany Transport: B. A. Piot LNCMI, CNRS, Grenoble, France F. Teppe, W. Desrat LCC, CNRS & Université Montpellier, France

58 Conclusions Conclusions/Summary Since discovery/fabrication of graphene triggered a search for other systems with conical bands (in bulk and/or on their surfaces) : Topological insulators, topological crystalline insulators, 3D Dirac and Weyl semimetals, Rashba-type semiconductors Optical and magneto-optical spectroscopy (in the THz and infrared) is a well-suited experimental method to explore them: Band structure parameters masses, velocities, gaps; carrier density; scattering mechanisms, relaxation times/mobilities; phenomena due to electron-phonon or electron-electron interaction; appealing universal and QED effects

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Infrared magneto-spectroscopy of graphene-based systems

Infrared magneto-spectroscopy of graphene-based systems Infrared magneto-spectroscopy of graphene-based systems M. Orlita, C. Faugeras, G. Martinez P. Neugebauer, M. Potemski Laboratoire National des Champs Magnétiques Intenses CNRS, Grenoble, France Collaborators:

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Magneto-plasmonic effects in epitaxial graphene

Magneto-plasmonic effects in epitaxial graphene Magneto-plasmonic effects in epitaxial graphene Alexey Kuzmenko University of Geneva Graphene Nanophotonics Benasque, 4 March 13 Collaborators I. Crassee, N. Ubrig, I. Nedoliuk, J. Levallois, D. van der

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials

Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Nonlinear Optical Response of Massless Dirac Fermions in Graphene and Topological Materials Alexey Belyanin Department of Physics and Astronomy Texas A&M University Zhongqu Long, Sultan Almutairi, Ryan

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Quantitative Mappings from Symmetry to Topology

Quantitative Mappings from Symmetry to Topology Z. Song, Z. Fang and CF, PRL 119, 246402 (2017) CF and L. Fu, arxiv:1709.01929 Z. Song, T. Zhang, Z. Fang and CF arxiv:1711.11049 Z. Song, T. Zhang and CF arxiv:1711.11050 Quantitative Mappings from Symmetry

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator SLAC-PUB-14357 Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator Y. L. Chen 1,2,3, J.-H. Chu 1,2, J. G. Analytis 1,2, Z. K. Liu 1,2, K. Igarashi 4, H.-H. Kuo 1,2, X. L.

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France 1 Building & Infrastructure 2 3 Industrial building (steel panel construction) 6 explosion proof

More information

Topological Photonics with Heavy-Photon Bands

Topological Photonics with Heavy-Photon Bands Topological Photonics with Heavy-Photon Bands Vassilios Yannopapas Dept. of Physics, National Technical University of Athens (NTUA) Quantum simulations and many-body physics with light, 4-11/6/2016, Hania,

More information

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers)

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) N. Peter Armitage The Institute of Quantum Matter The Johns Hopkins University Acknowledgements Liang

More information

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 MAR 5, 2014 Part 1 March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2 ! Examples of relativistic matter Electrons, protons, quarks inside compact stars (white dwarfs, neutron, hybrid

More information

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples.

Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. Supplementary Figure 1 Magneto-transmission spectra of graphene/h-bn sample 2 and Landau level transition energies of three other samples. (a,b) Magneto-transmission ratio spectra T(B)/T(B 0 ) of graphene/h-bn

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles Influence of tetragonal distortion on the topological electronic structure of the half-heusler compound LaPtBi from first principles X. M. Zhang, 1,3 W. H. Wang, 1, a) E. K. Liu, 1 G. D. Liu, 3 Z. Y. Liu,

More information

Dirac and Weyl fermions in condensed matter systems: an introduction

Dirac and Weyl fermions in condensed matter systems: an introduction Dirac and Weyl fermions in condensed matter systems: an introduction Fa Wang ( 王垡 ) ICQM, Peking University 第二届理论物理研讨会 Preamble: Dirac/Weyl fermions Dirac equation: reconciliation of special relativity

More information

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay)

Electronic properties of graphene. Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Electronic properties of graphene Jean-Noël Fuchs Laboratoire de Physique des Solides Université Paris-Sud (Orsay) Cargèse, September 2012 3 one-hour lectures in 2 x 1,5h on electronic properties of graphene

More information

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3 Eur. Phys. J. Special Topics 222, 1271 1275 (2013) EDP Sciences, Springer-Verlag 2013 DOI: 10.1140/epjst/e2013-01921-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Time resolved ultrafast

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010 Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface arxiv:1007.5111v1 [cond-mat.mes-hall] 29 Jul 2010 Su-Yang

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Part I and II Insulators and Topological Insulators HgTe crystal structure Part III quantum wells Two-Dimensional TI Quantum Spin

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Dirac fermions in Graphite:

Dirac fermions in Graphite: Igor Lukyanchuk Amiens University, France, Yakov Kopelevich University of Campinas, Brazil Dirac fermions in Graphite: I. Lukyanchuk, Y. Kopelevich et al. - Phys. Rev. Lett. 93, 166402 (2004) - Phys. Rev.

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting

Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting Landau Level Spectroscopy of Dirac Electrons in a Polar Semiconductor with Giant Rashba Spin Splitting Sándor Bordács, 1 Joseph G. Checkelsky, 1,2 Hiroshi Murakawa, 2 Harold Y. Hwang, 2,3 and Yoshinori

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Collective modes and transport In Weyl semimetals. Dima Pesin, University of Utah, Salt Lake City, UT, USA

Collective modes and transport In Weyl semimetals. Dima Pesin, University of Utah, Salt Lake City, UT, USA Collective modes and transport In Weyl semimetals Dima Pesin, University of Utah, Salt Lake City, UT, USA TAMU, College Station, TX 11/06/2014 Life in the time of Topologitis QHE Strong TI Bulk Insulators

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Magneto-spectroscopy of multilayer epitaxial graphene, of graphite and of graphene

Magneto-spectroscopy of multilayer epitaxial graphene, of graphite and of graphene Magneto-spectroscopy of multilayer epitaxial graphene, of graphite and of graphene Marek Potemski Grenoble High Magnetic Field Laboratory, Centre National de la Recherche Scientifique Grenoble, France

More information

A BIT OF MATERIALS SCIENCE THEN PHYSICS

A BIT OF MATERIALS SCIENCE THEN PHYSICS GRAPHENE AND OTHER D ATOMIC CRYSTALS Andre Geim with many thanks to K. Novoselov, S. Morozov, D. Jiang, F. Schedin, I. Grigorieva, J. Meyer, M. Katsnelson A BIT OF MATERIALS SCIENCE THEN PHYSICS CARBON

More information

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Oct 26, 2017 Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Theory Patrick Lee (MIT) Experiment Ching-Kit Chan University of California Los Angeles Su-Yang Xu,

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Weyl semimetals and topological phase transitions

Weyl semimetals and topological phase transitions Weyl semimetals and topological phase transitions Shuichi Murakami 1 Department of Physics, Tokyo Institute of Technology 2 TIES, Tokyo Institute of Technology 3 CREST, JST Collaborators: R. Okugawa (Tokyo

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals

Topology of the Fermi surface wavefunctions and magnetic oscillations in metals Topology of the Fermi surface wavefunctions and magnetic oscillations in metals A. Alexandradinata L.I. Glazman Yale University arxiv:1707.08586, arxiv:1708.09387 + in preparation Physics Next Workshop

More information

Nonlinear and quantum optics of twodimensional

Nonlinear and quantum optics of twodimensional Nonlinear and quantum optics of twodimensional systems Alexey Belyanin Department of Physics and Astronomy Texas A&M University Xianghan Yao, Ryan Kutayah, and Yongrui Wang Texas A&M University Collaborations:

More information

Effects of biaxial strain on the electronic structures and band. topologies of group-v elemental monolayers

Effects of biaxial strain on the electronic structures and band. topologies of group-v elemental monolayers Effects of biaxial strain on the electronic structures and band topologies of group-v elemental monolayers Jinghua Liang, Long Cheng, Jie Zhang, Huijun Liu * Key Laboratory of Artificial Micro- and Nano-Structures

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Metamorphic InAs 1-x Sb x /InAs 1-y Sb y superlattices with ultra-low bandgap as a Dirac material.

Metamorphic InAs 1-x Sb x /InAs 1-y Sb y superlattices with ultra-low bandgap as a Dirac material. Metamorphic InAs 1-x Sb x /InAs 1-y Sb y superlattices with ultra-low bandgap as a Dirac material. Sergey Suchalkin 1, Gregory Belenky 2, Maksim Ermolaev 1, Seongphill Moon 2,3, Yuxuan Jiang 2,3a, David

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Observation of Dirac node formation and mass acquisition in a topological crystalline insulator

Observation of Dirac node formation and mass acquisition in a topological crystalline insulator Observation of Dirac node formation and mass acquisition in a topological crystalline insulator Yoshinori Okada 1, 2, Maksym Serbyn* 3, Hsin Lin* 4, Daniel Walkup 1, Wenwen Zhou 1, Chetan Dhital 1, Madhab

More information

Room temperature topological insulators

Room temperature topological insulators Room temperature topological insulators Ronny Thomale Julius-Maximilians Universität Würzburg ERC Topolectrics SFB Tocotronics Synquant Workshop, KITP, UC Santa Barbara, Nov. 22 2016 Correlated electron

More information

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv: Magnon Transport Both in Ferromagnetic and Antiferromagnetic Insulating Magnets Kouki Nakata University of Basel KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:1707.07427 See also review article

More information

Chiral Landau levels in Weyl semimetal NbAs with. multiple topological carriers

Chiral Landau levels in Weyl semimetal NbAs with. multiple topological carriers Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers Xiang Yuan 1, 2, Zhongbo Yan 3, Chaoyu Song 1, 2, Mengyao Zhang 5, 6, Zhilin Li 4,6, Cheng Zhang 1, 2, Yanwen Liu 1, 2, Weiyi

More information

arxiv: v3 [cond-mat.mes-hall] 18 Feb 2015

arxiv: v3 [cond-mat.mes-hall] 18 Feb 2015 Observation of Fermi Arc Surface States in a Topological Metal: A New Type of 2D Electron Gas Su-Yang Xu, 1 Chang Liu, 1 Satya K. Kushwaha, 2 Raman Sankar, 3 Jason W. Krizan, 2 arxiv:1501.01249v3 [cond-mat.mes-hall]

More information

Quantum spin Hall effect in IV-VI topological crystalline insulators

Quantum spin Hall effect in IV-VI topological crystalline insulators PAPER OPEN ACCESS Quantum spin Hall effect in IV-VI topological crystalline insulators To cite this article: 2015 New J. Phys. 17 063041 View the article online for updates and enhancements. Related content

More information

Topological insulators

Topological insulators Oddelek za fiziko Seminar 1 b 1. letnik, II. stopnja Topological insulators Author: Žiga Kos Supervisor: prof. dr. Dragan Mihailović Ljubljana, June 24, 2013 Abstract In the seminar, the basic ideas behind

More information

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern

Building Frac-onal Topological Insulators. Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern Building Frac-onal Topological Insulators Collaborators: Michael Levin Maciej Kosh- Janusz Ady Stern The program Background: Topological insulators Frac-onaliza-on Exactly solvable Hamiltonians for frac-onal

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Talk 2: Boulder Summer School, July 2016 Dirac and Weyl Semimetals and the chiral anomaly

Talk 2: Boulder Summer School, July 2016 Dirac and Weyl Semimetals and the chiral anomaly Talk 2: Boulder Summer School, July 2016 Dirac and Weyl Semimetals and the chiral anomaly Jun Xiong Kushwaha Tian Liang Jason Krizan Hirschberger Zhijun Wang Quinn Gibson Cano Bradlyn Jinwoong Kim Kioussis

More information

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE CUI-ZU CHANG, KE HE *, LI-LI WANG AND XU-CUN MA Institute of Physics, Chinese Academy of Sciences, Beijing 100190,

More information

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS

HIGHER INVARIANTS: TOPOLOGICAL INSULATORS HIGHER INVARIANTS: TOPOLOGICAL INSULATORS Sponsoring This material is based upon work supported by the National Science Foundation Grant No. DMS-1160962 Jean BELLISSARD Georgia Institute of Technology,

More information

Emergent technology based on Fermi-arcs?

Emergent technology based on Fermi-arcs? Emergent technology based on Fermi-arcs? Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd 3 As 2 P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath,

More information

arxiv: v1 [cond-mat.mtrl-sci] 2 Aug 2017

arxiv: v1 [cond-mat.mtrl-sci] 2 Aug 2017 HEP/123-qed Optical spectroscopy study on pressure-induced phase transitions in the three-dimensional Dirac semimetal Cd 3 As 2 E. Uykur,1, R. Sankar 2, D. Schmitz 3, and C. A. Kuntscher,1 arxiv:1708.00725v1

More information

QS School Summary

QS School Summary 2018 NSF/DOE/AFOSR Quantum Science Summer School June 22, 2018 QS 3 2018 School Summary Kyle Shen (Cornell) Some Thank yous! A Big Thanks to Caroline Brockner!!! Also to our fantastic speakers! Kavli Institute

More information

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany Hartmut Buhmann Physikalisches Institut, EP3 Universität Würzburg Germany Outline Insulators and Topological Insulators HgTe quantum well structures Two-Dimensional TI Quantum Spin Hall Effect experimental

More information

Topological Heterostructures by Molecular Beam Epitaxy

Topological Heterostructures by Molecular Beam Epitaxy Topological Heterostructures by Molecular Beam Epitaxy Susanne Stemmer Materials Department, University of California, Santa Barbara Fine Lecture, Northwestern University February 20, 2018 Stemmer Group

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

From Graphene to Silicene: Topological Phase Diagram and Transition

From Graphene to Silicene: Topological Phase Diagram and Transition From Graphene to Silicene: Topological Phase Diagram and Transition EQPCM Symposium Motohiko Ezawa Department of Applied Physics University of Tokyo 1 Outline Silicene is a graphene-like silicon structure

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS Pavan Hosur UC Berkeley Jan 23, 2012, University of Illinois, Urbana-Chamapaign Acknowledgements Advisor: Ashvin Vishwanath UC Berkeley

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Modeling of optical properties of 2D crystals: Silicene, germanene and stanene

Modeling of optical properties of 2D crystals: Silicene, germanene and stanene Modeling of optical properties of 2D crystals: Silicene, germanene and stanene Friedhelm Bechstedt 1 collaboration: L. Matthes 1 and O. Pulci 2 1 Friedrich-Schiller-Universität Jena, Germany 2 Università

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

arxiv: v1 [cond-mat.supr-con] 27 Feb 2014

arxiv: v1 [cond-mat.supr-con] 27 Feb 2014 Dirac and Weyl Superconductors in Three Dimensions Shengyuan A. Yang, 1 Hui Pan, 2 3, 4, and Fan Zhang 1 ngineering Product Development, Singapore University of Technology and Design, Singapore 138682,

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Exotic Phenomena in Topological Insulators and Superconductors

Exotic Phenomena in Topological Insulators and Superconductors SPICE Workshop on Spin Dynamics in the Dirac System Schloss Waldthausen, Mainz, 6 June 2017 Exotic Phenomena in Topological Insulators and Superconductors Yoichi Ando Physics Institute II, University of

More information

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Su-Yang Xu, Chang Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski,

More information

Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review)

Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review) Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review) Shuang Jia, 1,2 Su-Yang Xu, 3 and M. Zahid Hasan 3,4 arxiv:1612.00416v2 [cond-mat.mes-hall] 7 Dec 2016 1 International Center for Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Landau Quantization and Quasiparticle Interference in the Three-Dimensional Dirac Semimetal Cd 3 As 2 Sangjun Jeon 1*, Brian B. Zhou 1*, Andras Gyenis 1, Benjamin E. Feldman 1, Itamar Kimchi 2, Andrew

More information

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés Dynamics of electrons in surface states with large spin-orbit splitting L. Perfetti, Laboratoire des Solides Irradiés Outline Topology of surface states on the Bi(111) surface Spectroscopy of electronic

More information