Lecture 23: Spinodal Decomposition: Part 2: regarding free energy. change and interdiffusion coefficient inside the spinodal

Size: px
Start display at page:

Download "Lecture 23: Spinodal Decomposition: Part 2: regarding free energy. change and interdiffusion coefficient inside the spinodal"

Transcription

1 Leture 3: Spinodal eoposition: Part : regarding free energy hange and interdiffusion oeffiient inside the spinodal Today s topis ontinue to understand the basi kinetis of spinodal deoposition. Within the spinodal, d G/d < and interdiffusion oeffiient ( )<; how to interpret this regarding the free energy hange. adapted fro the ook "Phase Transforations in etals and lloys", by.. Porter, K. E. Easterling and. Y. Sherif, R Press, third edition. d G/d < or X here refers to the onentration of oponents. The starting point for the analysis is the ahn-hilliard equation for free energy of a solid solution. G = N [ g( ) + K( )] dv V or, in one diensional oposition variation (oposition gradient in one diension): d G = NV [ g() + K( )] d d where is the ross-setional area perpendiular to the -ais, N V is the nuber of atos/unit volue. 1

2 lso, g() and K are quantities defined on a per ato basis. If we define g() and K on a per unit volue basis, then we have d G = [ g() + K( )] d (per unit volue) (1) d In the following, onentration will be used to represent ato or olar fration. Note: The above equation was derived by loal density approiation --- that is, by epanding g as a funtion of, d d, d d, about a loally hoogeneous (unifor) solution, for whih = onstant, d d =, =,. d d Now onsider a hoogeneous solid solution of oposition, the free energy of a volue L (L = length along ) is d G ( ) = L g ( ) ( ) d =. Now, let us assue that soehow a oposition perturbation (or flutuation) is reated suh that the oposition is a funtion of position, although the average oposition is still. Then, we an epand g() about the average oposition. That is g 1 g ( ) = g ( ) + ( ) + ( ) +... Thus, Gibbs free energy for an alloy of average oposition, but with a spatially varying oposition is (Eq. (1) ) 1 G = [ g( ) + ( ) + ( ) K( ) ] d g () Note that any oposition variation an be given in ters of a Fourier series. We will siply assue that the entire oposition variation an be desribed by a single sinusoidal wave of wavelength. Speifially, let us assue that the oposition flutuation is given by π ( ) = os( ) = os β (3) where = aplitude, and β π = = wave nuber

3 Initial => g( ) Thus, when suh a oposition flutuation eists, the free energy per unit volue an be dedued as follows: First fro Eq. (), we have g ( ) [ g ( ) ( ) ( ) K( ) ] d G 1 g 1 g d = = d Seond, substitute for with Eq. (3), we get 1 g π 1 π π π g ( ) = [ g ( ) + os( ) + os ( ) + K( ) sin ( )] d g π π π π g( ) = g( ) + os( ) d + os ( ) d + K( ) sin ( ) d now, write π θ =, then, π dθ = d, d = d θ, π = θ = = θ = π Then, g 1 π g ( ) = g ( ) + osθdθ + os θdθ + K( ) sin θdθ π π π π π π Now π osθdθ =, π π os θdθ = sin θdθ = π K π g () = g ( ) + + ( ) Or 4 K β g g g K ( ) = ( ) + + = ( ) + { + β } 4 4 The above gives the free energy per unit volue of a solid solution having a oposition flutuation desribed by π ( ) = os( ) = os β (3) (4) 3

4 Eq.(3) tells us: For a hoogeneous solid solution of oposition, if a oposition perturbation (or flutuation) is reated suh that the oposition is a funtion of position, although the average oposition is still. Now, lets ontinue to analyze the above equation to interpret the spinodal deoposition, wherein g and interdiffusion oeffiient ( )<. With the oposition flutuation given by ( ) = + os β developed within the initially hoogeneous solid solution of oposition, the hange in free energy an be written (fro Eq. 4 above) as g= g g = g+ g = + K ( ) ( ) ( os β ) ( ) { β } 4 For the flutuation to be stable in relation to the original, hoogeneous solid solution, we ust have g = + { Kβ } 4 Now, K is always >, and β >, thus, Kβ >. lso, always >. Therefore, for g, it is neessary that < We have seen that inside the isibility gap (the diagra on page ), the free energy of the original solid solution is possible to have <.. The two points (S 1 and S ) at whih = are defined as spinodes (i.e., infletion points of the g urve), and the boundary of defined as the spinodal, as shown in the diagra above. = in the phase diagra is Thus, if the teperature is suh that <, i.e., inside the spinodal, and for the value of β to be suffiiently sall ( suffiiently large), it is possible to have g to be negative g = + < { Kβ } 4 4

5 Then, the flutuation is ore stable oposition opared to the hoogeneous solid solution, i.e., g <. Initial => g( ) The above equation shows that the sign of g does not depend on the agnitude of. The largest possible β (lowest ) suh that the flutuation is stable with respet to the hoogeneous solid solution (i.e., as required by g < ), is given by β, g + Kβ = 1 β = [ ( )] K 1/ or π 1 g = [ ( )] β = 8π K 1/ Positive, real values of β and are possible only inside the spinodal so that < The lower liitation (i.e., ) is due to the gradient energy ter (K), whih iplies that the flutuation (and eventual deoposition) annot our on too fine a sale. s we see later, there are ertain siilarities between the phenoenon of spinodal deoposition and ellular preipitation, ainly fro the standpoint of the role of bulk free energy and the interfaial energy (gradient energy). The Kinetis of Spinodal eoposition: Uphill iffusion (against onentration gradient), and understanding based on heial diffusion oeffiient ( ), and Inter-diffusion oeffiient ( ) s we learned before in Leture 5, the heial diffusion oeffiient (e.g., ) depends on, as epressed by the following equations: 5

6 ln γ G G = {1 + } = = ln RT RT ln γ G G = {1 + } = = ln RT RT (per ole) (per ole) Let = onentration of ato or ole fration, then the above equations ay also be written as (1 ) = = NkT NkT (1 ) = = NkT NkT g g (per unit volue) (per unit volue) Where N is the vogadro onstant, k is the oltzann onstant. Fro Nernst-Einstein Equation: kt = and kt =, where and are obilities of and, respetively. So, (1 ) N =, (1 ) N = Let us assue that the interdiffusion oeffiient ( ) obeys arken s equation (Leture 6), then, = + (1 ) (1 ) (1 ) = + N N (1 ) { (1 g ) } N = + write, = [ + (1 ) ] (1 ) so, = N 6

7 Inside the spinodal, < so, <. Now, as we learned in Leture 6, the Fik s first Law gives: J = -, J = - s the diffusion flu (J, J ) ust be positive, this eans (d /d, or d /d) ust be positive, i.e., the diffusion is up against onentration gradient, though still along heial potential or free energy gradient, G<. 7

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the Leture 4: Spinodal Deoposition: Part 3: kinetis of the oposition flutuation Today s topis Diffusion kinetis of spinodal deoposition in ters of the onentration (oposition) flutuation as a funtion of tie:

More information

Worked Solutions to Problems

Worked Solutions to Problems rd International Cheistry Olypiad Preparatory Probles Wored Solutions to Probles. Water A. Phase diagra a. he three phases of water oeist in equilibriu at a unique teperature and pressure (alled the triple

More information

The Seesaw Mechanism

The Seesaw Mechanism The Seesaw ehanis By obert. Klauber www.quantufieldtheory.info 1 Bakground It ay see unusual to have suh low values for asses of neutrinos, when all other partiles like eletrons, quarks, et are uh heavier,

More information

Shear Force and Bending Moment

Shear Force and Bending Moment Shear Fore and Bending oent Shear Fore: is the algebrai su of the vertial fores ating to the left or right of a ut setion along the span of the bea Bending oent: is the algebrai su of the oent of the fores

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions

IV Transport Phenomena. Lecture 21: Solids and Concentrated Solutions IV Transport Phenomena Leture 21: Solids and Conentrated Solutions MIT Student (and MZB) Marh 28, 2011 1 Transport in Solids 1.1 Diffusion The general model of hemial reations an also be used for thermally

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physis (Theory) Tie allowed: 3 hours] [Maxiu arks:7 General Instrutions: (i) ll uestions are opulsory. (ii) (iii) (iii) (iv) (v) There are 3 uestions in total. Question Nos. to 8 are very short answer

More information

' ' , and z ' components ( u u u'

' ' , and z ' components ( u u u' Mesosale Meteorology: Gravity Waves 3 April 07 Introdution Here, we priarily onsider internal gravity waves, or waves that propagate in a density-stratified fluid (noinally, a stably-stratified fluid,

More information

Reference. R. K. Herz,

Reference. R. K. Herz, Identifiation of CVD kinetis by the ethod of Koiyaa, et al. Coparison to 1D odel (2012) filenae: CVD_Koiyaa_1D_odel Koiyaa, et al. (1999) disussed ethods to identify the iportant steps in a CVD reation

More information

Relative Maxima and Minima sections 4.3

Relative Maxima and Minima sections 4.3 Relative Maxima and Minima setions 4.3 Definition. By a ritial point of a funtion f we mean a point x 0 in the domain at whih either the derivative is zero or it does not exists. So, geometrially, one

More information

Kinematics of Elastic Neutron Scattering

Kinematics of Elastic Neutron Scattering .05 Reator Physis - Part Fourteen Kineatis of Elasti Neutron Sattering. Multi-Group Theory: The next ethod that we will study for reator analysis and design is ulti-group theory. This approah entails dividing

More information

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance

Van Der Waals Constants k b = 1.38 x J K -1 Substance. Substance Cheistry 45 Physial Cheistry I Exa I Given Info: R 8.35 J ol - K - Van Der Waals Constants k b.38 x 0-3 J K - Substane a b P T (J. 3 /ole ) ( 3 /ole) (MPa) (K) Air 0.358 3.64x0-5 3.77 33 K Carbon Dioxide

More information

Systems of Linear First Order Ordinary Differential Equations Example Problems

Systems of Linear First Order Ordinary Differential Equations Example Problems Systes of Linear First Order Ordinary Differential Equations Eaple Probles David Keffer Departent of Cheial Engineering University of Tennessee Knoville, TN 79 Last Updated: Septeber 4, Eaple. Transient

More information

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is

Scholarship Calculus (93202) 2013 page 1 of 8. ( 6) ± 20 = 3± 5, so x = ln( 3± 5) 2. 1(a) Expression for dy = 0 [1st mark], [2nd mark], width is Sholarship Calulus 93) 3 page of 8 Assessent Shedule 3 Sholarship Calulus 93) Evidene Stateent Question One a) e x e x Solving dy dx ln x x x ln ϕ e x e x e x e x ϕ, we find e x x e y The drop is widest

More information

TAP 702-6: Binary stars

TAP 702-6: Binary stars TAP 702-6: Binary stars Orbiting binary stars: A type of ariable star. This type of ariable star onsists of two stars orbiting around eah other. When the dier star is in front of the brighter one, the

More information

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015). Sergey G.

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015).   Sergey G. International Journal of Therodynais Vol. 8 No. P. 3-4 (5). http://dx.doi.org/.554/ijot.5343 Four-diensional equation of otion for visous opressible and harged fluid with regard to the aeleration field

More information

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan Leture 17 Phys. 7: Waves and Light Physis Departent Yarouk University 1163 Irbid Jordan Dr. Nidal Ershaidat http://taps.yu.edu.jo/physis/courses/phys7/le5-1 Maxwell s Equations In 187, Jaes Clerk Maxwell's

More information

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn EN40: Dynais and Vibrations Hoework 6: Fored Vibrations, Rigid Body Kineatis Due Friday April 7, 017 Shool of Engineering Brown University 1. Syste A in the figure is ritially daped. The aplitude of the

More information

U V. r In Uniform Field the Potential Difference is V Ed

U V. r In Uniform Field the Potential Difference is V Ed SPHI/W nit 7.8 Electric Potential Page of 5 Notes Physics Tool box Electric Potential Energy the electric potential energy stored in a syste k of two charges and is E r k Coulobs Constant is N C 9 9. E

More information

Kinetic Theory of Gases. Chapter 33 1/6/2017. Kinetic Theory of Gases

Kinetic Theory of Gases. Chapter 33 1/6/2017. Kinetic Theory of Gases 1/6/017 Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atos or olecules in otion. Atos or olecules are considered as particles. This

More information

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin)

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin) SPMS Physis Club PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR 009-0 PAP6 Introdution to Lasers (Solution by: Phann Sophearin) Question (a) - Three basi eleents required: avity, gain, and pup.

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law Asian Journal of Applied Siene and Engineering, Volue, No 1/13 ISSN 35-915X(p); 37-9584(e) Derivation of Non-Einsteinian Relativisti Equations fro Moentu Conservation Law M.O.G. Talukder Varendra University,

More information

The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution he nulear fusion reation rate based on relativisti equilibriu veloity distribution Jian-Miin Liu* Departent of Physis, Nanjing University Nanjing, he People's Republi of China *On leave. E-ail address:

More information

Methods of evaluating tests

Methods of evaluating tests Methods of evaluating tests Let X,, 1 Xn be i.i.d. Bernoulli( p ). Then 5 j= 1 j ( 5, ) T = X Binomial p. We test 1 H : p vs. 1 1 H : p>. We saw that a LRT is 1 if t k* φ ( x ) =. otherwise (t is the observed

More information

points Points <40. Results of. Final Exam. Grade C D,F C B

points Points <40. Results of. Final Exam. Grade C D,F C B Results of inal Exa 5 6 7 8 9 points Grade C D, Points A 9- + 85-89 7-8 C + 6-69 -59 < # of students Proble (che. equilibriu) Consider the following reaction: CO(g) + H O(g) CO (g) + H (g) In equilibriu

More information

Green s Function for Potential Field Extrapolation

Green s Function for Potential Field Extrapolation Green s Funtion for Potential Field Extrapolation. Soe Preliinaries on the Potential Magneti Field By definition, a potential agneti field is one for whih the eletri urrent density vanishes. That is, J

More information

On the Diffusion Coefficient: The Einstein Relation and Beyond 3

On the Diffusion Coefficient: The Einstein Relation and Beyond 3 Stoch. Models, Vol. 19, No. 3, 2003, (383-405) Research Report No. 424, 2001, Dept. Theoret. Statist. Aarhus On the Diffusion Coefficient: The Einstein Relation and Beyond 3 GORAN PESKIR 33 We present

More information

(Newton s 2 nd Law for linear motion)

(Newton s 2 nd Law for linear motion) PHYSICS 3 Final Exaination ( Deeber Tie liit 3 hours Answer all 6 questions You and an assistant are holding the (opposite ends of a long plank when oops! the butterfingered assistant drops his end If

More information

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018 EN40: Dynais and Vibrations Hoewor 6: Fored Vibrations Due Friday April 5, 2018 Shool of Engineering Brown University 1. The vibration isolation syste shown in the figure has =20g, = 19.8 N / = 1.259 Ns

More information

Congruences and Modular Arithmetic

Congruences and Modular Arithmetic Congruenes and Modular Aritheti 6-17-2016 a is ongruent to b od n eans that n a b. Notation: a = b (od n). Congruene od n is an equivalene relation. Hene, ongruenes have any of the sae properties as ordinary

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University EMA500 Lecture Interstitial Diffusion & Fick s st Law Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Substitutional Diffusion Different possibilities Exchange Mechanis

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

Chapter 4: Hypothesis of Diffusion-Limited Growth

Chapter 4: Hypothesis of Diffusion-Limited Growth Suary This section derives a useful equation to predict quantu dot size evolution under typical organoetallic synthesis conditions that are used to achieve narrow size distributions. Assuing diffusion-controlled

More information

Homework Set 4. gas B open end

Homework Set 4. gas B open end Homework Set 4 (1). A steady-state Arnold ell is used to determine the diffusivity of toluene (speies A) in air (speies B) at 298 K and 1 atm. If the diffusivity is DAB = 0.0844 m 2 /s = 8.44 x 10-6 m

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The Graw-Hill Copanies, n. All rights reserved. Third E CHAPTER 4 Pure ECHANCS OF ATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Bending Leture Notes: J. Walt Oler Teas Teh Universit

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

3 Thermodynamics and Statistical mechanics

3 Thermodynamics and Statistical mechanics Therodynaics and Statistical echanics. Syste and environent The syste is soe ortion of atter that we searate using real walls or only in our ine, fro the other art of the universe. Everything outside the

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Che340 hysical Cheistry for Biocheists Exa 3 Apr 5, 0 Your Nae _ I affir that I have never given nor received aid on this exaination. I understand that cheating in the exa will result in a grade F for

More information

Mass Transfer (Stoffaustausch) Fall 2012

Mass Transfer (Stoffaustausch) Fall 2012 Mass Transfer (Stoffaustaush) Fall Examination 9. Januar Name: Legi-Nr.: Edition Diffusion by E. L. Cussler: none nd rd Test Duration: minutes The following materials are not permitted at your table and

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

Lecture 10: Persistent Random Walks and the Telegrapher s Equation

Lecture 10: Persistent Random Walks and the Telegrapher s Equation Leture 10: Persistent Random Walks and the Telegrapher s Equation Greg Randall Marh 11, 003 1 Review from last leture To review from last leture, we ve onsidered a random walk with orrelated displaements:

More information

Numerical Studies of Counterflow Turbulence

Numerical Studies of Counterflow Turbulence Nonae anusript No. will be inserted by the editor Nuerial Studies of Counterflow Turbulene Veloity Distribution of Vorties Hiroyuki Adahi Makoto Tsubota Reeived: date Aepted: date Abstrat We perfored the

More information

Chapter 28 Special Relativity

Chapter 28 Special Relativity Galilean Relatiity Chapter 8 Speial Relatiity A passenger in an airplane throws a ball straight up. It appears to oe in a ertial path. The law of graity and equations of otion under unifor aeleration are

More information

Chemistry 432 Problem Set 11 Spring 2018 Solutions

Chemistry 432 Problem Set 11 Spring 2018 Solutions 1. Show that for an ideal gas Cheistry 432 Proble Set 11 Spring 2018 Solutions P V 2 3 < KE > where is the average kinetic energy of the gas olecules. P 1 3 ρ v2 KE 1 2 v2 ρ N V P V 1 3 N v2 2 3 N

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

1 Brownian motion and the Langevin equation

1 Brownian motion and the Langevin equation Figure 1: The robust appearance of Robert Brown (1773 1858) 1 Brownian otion and the Langevin equation In 1827, while exaining pollen grains and the spores of osses suspended in water under a icroscope,

More information

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin..

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin.. ME357 Proble Set 3 Derive the equation(s) of otion for the systes shown using Newton s Method. For ultiple degree of freedo systes put you answer in atri for. Unless otherwise speified the degrees of freedo

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the

2. Electric Current. E.M.F. of a cell is defined as the maximum potential difference between the two electrodes of the 2. Electric Current The net flow of charges through a etallic wire constitutes an electric current. Do you know who carries current? Current carriers In solid - the electrons in outerost orbit carries

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 42, No. 6, pp. 2522 2568 25 Soiety for Industrial and Applied Matheatis FLOQUET THEORY AS A COMPUTATIONAL TOOL GERALD MOORE Abstrat. We desribe how lassial Floquet theory ay be

More information

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers

Modeling of Threading Dislocation Density Reduction in Heteroepitaxial Layers A. E. Romanov et al.: Threading Disloation Density Redution in Layers (II) 33 phys. stat. sol. (b) 99, 33 (997) Subjet lassifiation: 6.72.C; 68.55.Ln; S5.; S5.2; S7.; S7.2 Modeling of Threading Disloation

More information

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

Overview. Review Multidimensional PDEs. Review Diffusion Solutions. Review Separation of Variables. More diffusion solutions February 2, 2009

Overview. Review Multidimensional PDEs. Review Diffusion Solutions. Review Separation of Variables. More diffusion solutions February 2, 2009 More diffusion solutions February, 9 More Diffusion Equation Solutions arry Caretto Mechanical Engineering 5B Seinar in Engineering Analysis February, 9 Overview Review last class Separation of variables

More information

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and Leture 7: iffusion of Ions: Prt : oupled diffusion of tions nd nions s desried y Nernst-Plnk Eqution Tody s topis Continue to understnd the fundmentl kinetis prmeters of diffusion of ions within n eletrilly

More information

Design of Output Feedback Compensator

Design of Output Feedback Compensator Design of Output Feedbak Copensator Vanita Jain, B.K.Lande Professor, Bharati Vidyapeeth s College of Engineering, Pashi Vihar, New Delhi-0063 Prinipal, Shah and Anhor Kuthhi Engineering College, Chebur,

More information

Intro Wb3303 Kineto-statics and Dynamics

Intro Wb3303 Kineto-statics and Dynamics Wb333 Kineto-statis and Dynais 8 ineto-statis and Dynais...8. 8. Introdution...8. 8. Virtual wor and equilibriu equations (statis)...8.3 8.. General priniple...8.3 8.. Driving fores...8.5 8..3 Support

More information

Chapter VI: Motion in the 2-D Plane

Chapter VI: Motion in the 2-D Plane Chapter VI: Motion in the -D Plane Now that we have developed and refined our vector calculus concepts, we can ove on to specific application of otion in the plane. In this regard, we will deal with: projectile

More information

A Characterization of Wavelet Convergence in Sobolev Spaces

A Characterization of Wavelet Convergence in Sobolev Spaces A Charaterization of Wavelet Convergene in Sobolev Spaes Mark A. Kon 1 oston University Louise Arakelian Raphael Howard University Dediated to Prof. Robert Carroll on the oasion of his 70th birthday. Abstrat

More information

METHOD OF IMPULSE AND MOMENTUM

METHOD OF IMPULSE AND MOMENTUM J-Phsis MTHOD OF IMPULS ND MOMNTUM Until now, we hae studied kineatis of partiles, Newton s laws of otion and ethods of work and energ. Newton s laws of otion desribe relation between fores ating on a

More information

Circulating Currents and Magnetic Moments in Quantum Rings

Circulating Currents and Magnetic Moments in Quantum Rings Copyright 211 Aerian Sientifi Publishers All rights reserved Printed in the United States of Aeria Nanosiene and Nanotehnology Letters Vol. 3, 92 96, 211 Cirulating Currents and Magneti Moents in Quantu

More information

13.Prandtl-Meyer Expansion Flow

13.Prandtl-Meyer Expansion Flow 3.Prandtl-eyer Expansion Flow This hapter will treat flow over a expansive orner, i.e., one that turns the flow outward. But before we onsider expansion flow, we will return to onsider the details of the

More information

Fourier Series Summary (From Salivahanan et al, 2002)

Fourier Series Summary (From Salivahanan et al, 2002) Fourier Series Suary (Fro Salivahanan et al, ) A periodic continuous signal f(t), - < t

More information

CHAPTER 2 THERMODYNAMICS

CHAPTER 2 THERMODYNAMICS CHAPER 2 HERMODYNAMICS 2.1 INRODUCION herodynaics is the study of the behavior of systes of atter under the action of external fields such as teerature and ressure. It is used in articular to describe

More information

A population of 50 flies is expected to double every week, leading to a function of the x

A population of 50 flies is expected to double every week, leading to a function of the x 4 Setion 4.3 Logarithmi Funtions population of 50 flies is epeted to doule every week, leading to a funtion of the form f ( ) 50(), where represents the numer of weeks that have passed. When will this

More information

27 Oscillations: Introduction, Mass on a Spring

27 Oscillations: Introduction, Mass on a Spring Chapter 7 Oscillations: Introduction, Mass on a Spring 7 Oscillations: Introduction, Mass on a Spring If a siple haronic oscillation proble does not involve the tie, you should probably be using conservation

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

Uniaxial Concrete Material Behavior

Uniaxial Concrete Material Behavior COMPUTERS AND STRUCTURES, INC., JULY 215 TECHNICAL NOTE MODIFIED DARWIN-PECKNOLD 2-D REINFORCED CONCRETE MATERIAL MODEL Overview This tehnial note desribes the Modified Darwin-Peknold reinfored onrete

More information

Combined Tilt and Thickness Measurements on Nematic Liquid Crystal Samples

Combined Tilt and Thickness Measurements on Nematic Liquid Crystal Samples This artile was downloaded by: [Mihigan State University] On: 10 February 2015, At: 11:16 Publisher: Taylor & Franis Infora Ltd Registered in England and Wales Registered Nuber: 1072954 Registered offie:

More information

The casing is subjected to the following:

The casing is subjected to the following: 16.50 Leture 13 Subjet: Roket asing design; Strutural modeling Thus far all our modeling has dealt with the fluid mehanis and thermodynamis of rokets. This is appropriate beause it is these features that

More information

RESEARCH ON RANDOM FOURIER WAVE-NUMBER SPECTRUM OF FLUCTUATING WIND SPEED

RESEARCH ON RANDOM FOURIER WAVE-NUMBER SPECTRUM OF FLUCTUATING WIND SPEED The Seventh Asia-Paifi Conferene on Wind Engineering, November 8-1, 9, Taipei, Taiwan RESEARCH ON RANDOM FORIER WAVE-NMBER SPECTRM OF FLCTATING WIND SPEED Qi Yan 1, Jie Li 1 Ph D. andidate, Department

More information

Generation of Anti-Fractals in SP-Orbit

Generation of Anti-Fractals in SP-Orbit International Journal of Coputer Trends and Tehnology (IJCTT) Volue 43 Nuber 2 January 2017 Generation of Anti-Fratals in SP-Orbit Mandeep Kuari 1, Sudesh Kuari 2, Renu Chugh 3 1,2,3 Departent of Matheatis,

More information

THE ESSENCE OF QUANTUM MECHANICS

THE ESSENCE OF QUANTUM MECHANICS THE ESSENCE OF QUANTUM MECHANICS Capter belongs to te "Teory of Spae" written by Dariusz Stanisław Sobolewski. Http: www.tsengines.o ttp: www.teoryofspae.info E-ail: info@tsengines.o All rigts resered.

More information

Expansion of Gases. It is decided to verify oyle's law over a wide range of teperature and pressures. he ost suitable gas to be selected for this purpose is ) Carbon dioxide ) Heliu 3) Oxygen 4) Hydrogen.

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Angular Momentum Properties

Angular Momentum Properties Cheistry 460 Fall 017 Dr. Jean M. Standard October 30, 017 Angular Moentu Properties Classical Definition of Angular Moentu In classical echanics, the angular oentu vector L is defined as L = r p, (1)

More information

Chapter 2: Introduction to Damping in Free and Forced Vibrations

Chapter 2: Introduction to Damping in Free and Forced Vibrations Chapter 2: Introduction to Daping in Free and Forced Vibrations This chapter ainly deals with the effect of daping in two conditions like free and forced excitation of echanical systes. Daping plays an

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 4 Massachusetts Institute of Technology Quantu Mechanics I (8.04) Spring 2005 Solutions to Proble Set 4 By Kit Matan 1. X-ray production. (5 points) Calculate the short-wavelength liit for X-rays produced

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS Russian Physis Journal, Vol. 48, No. 8, 5 CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS A. N. Taskin, V. N. Udodov, and A. I. Potekaev UDC

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

Mathematical modeling of gelatine production processes

Mathematical modeling of gelatine production processes Matheatial odeling of gelatine prodution proesses KAREL KOLOMAZNIK, DAGMAR JANACOA, JAROSLA SOLC and LADIMIR ASEK Departent of Autoati and Control Engineering Toas Bata Universit in Zlín, Fault of Applied

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

Phenomenological Coefficients in Solid State Diffusion (an introduction)

Phenomenological Coefficients in Solid State Diffusion (an introduction) Phenomenologial Coeffiients in Solid State iffusion (an introdution) Graeme E Murh and Irina V elova iffusion in Solids Group Shool of Engineering The University of Newastle Callaghan New South Wales ustralia

More information

Chameleon mechanism. Lecture 2

Chameleon mechanism. Lecture 2 Chaeleon ehanis Leture Cosi aeleration Many independent data sets indiate that the expansion of the Universe is aelerating Siilar to preise tests of GR? Dark energy v Dark gravity Standard odel based on

More information

The homopolar generator: an analytical example

The homopolar generator: an analytical example The homopolar generator: an analytial example Hendrik van Hees August 7, 214 1 Introdution It is surprising that the homopolar generator, invented in one of Faraday s ingenious experiments in 1831, still

More information

In this chapter we will start the discussion on wave phenomena. We will study the following topics:

In this chapter we will start the discussion on wave phenomena. We will study the following topics: Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will study the following topics: Types of waves Aplitude, phase, frequency, period, propagation speed of a wave Mechanical

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The Graw-Hill Copanies, n. All rights reserved. Third E CHAPTER Pure ECHANCS OF ATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Bending Leture Notes: J. Walt Oler Teas Teh Universit

More information

Mass Transfer 2. Diffusion in Dilute Solutions

Mass Transfer 2. Diffusion in Dilute Solutions Mass Transfer. iffusion in ilute Solutions. iffusion aross thin films and membranes. iffusion into a semi-infinite slab (strength of weld, tooth deay).3 Eamples.4 ilute diffusion and onvetion Graham (85)

More information

The Gravitation As An Electric Effect

The Gravitation As An Electric Effect The Gravitation As An Eletri Effet Hans-Jörg Hoheker Donaustr 30519 Hannover e-ail: johoer@yahoode Web-Site: http://wwwhohekereu Abstrat: The eletri fores are iensely great in oparison with the gravitational

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Stak, M.M. and Abdelrahan, Shehab (2010) CFD odelling of erosion-orrosion of steel in aqueous environents : partile onentration effets on the regie boundaries. In:

More information

Lecture 6 Friction. Friction Phenomena Types of Friction

Lecture 6 Friction. Friction Phenomena Types of Friction Leture 6 Frition Tangential fores generated between ontating surfaes are alled frition fores and our to soe degree in the interation between all real surfaes. whenever a tenden eists for one ontating surfae

More information

TOPIC E: OSCILLATIONS SPRING 2018

TOPIC E: OSCILLATIONS SPRING 2018 TOPIC E: OSCILLATIONS SPRING 018 1. Introduction 1.1 Overview 1. Degrees of freedo 1.3 Siple haronic otion. Undaped free oscillation.1 Generalised ass-spring syste: siple haronic otion. Natural frequency

More information

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful.

(a) Why cannot the Carnot cycle be applied in the real world? Because it would have to run infinitely slowly, which is not useful. PHSX 446 FINAL EXAM Spring 25 First, soe basic knowledge questions You need not show work here; just give the answer More than one answer ight apply Don t waste tie transcribing answers; just write on

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information