Complex numbers in polar form

Size: px
Start display at page:

Download "Complex numbers in polar form"

Transcription

1 remember remember Chapter Complex s The magnitude (or modulus or absolute value) of z = x + yi is the length of the line segment from (0, 0) to z and is denoted by z, x + yi or mod z.. z = x + y and zz = z. y. arg z = θ where tan θ = --. x. z i n, n N produces an anticlockwise rotation of 90n degrees. 5. z = r cos θ + r sin θi = r cis θ in polar form.. Arg z is the angle θ in the range < θ. D Complex s in polar form In the following exercise give arg z or Arg z correct to three decimal places where it is not easily expressed as a multiple of. 1 a Represent z = + i on an Argand diagram. b Calculate the exact distance of z from the origin. Find the modulus of each of the following. 17 a z = 5 + 1i b z = 5 i c z = + 7i d z = i e z = + i f z = ( + i) Complex 1 Mathcad 1 19 If z = + i, w = i and u = + 5i then: i represent each of the following on an Argand diagram ii calculate the magnitude in each case. a z w b u + z c w u d w + z e z + w u f z a Show the points z 1 = + 0i, z = + 5i, z = 7 + 5i and z = 9 + 0i on the complex plane. b Calculate the area of the shape formed when the four points are connected by straight line segments in the order z 1 to z to z to z and back to z 1. 5 a Show the points z = 1 + i, u = and w = + 1i on the complex plane. b Calculate the area of the triangle produced by joining the three points with straight line segments. 0 Find the argument of z for each of the following in the interval [0, ]. (Give exact answers where possible.) a z = + i b z = + i c z = 5 5i d z = + i e z = i f z = 10i g z = i h z = 7 i z = i j z = 55

2 10 Maths Quest 1 Specialist Mathematics 1 7 Convert each of the following into Arguments a b c d e f g h Find the modulus and Argument of each of the following complex s. a i b 5 + 5i c 1 i d + i e 7 10i f i g ( + i) 9 Express each of the following in polar form z = r cis θ where θ = Arg z. a z = 1 + i b z = + i c z = 5 5i d z = 5 15i e z = i f z = i 10 Express each of the following complex s in Cartesian form. a cis b cis -- c 5 cis d cis -- e 7 cis f cis -- g cis 11 1 If z = 50i and w = 5 + 5i the value of z + w is: A B 15 C 17 D 5 E 9 The perimeter of the triangle formed by the line segments connecting the points i, 1 i and + i is: A 1 B 0 C 10 D 17 E 5 1 The Argument of i is: A -- B -- 5 C D -- E -- 1 In polar form, 5i is: A cis -- 5 B cis 5 C cis D 5 cis 5 E 5 cis -- WorkSHEET 15 The Cartesian form of cis is: A i B i C i D i E i

3 Chapter Complex s 19 E Basic operations on complex s in polar form 5 1 Express each of the following in the form r cis θ where θ (, ]. a cis -- cis-- b 5 cis cis -- c cis cis -- d cis cis e 7 cis cis Express the resultant complex s in question 1 in Cartesian form. GC Power of program TI GCprogram Casio Power of Express the following products in polar form. 7 a ( + i)( + i) b ( i)( i) c ( + i)( 1 i) Express each of the following in the form r cis θ where θ (, ]. 5 a 1 cis cis b cis cis -- c 0 cis -- 5 cis -- d cis----- cis e 5 cis cis If z = cis----- and w = cis -- then express each of the following in: i polar form ii Cartesian form. a z b w c z d w 5 If z = 1 i and w = + i, write the following in Cartesian form. a z b w c z d w 5 e f z w 7 Determine ( + i) ( 1 i) in Cartesian form. ( i) Write in the form x + yi. ( i) z w 9 a 5 cis -- cis -- is equal to: A i B 10i C D i E b If = + + ( )i then z is: z ( ) A 1 + i B i C 1 i D + i E 1 i c If z = 1 i and w = + i then is equal to: A + i B C D i E w z

4 10 Maths Quest 1 Specialist Mathematics 10 If z = cis----- and w = cis, find the modulus and the argument of If z = + i and w = i, determine (z + w) 9. z w 1 Find z + w, if z = i and w = i. 1 If z 1 = 5 cis -----, z and, find the modulus and the 5 = cis----- z = 10 cis z argument of 1 z z 1 By finding z if z = cis θ, show that cos θ = cos θ cos θ sin θ + sin θ and that sin θ = cos θ sin θ cos θ sin θ. 15 Using z = r cis θ, verify that zz = z. 1 If z n = (1 + i) n, determine the smallest value of n N so that z n is equal to: ( ) n ( ) n ( ) n i ( ) n i a b c d. Factorisation of polynomials in C A polynomial in z is an expression of the form P(z) = a n z n + a n 1 z n 1 + a n z n a 1 z + a 0, where n N is the degree (highest power) of P(z) and a n (with a n 0) are the coefficients. If a n R, that is, all the coefficients are real, then P(z) is said to be a polynomial over R. Similarly, if at least one of the a n is complex, P(z) is said to be a polynomial over C. For example, P(z) = z 5z + is a polynomial of degree over R and P(z) = iz + z i is a polynomial of degree over C. The fundamental theorem of algebra Firstly recall that R C and the factor theorem, which states: If (x a) is a factor of the polynomial P(x), then P(a) = 0. In 1799 the German mathematician Carl Friedrich Gauss proved that every polynomial over C has a solution that is. That is, if P n (z) is a polynomial of degree n over C, then there exists a z 0 C such that P n (z 0 ) = 0. This important result can be used to show that a polynomial of degree n, with n N, has n solutions. The proof relies on a repeated application of the fundamental theorem of algebra and the factor theorem. Firstly, the fundamental theorem of algebra guarantees that there is a z 0 C such that P n (z 0 ) = 0. The factor theorem states that if P n (z 0 ) = 0 for some z 0 then (z z 0 ) is a factor of P n (z) so that P n (z) = (z z 0 )P n 1 (z), where P n 1 (z) is a polynomial of degree n 1. Now by applying the fundamental theorem of algebra to P n 1 (z) there is a z 1 C such that P n 1 (z 1 ) = 0 and the factor theorem ensures that P n 1 (z) = (z z 1 )P n (z).

5 1 Maths Quest 1 Specialist Mathematics 9 1 Find the values of a and b (a, b R) if: a (z + 1) is a factor of z iz + aiz + b b (z i) is a factor of az z + biz + 1i c (z + i) is a factor of z + aiz + iz + (1 + i)b. 1 Explain why at least one of the zeros of a polynomial of degree n (where n is an odd natural ) is a real. 1 Write down a polynomial of degree, whose coefficients are all real, that has i and as two of its zeros. 15 Find the values of a, (a R) for which ai is a solution to: a P(z) = z + z + z + 10 b P(z) = z + iz 11z i. 1 Factorise z + i over C. 17 a Show that P(1) = 0 for P(z) = z (1 + i)z + (i 1)z + (7 + i)z i. b Find the polynomial Q(z) if P(z) = (z 1)Q(z). c Determine the values of a C, b R if Q(z) is of the form Q(z) = (z a) + b. 1 Factorise z + z + z + 10z + 15 over C given that z + 5 i is a factor. 19 Factorise P(z) = 9z + (9i 1)z + (5 1i)z + 5i over C if P( i) = 0. 0 Determine the value of a R if i is to be a zero of a z a 11 + = z tip! Graphics Calculator tip! Roots of complex s Casio tip removed. 1. To select complex mode, press MODE and select Radian mode; scroll down and select a+bi and press ENTER.. To find the cube roots of z = i, start by finding one of the roots as follows. Press MATH, select :, enter ( i) and press ENTER. So one cube root is z 1 = 1 i.. Since cube roots occur at angles of -----, the second cube root can be found by multiplying z 1 by cis Scrolling shows that this root is i.. The third cube root is found by multiplying z 1 by cis Scrolling shows that this root is 1. 0.i. Note that the cube root was recalled using nd [ENTRY] twice; cis was also recalled using nd [ENTRY] twice and then edited to make it cis

6 Chapter Complex s 15 G Solving equations in C Solve the following quadratic equations over C. a x + x + 5 = 0 b x x + 5 = 0 c x 1x + 19 = 0 d x 1x + 1 = 0 e x x + = 0 Solve the following equations over C. a z z z + 10 = 0 b z z + z = 0 c z 7z + 10z = 0 d z 1z + 5z = 0 e z 0z + z 0 = 0 For f(z) = z, g(z) = z z + 1 and h(z) = z 5z + 5z show that f(z) g(z) = h(z) and hence determine the values of z such that h(z) = 0. Solve these equations over C. a x + 5x + 1 = 0 b z z = 0 c 9z + 5z = 0 d x + 1x + 9 = 0 5 The solutions to the equation (z ) + = 0 are: A z = + i, z = i B z = i, z = + i C z = + i, z = i D z = i, z = + i E z = 9 + 1i, z = 9 1i 5 Find the square roots of each of the following in Cartesian form. a 1 + i b i c 1 + i 7 Find i in Cartesian form. If one of the square roots of a(1 + i) is a cis --, the other square root is: A a cis B a cis C a cis D a cis E a cis Use De Moivre s theorem to solve the following equations, in polar form. a z = i b z = + i c z = + i d z = i e z = 1 i f z + i = Find ( 15i) and determine the value of the sum of the roots. 11 a Find the cube root of. b Show the results on an Argand diagram. 1 Solve the following equations in Cartesian form. a z = 1 b z = 5 c z = d z = 7 1 Find all z satisfying a z 5 = 1 b z + 1 = 0. Express your answers in polar form. GC Roots of program TI GCprogram Casio Roots of WorkSHEET.

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C The Natural Number System All whole numbers greater then zero

More information

Unit 3 Specialist Maths

Unit 3 Specialist Maths Unit 3 Specialist Maths succeeding in the vce, 017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson JUST THE MATHS UNIT NUMBER 6.2 COMPLEX NUMBERS 2 (The Argand Diagram) by A.J.Hobson 6.2.1 Introduction 6.2.2 Graphical addition and subtraction 6.2.3 Multiplication by j 6.2.4 Modulus and argument 6.2.5

More information

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers Introduction The first chapter of FP1 introduces you to imaginary and complex numbers You will have seen at GCSE level that some quadratic equations cannot be solved Imaginary and complex numbers will

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number Complex Numbers December, 206 Introduction 2 Imaginary Number In your study of mathematics, you may have noticed that some quadratic equations do not have any real number solutions. For example, try as

More information

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i. 1. Section 5.8 (i) ( 3 + i)(14 i) ( 3)(14 i) + i(14 i) {( 3)14 ( 3)(i)} + i(14) i(i) ( 4 + 6i) + (14i + ) 40 + 0i. (ii) + 3i 1 4i ( + 3i)(1 + 4i) (1 4i)(1 + 4i) (( + 3i) + ( + 3i)(4i) 1 + 4 10 + 11i 10

More information

CHAPTER 1 COMPLEX NUMBER

CHAPTER 1 COMPLEX NUMBER BA0 ENGINEERING MATHEMATICS 0 CHAPTER COMPLEX NUMBER. INTRODUCTION TO COMPLEX NUMBERS.. Quadratic Equations Examples of quadratic equations:. x + 3x 5 = 0. x x 6 = 0 3. x = 4 i The roots of an equation

More information

Complex Numbers, Polar Coordinates, and Parametric Equations

Complex Numbers, Polar Coordinates, and Parametric Equations 8 Complex Numbers, Polar Coordinates, and Parametric Equations If a golfer tees off with an initial velocity of v 0 feet per second and an initial angle of trajectory u, we can describe the position of

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information

Find the common ratio of the geometric sequence. (2) 1 + 2

Find the common ratio of the geometric sequence. (2) 1 + 2 . Given that z z 2 = 2 i, z, find z in the form a + ib. (Total 4 marks) 2. A geometric sequence u, u 2, u 3,... has u = 27 and a sum to infinity of 8. 2 Find the common ratio of the geometric sequence.

More information

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by;

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by; 1. COMPLEX NUMBERS Notations: N the set of the natural numbers, Z the set of the integers, R the set of real numbers, Q := the set of the rational numbers. Given a quadratic equation ax 2 + bx + c = 0,

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M K Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1 This question was in the class test in 016/7 and was worth 5 marks a) Let z +

More information

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives 3 COMPLEX NUMBERS Objectives After studying this chapter you should understand how quadratic equations lead to complex numbers and how to plot complex numbers on an Argand diagram; be able to relate graphs

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

Revision Problems for Examination 1 in Algebra 1

Revision Problems for Examination 1 in Algebra 1 Centre for Mathematical Sciences Mathematics, Faculty of Science Revision Problems for Examination 1 in Algebra 1 Arithmetics 1 Determine a greatest common divisor to the integers a) 5431 and 1345, b)

More information

Chapter 3: Complex Numbers

Chapter 3: Complex Numbers Chapter 3: Complex Numbers Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 3: Complex Numbers Semester 1 2018 1 / 48 Philosophical discussion about numbers Q In what sense is 1 a number? DISCUSS

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

Complex Numbers. Introduction

Complex Numbers. Introduction 10 Assessment statements 1.5 Complex numbers: the number i 5 1 ; the term s real part, imaginary part, conjugate, modulus and argument. Cartesian form z 5 a 1 ib. Sums, products and quotients of complex

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

Mathematics Specialist Units 3 & 4 Program 2018

Mathematics Specialist Units 3 & 4 Program 2018 Mathematics Specialist Units 3 & 4 Program 018 Week Content Assessments Complex numbers Cartesian Forms Term 1 3.1.1 review real and imaginary parts Re(z) and Im(z) of a complex number z Week 1 3.1. review

More information

Topic 1 Part 3 [483 marks]

Topic 1 Part 3 [483 marks] Topic Part 3 [483 marks] The complex numbers z = i and z = 3 i are represented by the points A and B respectively on an Argand diagram Given that O is the origin, a Find AB, giving your answer in the form

More information

3.4 The Fundamental Theorem of Algebra

3.4 The Fundamental Theorem of Algebra 333371_0304.qxp 12/27/06 1:28 PM Page 291 3.4 The Fundamental Theorem of Algebra Section 3.4 The Fundamental Theorem of Algebra 291 The Fundamental Theorem of Algebra You know that an nth-degree polynomial

More information

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS

1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS 1Numer systems: real and complex 1.1 Kick off with CAS 1. Review of set notation 1.3 Properties of surds 1. The set of complex numers 1.5 Multiplication and division of complex numers 1.6 Representing

More information

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables

Lecture 1 Complex Numbers. 1 The field of complex numbers. 1.1 Arithmetic operations. 1.2 Field structure of C. MATH-GA Complex Variables Lecture Complex Numbers MATH-GA 245.00 Complex Variables The field of complex numbers. Arithmetic operations The field C of complex numbers is obtained by adjoining the imaginary unit i to the field R

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

This leaflet describes how complex numbers are added, subtracted, multiplied and divided.

This leaflet describes how complex numbers are added, subtracted, multiplied and divided. 7. Introduction. Complex arithmetic This leaflet describes how complex numbers are added, subtracted, multiplied and divided. 1. Addition and subtraction of complex numbers. Given two complex numbers we

More information

MATH1251 ALGEBRA S TEST 1 VERSION 1A Sample Solutions September 13, 2017

MATH1251 ALGEBRA S TEST 1 VERSION 1A Sample Solutions September 13, 2017 MATH5 ALGEBRA S TEST VERSION A Sample Solutions September, 7 These answers were written and typed up by Allan Loi and edited by Aaron Hassan. Please be ethical with this resource. It is for the use of

More information

Graphs and polynomials

Graphs and polynomials 5_6_56_MQVMM - _t Page Frida, Novemer 8, 5 :5 AM MQ Maths Methods / Final Pages / 8//5 Graphs and polnomials VCEcoverage Areas of stud Units & Functions and graphs Algera In this chapter A The inomial

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Approved scientific calculators and templates

More information

Mathematics Extension 2 HSC Examination Topic: Polynomials

Mathematics Extension 2 HSC Examination Topic: Polynomials by Topic 995 to 006 Polynomials Page Mathematics Etension Eamination Topic: Polynomials 06 06 05 05 c Two of the zeros of P() = + 59 8 + 0 are a + ib and a + ib, where a and b are real and b > 0. Find

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers

CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers Prof. David Marshall School of Computer Science & Informatics A problem when solving some equations There are

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 67 Outline

More information

P3.C8.COMPLEX NUMBERS

P3.C8.COMPLEX NUMBERS Recall: Within the real number system, we can solve equation of the form and b 2 4ac 0. ax 2 + bx + c =0, where a, b, c R What is R? They are real numbers on the number line e.g: 2, 4, π, 3.167, 2 3 Therefore,

More information

CONTENTS. IBDP Mathematics HL Page 1

CONTENTS. IBDP Mathematics HL Page 1 CONTENTS ABOUT THIS BOOK... 3 THE NON-CALCULATOR PAPER... 4 ALGEBRA... 5 Sequences and Series... 5 Sequences and Series Applications... 7 Exponents and Logarithms... 8 Permutations and Combinations...

More information

SUCCEEDING IN THE VCE 2017 UNIT 3 SPECIALIST MATHEMATICS STUDENT SOLUTIONS

SUCCEEDING IN THE VCE 2017 UNIT 3 SPECIALIST MATHEMATICS STUDENT SOLUTIONS SUCCEEDING IN THE VCE 07 UNIT SPECIALIST MATHEMATICS STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION (a) 0 0 0 9 (b) 7 0 0 0 0 0 i The School For Ecellence 07

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-1: Basic Ideas 1 Introduction

More information

Solutions to Exercises 1.1

Solutions to Exercises 1.1 Section 1.1 Complex Numbers 1 Solutions to Exercises 1.1 1. We have So a 0 and b 1. 5. We have So a 3 and b 4. 9. We have i 0+ 1i. i +i because i i +i 1 {}}{ 4+4i + i 3+4i. 1 + i 3 7 i 1 3 3 + i 14 1 1

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

Complex Numbers and Polar Coordinates

Complex Numbers and Polar Coordinates Chapter 5 Complex Numbers and Polar Coordinates One of the goals of algebra is to find solutions to polynomial equations. You have probably done this many times in the past, solving equations like x 1

More information

Department of Mathematical Sciences Tutorial Problems for MATH103, Foundation Module II Autumn Semester 2004

Department of Mathematical Sciences Tutorial Problems for MATH103, Foundation Module II Autumn Semester 2004 Department of Mathematical Sciences Tutorial Problems for MATH103, Foundation Module II Autumn Semester 2004 Each week problems will be set from this list; you must study these problems before the following

More information

VCE. VCE Maths Methods 1 and 2 Pocket Study Guide

VCE. VCE Maths Methods 1 and 2 Pocket Study Guide VCE VCE Maths Methods 1 and 2 Pocket Study Guide Contents Introduction iv 1 Linear functions 1 2 Quadratic functions 10 3 Cubic functions 16 4 Advanced functions and relations 24 5 Probability and simulation

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM Syllabus (014): Pure Mathematics AM SYLLABUS (014) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (014): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

More information

Complex number 3. z = cos π ± i sin π (a. = (cos 4π ± I sin 4π ) + (cos ( 4π ) ± I sin ( 4π )) in terms of cos θ, where θ is not a multiple of.

Complex number 3. z = cos π ± i sin π (a. = (cos 4π ± I sin 4π ) + (cos ( 4π ) ± I sin ( 4π )) in terms of cos θ, where θ is not a multiple of. Complex number 3. Given that z + z, find the values of (a) z + z (b) z5 + z 5. z + z z z + 0 z ± 3 i z cos π ± i sin π (a 3 3 (a) z + (cos π ± I sin π z 3 3 ) + (cos π ± I sin π ) + (cos ( π ) ± I sin

More information

Complex numbers. Learning objectives

Complex numbers. Learning objectives CHAPTER Complex numbers Learning objectives After studying this chapter, you should be able to: understand what is meant by a complex number find complex roots of quadratic equations understand the term

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM SYLLABUS (2020) PURE MATHEMATICS AM 27 SYLLABUS 1 Pure Mathematics AM 27 (Available in September ) Syllabus Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics

More information

16 has one repeated linear factor: x 4 and therefore one distinct (but repeated) root: x 4. The quadratic 2

16 has one repeated linear factor: x 4 and therefore one distinct (but repeated) root: x 4. The quadratic 2 Answers 7 8 9 10 11 1 TI-Nspire Investigation Student 5 min Introduction The quadratic equation f ( x) x 8x 1 has two distinct linear factors: x and x 6 which means it has two distinct roots: x and x 6.

More information

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS Revised Dec 10, 02 38 SCO: By the end of grade 12, students will be expected to: C97 construct and examine graphs in the polar plane Elaborations

More information

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ)

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ) Complex numbers mixed exercise i a We have e cos + isin hence i i ( e + e ) ( cos + isin + cos + isin ) ( cos + isin + cos sin) cos Where we have used the fact that cos cos sin sin b We have ia ia ib ib

More information

Exercises involving elementary functions

Exercises involving elementary functions 017:11:0:16:4:09 c M. K. Warby MA3614 Complex variable methods and applications 1 Exercises involving elementary functions 1. This question was in the class test in 016/7 and was worth 5 marks. a) Let

More information

Polar Form of Complex Numbers

Polar Form of Complex Numbers OpenStax-CNX module: m49408 1 Polar Form of Complex Numbers OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will:

More information

Chapter 9: Complex Numbers

Chapter 9: Complex Numbers Chapter 9: Comple Numbers 9.1 Imaginary Number 9. Comple Number - definition - argand diagram - equality of comple number 9.3 Algebraic operations on comple number - addition and subtraction - multiplication

More information

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers SECTION P.6 Complex Numbers 49 P.6 Complex Numbers What you ll learn about Complex Numbers Operations with Complex Numbers Complex Conjugates and Division Complex Solutions of Quadratic Equations... and

More information

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we Complex Numbers Definitions Notation We i write for 1; that is we define p to be p 1 so i 2 = 1. i Basic algebra Equality a + ib = c + id when a = c b = and d. Addition A complex number is any expression

More information

2009 Math Olympics Level II Solutions

2009 Math Olympics Level II Solutions Saginaw Valley State University 009 Math Olympics Level II Solutions 1. f (x) is a degree three monic polynomial (leading coefficient is 1) such that f (0) 3, f (1) 5 and f () 11. What is f (5)? (a) 7

More information

Unit 1 Matrices Notes Packet Period: Matrices

Unit 1 Matrices Notes Packet Period: Matrices Algebra 2/Trig Unit 1 Matrices Notes Packet Name: Period: # Matrices (1) Page 203 204 #11 35 Odd (2) Page 203 204 #12 36 Even (3) Page 211 212 #4 6, 17 33 Odd (4) Page 211 212 #12 34 Even (5) Page 218

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 1 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 7, 2017 Course Name and number: MTH 362: Advanced Engineering

More information

Sec 3 Express E-Math & A-Math Syllabus (For Class 301 to 305)

Sec 3 Express E-Math & A-Math Syllabus (For Class 301 to 305) Sec 3 Express E-Math & A-Math Syllabus (For Class 301 to 305) Chapter 1 (EM) Quadratic Equations and Chapter 4 (EM) Coordinate Geometry Chapter 6 (EM) Further Trigonometry Chapter 2 (EM) Linear Inequalities

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

Specialist Mathematics 2019 v1.2

Specialist Mathematics 2019 v1.2 Examination This sample has been compiled by the QCAA to assist and support teachers in planning and developing assessment instruments for individual school settings. Schools develop internal assessments

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

Further algebra. polynomial identities

Further algebra. polynomial identities 8 8A Polynomial identities 8B Partial fractions 8C Simultaneous equations areas of study The solution of simultaneous equations arising from the intersection of a line with a parabola, circle or rectangular

More information

A repeated root is a root that occurs more than once in a polynomial function.

A repeated root is a root that occurs more than once in a polynomial function. Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows

More information

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%).

Class test: week 10, 75 minutes. (30%) Final exam: April/May exam period, 3 hours (70%). 17-4-2013 12:55 c M. K. Warby MA3914 Complex variable methods and applications 0 1 MA3914 Complex variable methods and applications Lecture Notes by M.K. Warby in 2012/3 Department of Mathematical Sciences

More information

Chapter 7 PHASORS ALGEBRA

Chapter 7 PHASORS ALGEBRA 164 Chapter 7 PHASORS ALGEBRA Vectors, in general, may be located anywhere in space. We have restricted ourselves thus for to vectors which are all located in one plane (co planar vectors), but they may

More information

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College

PreCalculus Notes. MAT 129 Chapter 10: Polar Coordinates; Vectors. David J. Gisch. Department of Mathematics Des Moines Area Community College PreCalculus Notes MAT 129 Chapter 10: Polar Coordinates; Vectors David J. Gisch Department of Mathematics Des Moines Area Community College October 25, 2011 1 Chapter 10 Section 10.1: Polar Coordinates

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Complex Analysis Homework 1: Solutions

Complex Analysis Homework 1: Solutions Complex Analysis Fall 007 Homework 1: Solutions 1.1.. a) + i)4 + i) 8 ) + 1 + )i 5 + 14i b) 8 + 6i) 64 6) + 48 + 48)i 8 + 96i c) 1 + ) 1 + i 1 + 1 i) 1 + i)1 i) 1 + i ) 5 ) i 5 4 9 ) + 4 4 15 i ) 15 4

More information

MATH Fundamental Concepts of Algebra

MATH Fundamental Concepts of Algebra MATH 4001 Fundamental Concepts of Algebra Instructor: Darci L. Kracht Kent State University April, 015 0 Introduction We will begin our study of mathematics this semester with the familiar notion of even

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Unit 3: Number, Algebra, Geometry 2

Unit 3: Number, Algebra, Geometry 2 Unit 3: Number, Algebra, Geometry 2 Number Use standard form, expressed in standard notation and on a calculator display Calculate with standard form Convert between ordinary and standard form representations

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MCN COMPLEX NUMBER C The complex number Complex number is denoted by ie = a + ib, where a is called as real part of (denoted by Re and b is called as imaginary part of (denoted by Im Here i =, also i =,

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-3: Straight Line and Circle in

More information

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4)

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4) Chapter 4 Complex Numbers 4.1 Definition of Complex Numbers A complex number is a number of the form where a and b are real numbers and i has the property that z a + ib (4.1) i 2 1. (4.2) a is called the

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

Solutions to Tutorial for Week 3

Solutions to Tutorial for Week 3 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 3 MATH9/93: Calculus of One Variable (Advanced) Semester, 08 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

MATH1050 Basic results on complex numbers beyond school mathematics

MATH1050 Basic results on complex numbers beyond school mathematics MATH15 Basic results on complex numbers beyond school mathematics 1. In school mathematics we have tacitly accepted that it makes sense to talk about complex numbers. Each such number is a mathematical

More information

UNDERSTANDING ENGINEERING MATHEMATICS

UNDERSTANDING ENGINEERING MATHEMATICS UNDERSTANDING ENGINEERING MATHEMATICS JOHN BIRD WORKED SOLUTIONS TO EXERCISES 1 INTRODUCTION In Understanding Engineering Mathematic there are over 750 further problems arranged regularly throughout the

More information

FP1 practice papers A to G

FP1 practice papers A to G FP1 practice papers A to G Paper Reference(s) 6667/01 Edexcel GCE Further Pure Mathematics FP1 Advanced Subsidiary Practice Paper A Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

Complex Numbers. z = x+yi

Complex Numbers. z = x+yi Complex Numbers The field of complex numbers is the extension C R consisting of all expressions z = x+yi where x, y R and i = 1 We refer to x = Re(z) and y = Im(z) as the real part and the imaginary part

More information

Vectors in the Plane

Vectors in the Plane Vectors in the Plane MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Vectors vs. Scalars scalar quantity having only a magnitude (e.g. temperature, volume, length, area) and

More information

Lecture 5. Complex Numbers and Euler s Formula

Lecture 5. Complex Numbers and Euler s Formula Lecture 5. Complex Numbers and Euler s Formula University of British Columbia, Vancouver Yue-Xian Li March 017 1 Main purpose: To introduce some basic knowledge of complex numbers to students so that they

More information

MATH243 First Semester 2013/14. Exercises 1

MATH243 First Semester 2013/14. Exercises 1 Complex Functions Dr Anna Pratoussevitch MATH43 First Semester 013/14 Exercises 1 Submit your solutions to questions marked with [HW] in the lecture on Monday 30/09/013 Questions or parts of questions

More information

COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS

COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS COMPLEX ANALYSIS TOPIC V: HISTORICAL REMARKS PAUL L. BAILEY Historical Background Reference: http://math.fullerton.edu/mathews/n2003/complexnumberorigin.html Rafael Bombelli (Italian 1526-1572) Recall

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions A polynomial on degree n is a function of the form P(x) = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0, where n is a nonnegative integer

More information

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers 3.4 Complex Numbers Essential Question What are the subsets of the set of complex numbers? In your study of mathematics, you have probably worked with only real numbers, which can be represented graphically

More information

Summer Packet A Math Refresher For Students Entering IB Mathematics SL

Summer Packet A Math Refresher For Students Entering IB Mathematics SL Summer Packet A Math Refresher For Students Entering IB Mathematics SL Name: PRECALCULUS SUMMER PACKET Directions: This packet is required if you are registered for Precalculus for the upcoming school

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

, B = (b) Use induction to prove that, for all positive integers n, f(n) is divisible by 4. (a) Use differentiation to find f (x).

, B = (b) Use induction to prove that, for all positive integers n, f(n) is divisible by 4. (a) Use differentiation to find f (x). Edexcel FP1 FP1 Practice Practice Papers A and B Papers A and B PRACTICE PAPER A 1. A = 2 1, B = 4 3 3 1, I = 4 2 1 0. 0 1 (a) Show that AB = ci, stating the value of the constant c. (b) Hence, or otherwise,

More information

Mathematics Extension 2

Mathematics Extension 2 Northern Beaches Secondary College Manly Selective Campus 010 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time 3 hours Write using

More information

Math 421 Homework 1. Paul Hacking. September 22, 2015

Math 421 Homework 1. Paul Hacking. September 22, 2015 Math 421 Homework 1 Paul Hacking September 22, 2015 (1) Compute the following products of complex numbers. Express your answer in the form x + yi where x and y are real numbers. (a) (2 + i)(5 + 3i) (b)

More information

MAT01A1: Complex Numbers (Appendix H)

MAT01A1: Complex Numbers (Appendix H) MAT01A1: Complex Numbers (Appendix H) Dr Craig 14 February 2018 Announcements: e-quiz 1 is live. Deadline is Wed 21 Feb at 23h59. e-quiz 2 (App. A, D, E, H) opens tonight at 19h00. Deadline is Thu 22 Feb

More information

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then.

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then. COMPLEX NUMBERS _+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

2013 Leaving Cert Higher Level Official Sample Paper 1

2013 Leaving Cert Higher Level Official Sample Paper 1 013 Leaving Cert Higher Level Official Sample Paper 1 Section A Concepts and Skills 150 marks Question 1 (5 marks) (a) w 1 + 3i is a complex number, where i 1. (i) Write w in polar form. We have w ( 1)

More information